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Abstract — The MapReduce programming model, introduced by 
Google, has become popular over the past few years as a 
mechanism for processing large amounts of data, using shared-
nothing parallelism. In this paper, we investigate the use of 
MapReduce technology for a local gridding algorithm for the 
generation of Digital Elevation Models (DEM). The local gridding 
algorithm utilizes the elevation information from LIDAR (Light, 
Detection, and Ranging) measurements contained within a 
circular search area to compute the elevation of each grid cell. 
The method is data parallel, lending itself to implementation 
using the MapReduce model.  Here, we compare our initial C++ 
implementation of the gridding algorithm to a MapReduce-based 
implementation, and present observations on the performance (in 
particular, price/performance) and the implementation 
complexity. We also discuss the applicability of MapReduce 
technologies for related applications.  

Keywords: MapReduce, Gridding, Digital Elevation Models, 
LIDAR 

 

I.  INTRODUCTION 
The MapReduce programming model [1], introduced by 

Google, has become popular over the past few years. Apart 
from Google’s proprietary implementation of MapReduce, 
there are several popular open source implementations 
available such as Apache Hadoop MapReduce [2] and Disco 
[3]. MapReduce technologies have also been adopted by a 
growing number of groups in industry (e.g., Facebook [19], and 
Yahoo [20]), and there are several database vendors such as 
GreenPlum [4] and AsterData [5], who leverage concepts of 
MapReduce in their data warehousing solutions. In academia, 
researchers are exploring the use of these paradigms for 
scientific computing, for example, through the Cluster 
Exploratory (CluE) program, funded by the National Science 
Foundation (NSF).  

MapReduce is a programming model and an associated 
implementation for processing and generating large data sets. 
Users specify a map function that processes a key/value pair to 
generate a set of intermediate key/value pairs, and a reduce 
function that merges all intermediate values associated with the 
same intermediate key. The MapReduce paradigm is designed 
to be scalable and conducive to data-intensive and data-parallel 
applications, is fault-tolerant by design, and meant to be run on 
non-specialized commodity hardware. Hence, in theory, 
MapReduce technologies could provide better 

price/performance ratio than traditional HPC or database 
technologies, which may require proprietary hardware and 
software configurations. 

In this paper, we evaluate the use of MapReduce 
technology to implement a local gridding algorithm for the 
generation of Digital Elevation Models (DEM) from dense 
measurements acquired by LIDAR (Light, Detection and 
Ranging) remote sensing technology [17], and compare the 
implementation to an initial C++ implementation.  The overall 
performance is of interest since the algorithm is a key 
processing tool offered by the OpenTopography Facility 
(http://www.opentopography.org), an NSF-funded data facility 
hosted at the San Diego Supercomputer Center, for online 
access to Earth science-oriented LIDAR topography data. 

 

 
Figure 1.  Teton Fault zone: Hillshade imges constructed from: A) Full 

feature DEM (1x1 km wide, 0.5 m grid resolution) - includes all vegetation 
details, and B) Bare earth DEM – constructed from ground returns only 

Digital Elevation Models (DEMs – also called Digital 
Surface Models (DSM) and Digital Terrain Models (DTM)) are 
a digital continuous representation of the landscape (see Figure 
1), where each (X, Y) position is represented by a single 
elevation value.  A DEM can be represented as a raster (a grid 
of squares) or as a triangular irregular network (TIN), and can 
be generated from remotely sensed or directly surveyed 
elevation information.  DEMs are used for a range of scientific 
and engineering applications, including hydrologic modeling, 
terrain analysis, and infrastructure design.  One of the 
fundamental processing tasks in the OpenTopography system is 
generation of DEMs from very dense (multiple measurements 
per square meter) LIDAR topography data.  To accomplish this 
task, OpenTopography uses a simple local gridding approach, 
where points within a given circular local “bin” are used to 
calculate value of a given DEM node. 
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Here, we compare our initial C++ implementation of this 
gridding algorithm to a MapReduce-based implementation, 
which leverages the open source Apache Hadoop framework. 
We present some early results and provide our observations on 
the performance and implementation complexity, and discuss 
our thoughts on the applicability of MapReduce technologies 
for applications of a similar nature. 

