
Evaluation of MapReduce for Gridding LIDAR Data
Sriram Krishnan, Chaitanya Baru, Christopher Crosby

San Diego Supercomputer Center, UC San Diego
9500 Gilman Dr MC 0505
La Jolla, CA 92093, USA

{sriram, baru, ccrosby}@sdsc.edu

Abstract — The MapReduce programming model, introduced by
Google, has become popular over the past few years as a
mechanism for processing large amounts of data, using shared-
nothing parallelism. In this paper, we investigate the use of
MapReduce technology for a local gridding algorithm for the
generation of Digital Elevation Models (DEM). The local gridding
algorithm utilizes the elevation information from LIDAR (Light,
Detection, and Ranging) measurements contained within a
circular search area to compute the elevation of each grid cell.
The method is data parallel, lending itself to implementation
using the MapReduce model. Here, we compare our initial C++
implementation of the gridding algorithm to a MapReduce-based
implementation, and present observations on the performance (in
particular, price/performance) and the implementation
complexity. We also discuss the applicability of MapReduce
technologies for related applications.

Keywords: MapReduce, Gridding, Digital Elevation Models,
LIDAR

I. INTRODUCTION
The MapReduce programming model [1], introduced by

Google, has become popular over the past few years. Apart
from Google’s proprietary implementation of MapReduce,
there are several popular open source implementations
available such as Apache Hadoop MapReduce [2] and Disco
[3]. MapReduce technologies have also been adopted by a
growing number of groups in industry (e.g., Facebook [19], and
Yahoo [20]), and there are several database vendors such as
GreenPlum [4] and AsterData [5], who leverage concepts of
MapReduce in their data warehousing solutions. In academia,
researchers are exploring the use of these paradigms for
scientific computing, for example, through the Cluster
Exploratory (CluE) program, funded by the National Science
Foundation (NSF).

MapReduce is a programming model and an associated
implementation for processing and generating large data sets.
Users specify a map function that processes a key/value pair to
generate a set of intermediate key/value pairs, and a reduce
function that merges all intermediate values associated with the
same intermediate key. The MapReduce paradigm is designed
to be scalable and conducive to data-intensive and data-parallel
applications, is fault-tolerant by design, and meant to be run on
non-specialized commodity hardware. Hence, in theory,
MapReduce technologies could provide better

price/performance ratio than traditional HPC or database
technologies, which may require proprietary hardware and
software configurations.

In this paper, we evaluate the use of MapReduce
technology to implement a local gridding algorithm for the
generation of Digital Elevation Models (DEM) from dense
measurements acquired by LIDAR (Light, Detection and
Ranging) remote sensing technology [17], and compare the
implementation to an initial C++ implementation. The overall
performance is of interest since the algorithm is a key
processing tool offered by the OpenTopography Facility
(http://www.opentopography.org), an NSF-funded data facility
hosted at the San Diego Supercomputer Center, for online
access to Earth science-oriented LIDAR topography data.

Figure 1. Teton Fault zone: Hillshade imges constructed from: A) Full

feature DEM (1x1 km wide, 0.5 m grid resolution) - includes all vegetation
details, and B) Bare earth DEM – constructed from ground returns only

Digital Elevation Models (DEMs – also called Digital
Surface Models (DSM) and Digital Terrain Models (DTM)) are
a digital continuous representation of the landscape (see Figure
1), where each (X, Y) position is represented by a single
elevation value. A DEM can be represented as a raster (a grid
of squares) or as a triangular irregular network (TIN), and can
be generated from remotely sensed or directly surveyed
elevation information. DEMs are used for a range of scientific
and engineering applications, including hydrologic modeling,
terrain analysis, and infrastructure design. One of the
fundamental processing tasks in the OpenTopography system is
generation of DEMs from very dense (multiple measurements
per square meter) LIDAR topography data. To accomplish this
task, OpenTopography uses a simple local gridding approach,
where points within a given circular local “bin” are used to
calculate value of a given DEM node.

This work is funded by the National Science Foundation’s Cluster Exploratory
(CluE) program under award number 0844530, and the Earth Sciences
Instrumentation and Facilities (EAR/IF) program & the Office of
Cyberinfrastructure (OCI), under award numbers 0930731 & 0930643.