The rest of this paper is organized as follows. In Section II, 
we provide background on the local gridding algorithm that is 
used for the Digital Elevation Model generation. In Section III, 
we present the initial C++ and Hadoop-based implementations 
for this algorithm. We describe our various experiments and 
their observed performance in Section IV, and discuss our 
observations and inferences from these experiments in Section 
V. Finally, we describe our ongoing and future work in Section 
VI, and conclusions in Section VII respectively. 

 

II. ALGORITHM OVERVIEW 
The process of surface gridding of irregularly spaced 

elevation measurements involves estimating the elevation at a 
specific grid cell based on the surrounding measurements [18].  
Gridding methods can be broadly classified into 1) global 
approaches such as Kriging [22], which use the measurements 
from a large area around the grid node, or 2) local, which 
utilize only the measurements immediately adjacent to the grid 
node to calculate the value.  Given that natural topography is 
not dependant on regional trends (i.e. the elevation at a given 
point is not influenced by the elevation elsewhere in the 
region), a local gridding methodology for topographic 
measurements is appropriate. 

The nature of LIDAR point cloud data also lend themselves 
to a local gridding approach.  Because these data are collected 
at 10s to 100s of kilohertz from a low-flying aircraft, they 
typically sample elevation at a spacing of significantly less than 
a meter.  However, researchers typically perform their analyses 
on DEMs with resolutions of half a meter or more.  Thus, in 
many research grade LIDAR datasets, each pixel in the DEM 
may have been sampled several times.  Thus, fitting a surface 
between points to estimate elevation at the DEM node is not 
required, and induces unnecessary computational burden. 
However, the LIDAR returns are not spatially uniformly 
distributed while the DEM, by definition, is a regular gridded 
representation of the surface. 

In this paper, we study and evaluate the performance of the 
local gridding algorithm described in [8], and implemented by 
the OpenTopography Facility.  The algorithm computes a 
circular neighborhood defined around each grid cell based on a 
radius provided by the user (see Figure 2).  This neighborhood 
is referred to as a bin, while the grid cell is referred to as a 
DEM node. Up to four values — minimum, maximum, mean, 
or inverse distance weighted (IDW) mean — are computed for 
points that are in the bin. These are then assigned to the 
corresponding DEM node, and used to represent the elevation 
variation over the neighborhood represented by the bin [9]. The 
grid resolution, and the radius of the bin are input parameters 
selected by the user. 

 
Figure 2.  Illustration of local binning geometry. Black dots are actual 

LIDAR returns. Red dots in lower right have elevations shown. Plus symbols 
indicate locations of DEM nodes at which elevation is estimated. Each circle 

represents a local “bin” for a particular DEM node. The DEM values are 
computed by applying simple mathematical functions on all points that fall 

within the local bin. Units are arbitrary, but typically are meters. 

 

III. IMPLEMENTATION OVERVIEW 
The initial implementation of the local gridding algorithm 

for DEM generation was in C++, and is currently being used in 
production mode by the OpenTopography Facility. We have 
also implemented the same algorithm using the Java-based 
MapReduce framework provided by Apache Hadoop. Both 
implementations use the same input and output formats, 
described below. 

For the purposes of this discussion and analysis, the input 
point cloud data can be represented simply as {X, Y, Z} tuples, 
X and Y represent the latitude and longitude of the point 
location, and Z represents the elevation at that point. In 
practice, however, the data tuple also includes other elements 
stored in the point cloud database, such as classification 
(ground versus non-ground) and acquisition time.  

The DEM output is generated by both implementations in 
the ESRI ASCII Grid format (also known as ArcASCII - [7]). 
This format consists of header information, including the 
number of rows and columns in the grid, the coordinates for the 
lower left (or southwest) corner of the grid, and the grid size, 
followed by the elevations for each grid cell, starting with the 
upper left corner (northwest).  

 

A. C++ Implementation 
The initial C++ implementation of the local gridding 

algorithm for DEM generation was first discussed in [8]. There 
are two versions of this implementation – in-core and out-of-
core. The in-core version loads the entire DEM into memory, 
whereas the out-of-core version uses secondary storage for 
saving intermediate results when the size of the DEM exceeds 
available memory. The details of the in-core and out-of-core 
versions of the implementation are as follows. 