Here, we compare our initial C++ implementation of this
gridding algorithm to a MapReduce-based implementation,
which leverages the open source Apache Hadoop framework.
We present some early results and provide our observations on
the performance and implementation complexity, and discuss
our thoughts on the applicability of MapReduce technologies
for applications of a similar nature.

The rest of this paper is organized as follows. In Section II,
we provide background on the local gridding algorithm that is
used for the Digital Elevation Model generation. In Section III,
we present the initial C++ and Hadoop-based implementations
for this algorithm. We describe our various experiments and
their observed performance in Section IV, and discuss our
observations and inferences from these experiments in Section
V. Finally, we describe our ongoing and future work in Section
VI, and conclusions in Section VII respectively.

II. ALGORITHM OVERVIEW
The process of surface gridding of irregularly spaced

elevation measurements involves estimating the elevation at a
specific grid cell based on the surrounding measurements [18].
Gridding methods can be broadly classified into 1) global
approaches such as Kriging [22], which use the measurements
from a large area around the grid node, or 2) local, which
utilize only the measurements immediately adjacent to the grid
node to calculate the value. Given that natural topography is
not dependant on regional trends (i.e. the elevation at a given
point is not influenced by the elevation elsewhere in the
region), a local gridding methodology for topographic
measurements is appropriate.

The nature of LIDAR point cloud data also lend themselves
to a local gridding approach. Because these data are collected
at 10s to 100s of kilohertz from a low-flying aircraft, they
typically sample elevation at a spacing of significantly less than
a meter. However, researchers typically perform their analyses
on DEMs with resolutions of half a meter or more. Thus, in
many research grade LIDAR datasets, each pixel in the DEM
may have been sampled several times. Thus, fitting a surface
between points to estimate elevation at the DEM node is not
required, and induces unnecessary computational burden.
However, the LIDAR returns are not spatially uniformly
distributed while the DEM, by definition, is a regular gridded
representation of the surface.

In this paper, we study and evaluate the performance of the
local gridding algorithm described in [8], and implemented by
the OpenTopography Facility. The algorithm computes a
circular neighborhood defined around each grid cell based on a
radius provided by the user (see Figure 2). This neighborhood
is referred to as a bin, while the grid cell is referred to as a
DEM node. Up to four values — minimum, maximum, mean,
or inverse distance weighted (IDW) mean — are computed for
points that are in the bin. These are then assigned to the
corresponding DEM node, and used to represent the elevation
variation over the neighborhood represented by the bin [9]. The
grid resolution, and the radius of the bin are input parameters
selected by the user.

Figure 2. Illustration of local binning geometry. Black dots are actual

LIDAR returns. Red dots in lower right have elevations shown. Plus symbols
indicate locations of DEM nodes at which elevation is estimated. Each circle

represents a local “bin” for a particular DEM node. The DEM values are
computed by applying simple mathematical functions on all points that fall

within the local bin. Units are arbitrary, but typically are meters.

III. IMPLEMENTATION OVERVIEW
The initial implementation of the local gridding algorithm

for DEM generation was in C++, and is currently being used in
production mode by the OpenTopography Facility. We have
also implemented the same algorithm using the Java-based
MapReduce framework provided by Apache Hadoop. Both
implementations use the same input and output formats,
described below.

For the purposes of this discussion and analysis, the input
point cloud data can be represented simply as {X, Y, Z} tuples,
X and Y represent the latitude and longitude of the point
location, and Z represents the elevation at that point. In
practice, however, the data tuple also includes other elements
stored in the point cloud database, such as classification
(ground versus non-ground) and acquisition time.

The DEM output is generated by both implementations in
the ESRI ASCII Grid format (also known as ArcASCII - [7]).
This format consists of header information, including the
number of rows and columns in the grid, the coordinates for the
lower left (or southwest) corner of the grid, and the grid size,
followed by the elevations for each grid cell, starting with the
upper left corner (northwest).