 



1) In-Core Version 
Figure 3 shows the implementation of the C++ in-core 

version. If the entire grid representing the DEM (i.e. the output 
to be generated) can be stored in memory, then the required 
memory for the DEM (represented as a 2D array) is allocated 
using a malloc statement, and initialized. Each entry in this 2D 
array corresponds to a DEM node – and is represented by a 
C++ structure called GridPoint, which includes fields for the 
min, max, mean, idw and count values for that DEM node. 
After initialization, the point cloud data is read line by line 
from an input file – for every point in the file, the bin radius 
specified by the user is used to compute the set of DEM nodes 
that fall within its neighborhood. Next, the values in these 
DEM nodes are correspondingly updated. Every line in the 
input file is read only once, thus minimizing the I/O operations 
involved. Once all the input points have been processed, the 
values stored in the GridPoint data structure for each DEM 
node are finalized and a DEM is generated in the ArcASCII 
Grid format. 

 
Figure 3.  Overview of the C++ in-core implementation. Every point in the 

input file is read just once, and assigned to the local bins of the grid cells in its 
neighborhood. The grid cells are finally updated in memory, and results are 

written out in ArcASCII format after all the input points have been processed. 

 

If N is the number of points in the point cloud dataset and G 
is the number of cells in the output DEM grid, then the time 
required to read the entire input is O(N), and to initialize, 
compute and write out the output is O(G). Hence, the total 
algorithm runtime is O(N+G). 

 

2) Out-of-Core Version 
If the available memory on the system is less than the size 

of the entire grid, then the grid is partitioned into multiple 
blocks (sub-grids) and the algorithm is run “out-of-core”. A 
simplified overview of this out-of-core implementation is 
shown in Figure 4. The block size is determined by the 
available memory such that an entire block fits into main 
memory. If M is the block size, in terms of number of grid cells 
in a block, then the total number of blocks is given by G/M. 

 

 
Figure 4.  Overview of the C++ out-of-core implementation. Individual 

blocks of the grid are loaded into memory and updated one at a time. After all 
input points are processed, the final DEM is generated by merging the 

individual grid blocks, and the results are written out in ArcASCII format 

 

To begin, the first block (sub-grid) is loaded into memory. 
The input point cloud dataset is read line by line from the input 
file. As before, for each point, the corresponding DEM nodes 
are computed, based on the search radius. If the DEM node is 
in the block that is currently in memory, the corresponding 
GridPoint values are updated. If not, the values are queued for 
processing when the corresponding block is loaded into 
memory at a future time. If the length of any queue reaches a 
defined threshold, the current block in memory is written out to 
a file, and the new block is loaded in memory. To allow for 
computation of values at the edge of each block, blocks are 
created with some overlap – the size of which depends upon 
the search radius. Once the entire input has been read, all the 
blocks are updated sequentially, the queues are flushed, and the 
final DEM is written out in the ArcASCII Grid format. 

Since the input file is read only once, the read time is O(N). 
The time to initialize the memory for each block is O(M) and 
the time to write each block is also O(M). If each block is 
initialized only once and written once (i.e. the best case, when 
input data are sorted), then the time to initialize and write 
output is O(G/M•M), or O(G). Thus, in the best case, the 
overall complexity is the same as that of the in-core version, 
viz. O(N+G). However, these blocks may have to be written 
out to disk and re-read in the case when the input is not well 
sorted (though, in actuality, the input data tend to be relatively 
well sorted). If Cwrite_M is the cost of writing each block of size 
M, and Cread_M is the cost of reading the block, then the 
overheads due to swapping of blocks caused as a result of non-



sorted inputs is, O(f•(G/M•(Cwrite_M+Cread_M)), where f is a 
“fudge factor” that accounts for the level of unsortedness of the 
input. 

 

B. MapReduce Implementation using Hadoop 
The MapReduce implementation of the local gridding 

algorithm using Apache Hadoop is shown in Figure 5.  

 
Figure 5.  Hadoop-based DEM implementation. In the Map Phase, input 

points are assigned to corresponding grid cells (local bins), and in the Reduce 
phase the corresponding elevations for each grid cell are computed from the 

local bins. The reduced outputs are merged and sorted, and the DEM is 
generated in the ArcASCII grid format. 

 

The implementation consists of three phases as follows: 

Map Phase: In the Map phase, a Hadoop program 
generates a set of intermediate key/value pairs from a set of 
input key/value pairs. In our implementation, the input key is 
the line number for every line in the point cloud, and the value 
is the content of the line (the {X, Y, Z} tuple). For every such 
key/value pair, we compute the set of DEM nodes for which 
this point falls in the corresponding bin, and the corresponding 
distances from these nodes. The intermediate key is of the form 
{Yg, Xg}, and the values are of the form {Z, d}, where {Yg, Xg} 
correspond to the coordinates of the DEM node, the set of Z 
values correspond to the elevation of the points in the bin, and 
d is the distance to each point from the corresponding grid cell. 

We choose to emit {Yg, Xg}, rather than {Xg, Yg} to aid in the 
generation of the outputs – it is beneficial if the outputs are 
ordered with decreasing Y and increasing X values because of 
the way the points are laid out in the ArcASCII grid file – 
starting from the upper left corner to the lower right corner of 
the grid. The map phase takes O(N/M) time, where N is the 
input size and M is the number of map processes. 

Reduce Phase: In the Reduce phase, a Hadoop program 
generates the final set of output key/value pairs from the 
intermediate set. In our implementation, the input key is {Yg, 
Xg}, and the input value is an array of {Z, d}, corresponding to 
that DEM node. Using the Z and d values, we compute the 
average, inverse distance weighted (IDW) mean, minimum, 
maximum and counts for a particular grid point, and emit {Yg, 
Xg, Z1, …} values for every DEM node. The reduce phase takes 
O(N/R) to read the input and O(G/R) to write outputs, where N 
is the size of the input dataset, G is the size of the output grid, 
and R is the number of reduce processes. 

Output Generation Phase: Each reducer generates one 
single output file. The reduced outputs need to be first merged, 
and then sorted by descending Y and ascending X values to aid 
in output generation. The sorted and merged values are then fed 
to a Java program that generates the DEM in the required 
format. If the number of reducers is one, then there is no need 
to do any merging – in fact, the reducer can emit the outputs in 
the required order using Hadoop’s KeyFieldBasedComparator 
class. If the number of reducers is greater than one, then we use 
utilities provided by Hadoop itself to merge and sort the 
outputs (using Hadoop Streaming [23], Identity Mappers and 
Reducers, the KeyFieldBasedComparator to sort the reduce 
outputs, and setting the number of Reducers to one). In the 
worst case, the merging and sorting takes O(G•logG) time. 

Note that we have used a Java program to generate the 
output file for consistency purposes, because the rest of the 
Hadoop code is written in Java. Although there is some 
potential to speed up the output generation using compiled 
code such as C or C++, we did not do so for ease of 
programming and manageability of code. This phase takes 
O(G) time to produce the output. 

 

IV. EXPERIMENT EVALUATION 

A. Overview of Experiments 
The overall goal of our experiments was to get a better 

understanding of how our implementations perform for 
different data sizes and input parameters, on different types of 
hardware. In particular, we were interested in comparing the 
performance (and price/performance) of the initial C++ 
implementation on both commodity and HPC resources, versus 
the Hadoop implementation running on the commodity cluster. 

In terms of the algorithm itself, we were interested in 
studying how the two implementations scaled when we 
increased the number of points in the input point cloud (from a 
few million to a few hundred million); and, when we increased 
the size of the DEM output by increasing grid resolution. Note 
that changing the grid resolution from 1x1m grid cells to 



0.5x0.5m grid cells, for example, quadruples the grid size. We 
also wanted to investigate the effect of the grid resolution on 
performance for both the initial C++ and the Hadoop 
implementations, and if the effect was similar or different for 
the two implementations. 

For our HPC platform, we used a traditional high 
performance SMP resource, accessed via the TORQUE 
resource manager (also known as PBS [10]). The resource 
featured 28 Sun x4600M2, eight-processor quad-core nodes. 
Eight had 512 GB of memory, and the remaining 20 had 256 
GB. The total system bandwidth was 112 GB per second. The 
256GB nodes had eight GB per core and the 512GB nodes had 
16 GB per core. Each node had eight AMD 8380 Shanghai 4-
core processors running at 2.5 GHz. Costs for these nodes 
varied from $30K to $70K USD, depending on the available 
memory. For our experiments, we focused on the 512 GB 
nodes. 