A. C++ Implementation
The initial C++ implementation of the local gridding

algorithm for DEM generation was first discussed in [8]. There
are two versions of this implementation – in-core and out-of-
core. The in-core version loads the entire DEM into memory,
whereas the out-of-core version uses secondary storage for
saving intermediate results when the size of the DEM exceeds
available memory. The details of the in-core and out-of-core
versions of the implementation are as follows.

1) In-Core Version
Figure 3 shows the implementation of the C++ in-core

version. If the entire grid representing the DEM (i.e. the output
to be generated) can be stored in memory, then the required
memory for the DEM (represented as a 2D array) is allocated
using a malloc statement, and initialized. Each entry in this 2D
array corresponds to a DEM node – and is represented by a
C++ structure called GridPoint, which includes fields for the
min, max, mean, idw and count values for that DEM node.
After initialization, the point cloud data is read line by line
from an input file – for every point in the file, the bin radius
specified by the user is used to compute the set of DEM nodes
that fall within its neighborhood. Next, the values in these
DEM nodes are correspondingly updated. Every line in the
input file is read only once, thus minimizing the I/O operations
involved. Once all the input points have been processed, the
values stored in the GridPoint data structure for each DEM
node are finalized and a DEM is generated in the ArcASCII
Grid format.

Figure 3. Overview of the C++ in-core implementation. Every point in the

input file is read just once, and assigned to the local bins of the grid cells in its
neighborhood. The grid cells are finally updated in memory, and results are

written out in ArcASCII format after all the input points have been processed.

If N is the number of points in the point cloud dataset and G
is the number of cells in the output DEM grid, then the time
required to read the entire input is O(N), and to initialize,
compute and write out the output is O(G). Hence, the total
algorithm runtime is O(N+G).

2) Out-of-Core Version
If the available memory on the system is less than the size

of the entire grid, then the grid is partitioned into multiple
blocks (sub-grids) and the algorithm is run “out-of-core”. A
simplified overview of this out-of-core implementation is
shown in Figure 4. The block size is determined by the
available memory such that an entire block fits into main
memory. If M is the block size, in terms of number of grid cells
in a block, then the total number of blocks is given by G/M.

Figure 4. Overview of the C++ out-of-core implementation. Individual

blocks of the grid are loaded into memory and updated one at a time. After all
input points are processed, the final DEM is generated by merging the

individual grid blocks, and the results are written out in ArcASCII format

To begin, the first block (sub-grid) is loaded into memory.
The input point cloud dataset is read line by line from the input
file. As before, for each point, the corresponding DEM nodes
are computed, based on the search radius. If the DEM node is
in the block that is currently in memory, the corresponding
GridPoint values are updated. If not, the values are queued for
processing when the corresponding block is loaded into
memory at a future time. If the length of any queue reaches a
defined threshold, the current block in memory is written out to
a file, and the new block is loaded in memory. To allow for
computation of values at the edge of each block, blocks are
created with some overlap – the size of which depends upon
the search radius. Once the entire input has been read, all the
blocks are updated sequentially, the queues are flushed, and the
final DEM is written out in the ArcASCII Grid format.

Since the input file is read only once, the read time is O(N).
The time to initialize the memory for each block is O(M) and
the time to write each block is also O(M). If each block is
initialized only once and written once (i.e. the best case, when
input data are sorted), then the time to initialize and write
output is O(G/M•M), or O(G). Thus, in the best case, the
overall complexity is the same as that of the in-core version,
viz. O(N+G). However, these blocks may have to be written
out to disk and re-read in the case when the input is not well
sorted (though, in actuality, the input data tend to be relatively
well sorted). If Cwrite_M is the cost of writing each block of size
M, and Cread_M is the cost of reading the block, then the
overheads due to swapping of blocks caused as a result of non-

sorted inputs is, O(f•(G/M•(Cwrite_M+Cread_M)), where f is a
“fudge factor” that accounts for the level of unsortedness of the
input.

B. MapReduce Implementation using Hadoop
The MapReduce implementation of the local gridding

algorithm using Apache Hadoop is shown in Figure 5.

Figure 5. Hadoop-based DEM implementation. In the Map Phase, input

points are assigned to corresponding grid cells (local bins), and in the Reduce
phase the corresponding elevations for each grid cell are computed from the

local bins. The reduced outputs are merged and sorted, and the DEM is
generated in the ArcASCII grid format.

The implementation consists of three phases as follows:

Map Phase: In the Map phase, a Hadoop program
generates a set of intermediate key/value pairs from a set of
input key/value pairs. In our implementation, the input key is
the line number for every line in the point cloud, and the value
is the content of the line (the {X, Y, Z} tuple). For every such
key/value pair, we compute the set of DEM nodes for which
this point falls in the corresponding bin, and the corresponding
distances from these nodes. The intermediate key is of the form
{Yg, Xg}, and the values are of the form {Z, d}, where {Yg, Xg}
correspond to the coordinates of the DEM node, the set of Z
values correspond to the elevation of the points in the bin, and
d is the distance to each point from the corresponding grid cell.

We choose to emit {Yg, Xg}, rather than {Xg, Yg} to aid in the
generation of the outputs – it is beneficial if the outputs are
ordered with decreasing Y and increasing X values because of
the way the points are laid out in the ArcASCII grid file –
starting from the upper left corner to the lower right corner of
the grid. The map phase takes O(N/M) time, where N is the
input size and M is the number of map processes.

Reduce Phase: In the Reduce phase, a Hadoop program
generates the final set of output key/value pairs from the
intermediate set. In our implementation, the input key is {Yg,
Xg}, and the input value is an array of {Z, d}, corresponding to
that DEM node. Using the Z and d values, we compute the
average, inverse distance weighted (IDW) mean, minimum,
maximum and counts for a particular grid point, and emit {Yg,
Xg, Z1, …} values for every DEM node. The reduce phase takes
O(N/R) to read the input and O(G/R) to write outputs, where N
is the size of the input dataset, G is the size of the output grid,
and R is the number of reduce processes.

Output Generation Phase: Each reducer generates one
single output file. The reduced outputs need to be first merged,
and then sorted by descending Y and ascending X values to aid
in output generation. The sorted and merged values are then fed
to a Java program that generates the DEM in the required
format. If the number of reducers is one, then there is no need
to do any merging – in fact, the reducer can emit the outputs in
the required order using Hadoop’s KeyFieldBasedComparator
class. If the number of reducers is greater than one, then we use
utilities provided by Hadoop itself to merge and sort the
outputs (using Hadoop Streaming [23], Identity Mappers and
Reducers, the KeyFieldBasedComparator to sort the reduce
outputs, and setting the number of Reducers to one). In the
worst case, the merging and sorting takes O(G•logG) time.

Note that we have used a Java program to generate the
output file for consistency purposes, because the rest of the
Hadoop code is written in Java. Although there is some
potential to speed up the output generation using compiled
code such as C or C++, we did not do so for ease of
programming and manageability of code. This phase takes
O(G) time to produce the output.

IV. EXPERIMENT EVALUATION

A. Overview of Experiments
The overall goal of our experiments was to get a better

understanding of how our implementations perform for
different data sizes and input parameters, on different types of
hardware. In particular, we were interested in comparing the
performance (and price/performance) of the initial C++
implementation on both commodity and HPC resources, versus
the Hadoop implementation running on the commodity cluster.

In terms of the algorithm itself, we were interested in
studying how the two implementations scaled when we
increased the number of points in the input point cloud (from a
few million to a few hundred million); and, when we increased
the size of the DEM output by increasing grid resolution. Note
that changing the grid resolution from 1x1m grid cells to

0.5x0.5m grid cells, for example, quadruples the grid size. We
also wanted to investigate the effect of the grid resolution on
performance for both the initial C++ and the Hadoop
implementations, and if the effect was similar or different for
the two implementations.

For our HPC platform, we used a traditional high
performance SMP resource, accessed via the TORQUE
resource manager (also known as PBS [10]). The resource
featured 28 Sun x4600M2, eight-processor quad-core nodes.
Eight had 512 GB of memory, and the remaining 20 had 256
GB. The total system bandwidth was 112 GB per second. The
256GB nodes had eight GB per core and the 512GB nodes had
16 GB per core. Each node had eight AMD 8380 Shanghai 4-
core processors running at 2.5 GHz. Costs for these nodes
varied from $30K to $70K USD, depending on the available
memory. For our experiments, we focused on the 512 GB
nodes.