For the commodity resources, we used an 8-node cluster 
that we had assembled from off-the-shelf components. Each 
node had a quad-core AMD PhenomTM II X4 940 Processor at 
800MHz, and had 8GB of memory. They were connected 
together by Gigabit Ethernet. Every node cost around $1,000 
USD each. 

For our experiments, we used four input data sets varying 
from 1.5 million to 150 million points, which are available for 
download from the OpenTopography.org portal. The overall 
point density was 6-8 points per square meter. The 1.5 million 
points input was around 74 MB in size, while the 150 million 
points input was around 6.9 GB in size. The two intermediate 
input datasets were 13 million points (628 MB) and 67 million 
points (3.2 GB) points, respectively. With this selection, we 
had a set of inputs that varied from small to large point clouds, 
and experiments based on them were sufficient to evaluate the 
overall performance of our implementations. 

B. C++ Implementation 
The performance of the C++ implementation on the 

commodity and HPC resources are shown in Figure 6. As 
described in Section III A, the code can run in either in-core or 
out-of-core mode depending on the memory availability. 
Because the HPC node had 512GB of memory available, all 
runs on that were in in-core mode. On the other hand, the 
commodity node only had 8GB of memory available. Hence, 
the runs on the commodity node ended up in out-of-core mode 
for the larger grid sizes. The threshold for the number of grid 
cells for switching to out-of-core mode was set to 140 million. 
This threshold can be set in the C++ code, and is a function of 
the available memory on the resource. The size of the 
GridPoint data structure is 52 bytes (5 doubles and 3 integers) – 
hence, the total size of 140 million grid cells was set to be 
slightly lower than the total memory on the commodity 
resource. 

As evident from figure 6, the performance on the 
commodity resource and the HPC resource are very similar for 
the smallest input size (1.5 million input points) – on both 
resources, the grids can be easily fit into memory for all three 
grid resolutions (0.25m, 0.5m and 1m). For this input size and 
grid resolution, the performance is more I/O-bound than CPU 

or memory-bound. Even for 13 million input points, the 
performances on both resources were in the same 
neighborhood for resolutions of 0.5m and 1m.  

 

 
Figure 6.  C++ performance comparison of commodity versus HPC nodes. 

Performance on the HPC node is about the same for smaller jobs, but an order 
of magnitude faster for the largest jobs. Grid resolution is represented by “r”. 

 

The performance on the HPC resource is significantly 
better once the implementation goes out of out of core on the 
commodity resource – i.e. for DEMs that contain more than 
140 million grid cells. For instance, the 150 million point input 
file at a 0.25m resolution produces around 595 million grid 
cells – and the execution time on the HPC node was around 
2,711s, while that on the commodity resource was around 
33,113s. In other words, the DEM generation for the largest 
grid was more than 12 times faster on the HPC resource, in 
comparison to the commodity resource. The memory 
availability is the defining factor in the performance of the C++ 
implementation for large grids – hence; the HPC resource 
could run larger jobs much faster than the commodity resource. 

C. Hadoop Implementation 
Next, we evaluated the performance of our Hadoop 

implementation on our commodity cluster, by varying some of 
the parameters, such as the number of nodes in the Hadoop 
cluster, and the number of Reducers. The purpose of this 
experiment was to evaluate if the Hadoop implementation 
running on an inexpensive cluster put together out of 
commodity off-the-shelf components, compared favorably to 
the C++ performance on the HPC resource. 

We used the Apache Hadoop version 0.20.2 with the 
default parameters – no attempts were made to optimize or tune 
the parameters for each of the resources. The replication 
parameter for the Hadoop Distributed File System (HDFS [11]) 
was set to two on both systems – i.e. the data are replicated 
twice. 

 



 
Figure 7.  Hadoop perfortmance comparison on commodity cluster: 4 vs 8 

nodes. The Hadoop performance is not significantly different between 4 or 8 
nodes. Grid resolution is represented by “r”. 

 

Figure 7 shows the performance of our Hadoop 
implementation on our commodity cluster, with 4 and 8 nodes. 
Two characteristics of this graph deserve attention. First, the 
execution time using either 4 or 8 nodes was significantly less 
than that of the (single-node) C++ implementation on the same 
resource for large jobs. For example, our largest job (150 
million points at a resolution of 0.25m) took around 5,933s to 
run on the 8-node Hadoop cluster, and 6,156s on the 4-node 
cluster. The Hadoop runs were around 5.5 times as fast as the 
C++ run on the same resource. However, neither run was faster 
than the C++ run on the HPC resource for the same inputs 
(2,711s). 