For the commodity resources, we used an 8-node cluster
that we had assembled from off-the-shelf components. Each
node had a quad-core AMD PhenomTM II X4 940 Processor at
800MHz, and had 8GB of memory. They were connected
together by Gigabit Ethernet. Every node cost around $1,000
USD each.

For our experiments, we used four input data sets varying
from 1.5 million to 150 million points, which are available for
download from the OpenTopography.org portal. The overall
point density was 6-8 points per square meter. The 1.5 million
points input was around 74 MB in size, while the 150 million
points input was around 6.9 GB in size. The two intermediate
input datasets were 13 million points (628 MB) and 67 million
points (3.2 GB) points, respectively. With this selection, we
had a set of inputs that varied from small to large point clouds,
and experiments based on them were sufficient to evaluate the
overall performance of our implementations.

B. C++ Implementation
The performance of the C++ implementation on the

commodity and HPC resources are shown in Figure 6. As
described in Section III A, the code can run in either in-core or
out-of-core mode depending on the memory availability.
Because the HPC node had 512GB of memory available, all
runs on that were in in-core mode. On the other hand, the
commodity node only had 8GB of memory available. Hence,
the runs on the commodity node ended up in out-of-core mode
for the larger grid sizes. The threshold for the number of grid
cells for switching to out-of-core mode was set to 140 million.
This threshold can be set in the C++ code, and is a function of
the available memory on the resource. The size of the
GridPoint data structure is 52 bytes (5 doubles and 3 integers) –
hence, the total size of 140 million grid cells was set to be
slightly lower than the total memory on the commodity
resource.

As evident from figure 6, the performance on the
commodity resource and the HPC resource are very similar for
the smallest input size (1.5 million input points) – on both
resources, the grids can be easily fit into memory for all three
grid resolutions (0.25m, 0.5m and 1m). For this input size and
grid resolution, the performance is more I/O-bound than CPU

or memory-bound. Even for 13 million input points, the
performances on both resources were in the same
neighborhood for resolutions of 0.5m and 1m.

Figure 6. C++ performance comparison of commodity versus HPC nodes.

Performance on the HPC node is about the same for smaller jobs, but an order
of magnitude faster for the largest jobs. Grid resolution is represented by “r”.

The performance on the HPC resource is significantly
better once the implementation goes out of out of core on the
commodity resource – i.e. for DEMs that contain more than
140 million grid cells. For instance, the 150 million point input
file at a 0.25m resolution produces around 595 million grid
cells – and the execution time on the HPC node was around
2,711s, while that on the commodity resource was around
33,113s. In other words, the DEM generation for the largest
grid was more than 12 times faster on the HPC resource, in
comparison to the commodity resource. The memory
availability is the defining factor in the performance of the C++
implementation for large grids – hence; the HPC resource
could run larger jobs much faster than the commodity resource.

C. Hadoop Implementation
Next, we evaluated the performance of our Hadoop

implementation on our commodity cluster, by varying some of
the parameters, such as the number of nodes in the Hadoop
cluster, and the number of Reducers. The purpose of this
experiment was to evaluate if the Hadoop implementation
running on an inexpensive cluster put together out of
commodity off-the-shelf components, compared favorably to
the C++ performance on the HPC resource.

We used the Apache Hadoop version 0.20.2 with the
default parameters – no attempts were made to optimize or tune
the parameters for each of the resources. The replication
parameter for the Hadoop Distributed File System (HDFS [11])
was set to two on both systems – i.e. the data are replicated
twice.

Figure 7. Hadoop perfortmance comparison on commodity cluster: 4 vs 8

nodes. The Hadoop performance is not significantly different between 4 or 8
nodes. Grid resolution is represented by “r”.

Figure 7 shows the performance of our Hadoop
implementation on our commodity cluster, with 4 and 8 nodes.
Two characteristics of this graph deserve attention. First, the
execution time using either 4 or 8 nodes was significantly less
than that of the (single-node) C++ implementation on the same
resource for large jobs. For example, our largest job (150
million points at a resolution of 0.25m) took around 5,933s to
run on the 8-node Hadoop cluster, and 6,156s on the 4-node
cluster. The Hadoop runs were around 5.5 times as fast as the
C++ run on the same resource. However, neither run was faster
than the C++ run on the HPC resource for the same inputs
(2,711s).

The second characteristic to note from the figure is that the
performance for both the 4 and 8 node implementations were
very similar. This is because of two factors – first, the serial
output generation step, which converts the Hadoop outputs ({Y,
X, Z} tuples) to the ArcASCII format, dominates the overall
performance. For instance, the output generation time for 150
million input points at a grid resolution of 0.25m was found to
be 2,878s, out of a total execution time of 6,156s (i.e. 47% of
total time). Secondly, the number of Reducers chosen by the
Hadoop framework for these runs defaulted to 1. The reduce
phase is time consuming since all the Z values are computed
from the intermediate key/value pairs in this phase – use of a
single Reducer deprives us of the parallelism that can be
achieved in the computation of the Z values.

Since the number of Reducers for the Hadoop
implementation can be modified, we performed some
experiments by varying their number. Figure 8 shows the
performance of the Hadoop implementation with one and four
Reducers, on a 4-node cluster. As seen in the graph, the
performance was also very similar for one or four Reducers.
There is indeed some parallelism that is gained by increasing
the number of Reducers, but the benefit is counteracted by the
necessity to merge and sort the outputs from the Reducers,
which is needed for DEM generation in the ArcASCII format.

Furthermore, as discussed earlier, the output generation time is
still the dominating factor in the overall execution time.

Figure 8. Hadoop performance comparison on commodity cluster: 1 vs 4
Reducers on 4 nodes. The performance with four reducers is worse than the
performance with a single reducer for very small and very large grids. Grid

resolution is represented by “r”..

It is worthwhile to note a few other characteristics of Figure
8. The performance of the run with a single Reducer was
slightly better than the one with four Reducers in a couple of
instances – when the inputs and grid resolutions are very low,
and when they are very high. The performance of four
Reducers was better in all other cases. This is because in the
first case, the time required for bootstrapping the extra
Reducers was greater than the benefit that could be gained due
to the parallelism. And in the second case, the time required to
sort and merge the output from the Reducers nullified the
speedup achieved due to the parallelism. Although it may be
possible to choose an optimal number of Reducers for the best
possible execution time, the benefits were not significant
enough to justify any further investigation for this particular
application.

In summary, the Hadoop-based implementation provided
significant speedup on the commodity resource, but was still
slower than the C++ implementation on the single HPC node.
Even though the algorithm was parallelizable, the serial output
generation step was found to be the bottleneck for large grids.

V. DISCUSSION
As our experiments have shown, the performance of both

the Hadoop and C++ implementations depend upon a number
of factors, including the size of the input point cloud dataset,
and the resolution of the output grid. For the C++
implementation, the grid resolution is the dominating factor
because it determines whether the resulting grid can be stored
in memory or not. When the code switches to out of core, the
performance is significantly worse because grid blocks may
need to be swapped to and from secondary storage. For the

Hadoop implementation, the grid resolution is also a factor, but
has less of an impact because the number of intermediate key
value pairs after the Map phase is equal to the total number of
points in the input point cloud, irrespective of the grid size. The
bottleneck for the Hadoop implementation, however, appears to
be the output generation phase, which unfortunately cannot be
parallelized.

In general, if the entire grid can be fit in memory, the C++
implementation significantly outperforms the multi-node
Hadoop implementation. While this might make the case for
large memory systems, they can also be expensive. The cost of
a single node on the HPC resource is around $30-$70K USD.
On the other hand, the cumulative costs of the 4-node
commodity Hadoop cluster was only around $4K. Thus, while
the performances on HPC versus commodity hardware are in
the same order of magnitude, the cost of the HPC node is an
order of magnitude greater than the commodity Hadoop cluster.
This means that the price performance ratio for our application
is an order of magnitude better on the commodity cluster, in
comparison to the HPC resource.