The second characteristic to note from the figure is that the 
performance for both the 4 and 8 node implementations were 
very similar. This is because of two factors – first, the serial 
output generation step, which converts the Hadoop outputs ({Y, 
X, Z} tuples) to the ArcASCII format, dominates the overall 
performance. For instance, the output generation time for 150 
million input points at a grid resolution of 0.25m was found to 
be 2,878s, out of a total execution time of 6,156s (i.e. 47% of 
total time). Secondly, the number of Reducers chosen by the 
Hadoop framework for these runs defaulted to 1. The reduce 
phase is time consuming since all the Z values are computed 
from the intermediate key/value pairs in this phase – use of a 
single Reducer deprives us of the parallelism that can be 
achieved in the computation of the Z values.  

Since the number of Reducers for the Hadoop 
implementation can be modified, we performed some 
experiments by varying their number.  Figure 8 shows the 
performance of the Hadoop implementation with one and four 
Reducers, on a 4-node cluster. As seen in the graph, the 
performance was also very similar for one or four Reducers. 
There is indeed some parallelism that is gained by increasing 
the number of Reducers, but the benefit is counteracted by the 
necessity to merge and sort the outputs from the Reducers, 
which is needed for DEM generation in the ArcASCII format. 

Furthermore, as discussed earlier, the output generation time is 
still the dominating factor in the overall execution time. 

 

 
Figure 8.  Hadoop performance comparison on commodity cluster: 1 vs 4 
Reducers on 4 nodes. The performance with four reducers is worse than the 
performance with a single reducer for very small and very large grids. Grid 

resolution is represented by “r”.. 

 

It is worthwhile to note a few other characteristics of Figure 
8. The performance of the run with a single Reducer was 
slightly better than the one with four Reducers in a couple of 
instances – when the inputs and grid resolutions are very low, 
and when they are very high. The performance of four 
Reducers was better in all other cases. This is because in the 
first case, the time required for bootstrapping the extra 
Reducers was greater than the benefit that could be gained due 
to the parallelism. And in the second case, the time required to 
sort and merge the output from the Reducers nullified the 
speedup achieved due to the parallelism. Although it may be 
possible to choose an optimal number of Reducers for the best 
possible execution time, the benefits were not significant 
enough to justify any further investigation for this particular 
application. 

In summary, the Hadoop-based implementation provided 
significant speedup on the commodity resource, but was still 
slower than the C++ implementation on the single HPC node. 
Even though the algorithm was parallelizable, the serial output 
generation step was found to be the bottleneck for large grids.  

V. DISCUSSION 
As our experiments have shown, the performance of both 

the Hadoop and C++ implementations depend upon a number 
of factors, including the size of the input point cloud dataset, 
and the resolution of the output grid. For the C++ 
implementation, the grid resolution is the dominating factor 
because it determines whether the resulting grid can be stored 
in memory or not. When the code switches to out of core, the 
performance is significantly worse because grid blocks may 
need to be swapped to and from secondary storage. For the 



Hadoop implementation, the grid resolution is also a factor, but 
has less of an impact because the number of intermediate key 
value pairs after the Map phase is equal to the total number of 
points in the input point cloud, irrespective of the grid size. The 
bottleneck for the Hadoop implementation, however, appears to 
be the output generation phase, which unfortunately cannot be 
parallelized.  

In general, if the entire grid can be fit in memory, the C++ 
implementation significantly outperforms the multi-node 
Hadoop implementation. While this might make the case for 
large memory systems, they can also be expensive. The cost of 
a single node on the HPC resource is around $30-$70K USD. 
On the other hand, the cumulative costs of the 4-node 
commodity Hadoop cluster was only around $4K. Thus, while 
the performances on HPC versus commodity hardware are in 
the same order of magnitude, the cost of the HPC node is an 
order of magnitude greater than the commodity Hadoop cluster. 
This means that the price performance ratio for our application 
is an order of magnitude better on the commodity cluster, in 
comparison to the HPC resource. 

In terms of implementation effort, the Hadoop-based 
version of our algorithm is significantly easier to implement 
than the C++ version. This is because we only have to write 
two core functions for the Hadoop implementation – the Map 
and Reduce. Hadoop takes care of the partitioning the data into 
multiple nodes (via HDFS), and executing the algorithm in 
parallel. As for the C++ implementation, we have to perform 
the memory management by hand, leading to relatively 
complex code. The C++ implementation, including both the in-
core and out-of-core versions of the algorithm, is around 2900 
lines of code. The Hadoop based implementation, including the 
output generation, is around 700 lines of code.   

In summary, for a similar class of applications, we 
recommend that traditional HPC machines be used if raw 
performance is desired. If cost or accessibility of such 
resources is a factor, then a Hadoop-based implementation on 
commodity clusters can be an option, since it provides 
performance of a similar order of magnitude as compared to 
traditional HPC resources, at a significantly lower cost. Also 
note that it might require significantly more effort to write HPC 
versions of such codes because of the overhead required to 
manage memory and optimize implementation, leading to 
increased personnel costs as well. 

 

VI. ONGOING AND FUTURE WORK 
As part of our ongoing work, we are investigating the 

deployment of “Hadoop On-demand” on traditional HPC 
resources. The installation of Hadoop on HPC resources comes 
with its own set of challenges. In particular, access to the nodes 
on such resources is via batch scheduling systems, such as PBS 
[10]. Logging on to the individual nodes via secure shell (ssh) 
is prohibited – instead, jobs must be launched via the batch 
queuing interface provided by PBS. This means that the 
Hadoop configuration and setup has to be done “on-demand” 
via PBS scripts. The scripts must perform a set of pre-
processing steps before any Hadoop code is run – including 
staging of all prerequisite software on to the compute nodes, 

formatting the Hadoop Distributed File System (HDFS), 
configuring the master and slave nodes, and starting all Hadoop 
daemons. Once everything is set up, the input files must be 
copied over to HDFS from a high performance shared file 
system, such as Lustre [12]. After Hadoop processing is 
complete, the outputs must be copied back over to the shared 
file system. Since there is a lot of overhead involved in the pre- 
and post-processing, we plan on running experiments to 
measure these overheads, and find out whether running Hadoop 
on an HPC resource is a worthwhile approach.   

We are also investigating the use of a traditional parallel 
HPC approach for the local gridding algorithm in C++, using 
the Message Passing Interface (MPI) [14]. Apart from 
comparing the performance of the C++ implementation against 
the Hadoop implementation, we will investigate scaling, fault 
tolerance and software development time for both 
implementations. We are also looking into reducing the I/O 
overhead of the implementations by reading the input point 
cloud data in the ASPRS LAS binary format [15], which is the 
industry standard for LIDAR data exchange. In addition, we 
are investigating other algorithms for the generation of Digital 
Elevation Models, such as streaming TIN [16], and 
investigating whether they can be parallelized using 
MapReduce or MPI technologies. 

Finally, we are also evaluating the use of User Defined 
Functions (UDF) for an alternative DEM implementation, 
running on the multi-node partitioned IBM DB2 database [13], 
which hosts the LIDAR point cloud datasets for the 
OpenTopography Facility [24]. Pushing the DEM generation 
into the database, where the points are hosted, could potentially 
improve the performance of our overall workflow because the 
datasets do not have to be exported to the file system to be later 
processed by the C++ and the Hadoop codes. 

 

VII. CONCLUSIONS 
In this paper, we investigated the use of MapReduce 

technology for a local gridding algorithm for the generation of 
Digital Elevation Models (DEM) being used by the NSF-
funded OpenTopography Facility. We compared the traditional 
C++ implementation of this gridding algorithm to a 
MapReduce-based implementation, and presented our 
observations on the performance (in particular, 
price/performance) and implementation complexity. In general, 
we discovered that the MapReduce version was easier to 
implement than the C++ version, and provided a significant 
performance boost over the C++ version running on a 
commodity resource. We also found that the single-node C++ 
implementation on a traditional HPC resource, having access to 
significantly greater memory, out-performed the multi-node 
Hadoop implementation on the commodity resources for large 
jobs. However, the HPC resource costs significantly more, thus 
leading to lower price performance ratio than the commodity 
cluster. In general, depending on the budgets, accessibility and 
need for raw performance, we believe that both approaches 
may be applicable for different sets of users, for other 
applications in the same class. 
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