In terms of implementation effort, the Hadoop-based
version of our algorithm is significantly easier to implement
than the C++ version. This is because we only have to write
two core functions for the Hadoop implementation – the Map
and Reduce. Hadoop takes care of the partitioning the data into
multiple nodes (via HDFS), and executing the algorithm in
parallel. As for the C++ implementation, we have to perform
the memory management by hand, leading to relatively
complex code. The C++ implementation, including both the in-
core and out-of-core versions of the algorithm, is around 2900
lines of code. The Hadoop based implementation, including the
output generation, is around 700 lines of code.

In summary, for a similar class of applications, we
recommend that traditional HPC machines be used if raw
performance is desired. If cost or accessibility of such
resources is a factor, then a Hadoop-based implementation on
commodity clusters can be an option, since it provides
performance of a similar order of magnitude as compared to
traditional HPC resources, at a significantly lower cost. Also
note that it might require significantly more effort to write HPC
versions of such codes because of the overhead required to
manage memory and optimize implementation, leading to
increased personnel costs as well.

VI. ONGOING AND FUTURE WORK
As part of our ongoing work, we are investigating the

deployment of “Hadoop On-demand” on traditional HPC
resources. The installation of Hadoop on HPC resources comes
with its own set of challenges. In particular, access to the nodes
on such resources is via batch scheduling systems, such as PBS
[10]. Logging on to the individual nodes via secure shell (ssh)
is prohibited – instead, jobs must be launched via the batch
queuing interface provided by PBS. This means that the
Hadoop configuration and setup has to be done “on-demand”
via PBS scripts. The scripts must perform a set of pre-
processing steps before any Hadoop code is run – including
staging of all prerequisite software on to the compute nodes,

formatting the Hadoop Distributed File System (HDFS),
configuring the master and slave nodes, and starting all Hadoop
daemons. Once everything is set up, the input files must be
copied over to HDFS from a high performance shared file
system, such as Lustre [12]. After Hadoop processing is
complete, the outputs must be copied back over to the shared
file system. Since there is a lot of overhead involved in the pre-
and post-processing, we plan on running experiments to
measure these overheads, and find out whether running Hadoop
on an HPC resource is a worthwhile approach.

We are also investigating the use of a traditional parallel
HPC approach for the local gridding algorithm in C++, using
the Message Passing Interface (MPI) [14]. Apart from
comparing the performance of the C++ implementation against
the Hadoop implementation, we will investigate scaling, fault
tolerance and software development time for both
implementations. We are also looking into reducing the I/O
overhead of the implementations by reading the input point
cloud data in the ASPRS LAS binary format [15], which is the
industry standard for LIDAR data exchange. In addition, we
are investigating other algorithms for the generation of Digital
Elevation Models, such as streaming TIN [16], and
investigating whether they can be parallelized using
MapReduce or MPI technologies.

Finally, we are also evaluating the use of User Defined
Functions (UDF) for an alternative DEM implementation,
running on the multi-node partitioned IBM DB2 database [13],
which hosts the LIDAR point cloud datasets for the
OpenTopography Facility [24]. Pushing the DEM generation
into the database, where the points are hosted, could potentially
improve the performance of our overall workflow because the
datasets do not have to be exported to the file system to be later
processed by the C++ and the Hadoop codes.

VII. CONCLUSIONS
In this paper, we investigated the use of MapReduce

technology for a local gridding algorithm for the generation of
Digital Elevation Models (DEM) being used by the NSF-
funded OpenTopography Facility. We compared the traditional
C++ implementation of this gridding algorithm to a
MapReduce-based implementation, and presented our
observations on the performance (in particular,
price/performance) and implementation complexity. In general,
we discovered that the MapReduce version was easier to
implement than the C++ version, and provided a significant
performance boost over the C++ version running on a
commodity resource. We also found that the single-node C++
implementation on a traditional HPC resource, having access to
significantly greater memory, out-performed the multi-node
Hadoop implementation on the commodity resources for large
jobs. However, the HPC resource costs significantly more, thus
leading to lower price performance ratio than the commodity
cluster. In general, depending on the budgets, accessibility and
need for raw performance, we believe that both approaches
may be applicable for different sets of users, for other
applications in the same class.

VIII. ACKNOWLEDGMENTS
We acknowledge Han Kim and Ramon Arrowsmith for

their efforts in designing the original C++ version of the local
gridding algorithm. We also acknowledge Mahidhar Tatineni
for his help with the work on Hadoop on-demand for HPC
clusters, and the OpenTopography development team,
specifically Charles Cowart and Viswanath Nandigam, for their
ongoing efforts on the UDF-based DEM implementation on the
IBM DB2 database.

REFERENCES
[1] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters”, Communications of the ACM, vol. 51, no. 1, pp. 107-
113, 2008

[2] Apache Software Foundation, “Hadoop MapReduce Framework”,
http://hadoop.apache.org/mapreduce/, 2010

[3] Nokia Research Center, “Disco MapReduce Framework”,
http://discoproject.org/, 2010

[4] Greenplum, “Greenplum MapReduce: Bringing Next-Generation
Analytics Technology to the Enterprise”
http://www.greenplum.com/resources/mapreduce/, 2010

[5] Aster Data Systems, Inc., “In-Database MapReduce for Rich Analytics”,
http://www.asterdata.com/product/mapreduce.php, 2010

[6] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, "A comparison of approaches to large-scale data
analysis”, Proceedings of the 35th SIGMOD International Conference
on Management of Data, 2009

[7] ESRI, “The ESRI Grid Format”, http://en.wikipedia.org/wiki/ESRI_grid,
2010

[8] H. Kim, et al, “An Efficient Implementation of a Local Binning
Algorithm for Digital Elevation Model Generation of LiDAR/ALSM
Dataset”, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract G53C-
0921, 2006

[9] El-Sheimy, N, Valeo, C., and Habib, A., “Digital terrain modeling:
acquisition, manipulation, and applications”, Artech House: Boston,
MA, 257pp, 2005

[10] Cluster Resources Inc, “The TORQUE Resource Manager”,
http://www.clusterresources.com/products/torque-resource-manager.php,
2010

[11] D. Borthakur, “The Hadoop Distributed File System: Architecture and
Design”, http://hadoop.apache.org/core/docs/current/hdfs_design.pdf,
2007

[12] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters",
Proceedings of the Linux Symposium, 2003

[13] IBM DB2 Information Center,
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp, 2010

[14] W. Gropp, E. Lusk, and A. Skjellum, "Using MPI: Portable Parallel
Programming with the Message-Passing Interface", Cambridge: MIT
Press, 1994

[15] LAS Industry Initiative, “Common LIDAR data exchange format,”
http://www.asprs.org/society/committees/LIDAR/LIDAR_format.html

[16] M. Isenburg, Y. Liu, J. Shewchuk, J. Snoeyink, and T. Thirion,
"Generating Raster DEM from Mass Points via TIN Streaming",
GIScience'06 Conference Proceedings, pp. 186-198, 2006.

[17] Carter, W.E., Shrestha, R.L., and Slatton, K.C., “Geodetic Laser
Scanning”, Phys. Today 60, 41, 2007

[18] El-Sheimy, N, Valeo, C., and Habib, A., “Digital terrain modeling:
acquisition, manipulation, and applications”, ArtechHouse: Boston, MA,
pp 257, 2005

[19] J. S. Sarma, “Hadoop”, Facebook Engineering Note,
http://www.facebook.com/note.php?note_id=16121578919, June
2008

[20] Yahoo Inc, “Hadoop at Yahoo!”,
http://developer.yahoo.com/hadoop/, 2010.

[21] L. A. Barroso, J. Dean and U. Holzle, “Web search for a planet: The
google cluster architecture”, Micro IEEE, 2003.

[22] M. L. Stein, “Interpolation of spatial data: some theory for kriging”,
Springer Verlag, 1999

[23] Apache Hadoop Wiki, “Hadoop Streaming”,
http://wiki.apache.org/hadoop/HadoopStreaming, 2010

[24] V, Nandigam, C. Baru, C., and C. J. Crosby, “Database Design for High-
Resolution LIDAR Topography Data”, in SSDBM 2010, Lecture Notes
in Computer Science 6187, pp. 151-159, 2010

