
1

Collapse Safe and Scalable Acyclic Graph
Generation using Scale Free Distributions

Sandeep Gupta[1]

Abstract—Most of the generators currently used to build
acyclic graphs do so via random selection of edges. Unfortu-
nately, the graphs thus generated inherently have a tendency
to collapse, i.e., the resulting graphs will always have almost
the same and predictable structure. Specifically, we show that
if O(n logn logn) edges are added to a binary tree of n nodes
then with probability more than O(1/(logn)1/n) the depth of all
but O(log lognlog logn) collapses to 1. Experiments show that the
maximum depth is very small (less than 3) thereby reducing the
DAG to almost a bipartite graph. Their irregularity, as measured
by distribution of length of random walks from root to leaves, is
also predictable and small.

In this work, we develop an approach for generating directed
acyclic graphs (DAGs) that have “truly irregular” structure, non-
trivial depth distribution, and scale to multi million nodes. The
generator provides the user knobs to control the structure and
shape of the resulting DAG. Experiments are presented for graphs
of size 223 and varying edge densities, and in and out degree
distributions.

I. INTRODUCTION

Data generators play an important role in algorithm design
and optimization engineering. They are an important tool
for modeling, benchmarking, scalability analysis, and cost
estimation. In the last decade with the unprecedented growth in
Internet, WWW, and, social networks the need for generators
that produce graphs reflecting structures of these domains
became prominent and has been an active area of research.

It was discovered in [11], [15] that such networks are fractal
in nature (scale free) and can be described via physical phe-
nomena of “rich gets richer” or “preferential attachment” [1].
The mathematical model that produces such fractal graphs is
based on R-MAT [3] or Kronecker Product [16] and is the
central theory underlying the scale free generators. A large
body of work exists that utilizes either of the mathematical
models to develop scalable scale free graphs [3], [19]. These
works have contributed significantly towards the development
of network protocols, algorithms, and, architecture design.

The community has paid little attention to generation of
acyclic graphs. Acyclic graphs, much like scale free graphs,
appear in many areas of computation and engineering. Knowl-
edge representation, binary decision diagram, dependency
graphs, semantic web, and, binaries of computer programs
are a few examples. In the field of life-sciences and bio-
informatics, such structures are used to create ontologies that
represent the compendium of factual information. Advance-
ment in bio-informatics and life-sciences research lead to an

∗San Diego Super Computing Center (SDSC), University of California, San
Diego, California 92122 USA. Email:sandeep@sdsc.ucsd.edu

almost rapid increase in the number of ontologies. Unlike
social networks and WWW, the workloads in life-sciences and
knowledge engineering disciplines are much more complex
and include reachability and pattern queries, and, lowest
common ancestors [8]. It is important for the database and the
computing world to be able to develop algorithms over such
workloads to better address the needs of the domain science.
Graphs generators that produce realistic data sets would be
indispensable for this exercise.

The size of acyclic graphs used in real world is not yet as
large as the social-network graphs (upwards of multi billion
edges) but they can potentially be many orders of magnitude
larger than those present currently. This is particularly true
in life-sciences, bio-informatics and knowledge representation
domain. This is because disparate ontologies can reference
entities across each other. For example, the Gene Ontology,
has been constructed by combining ontologies of sub-species.
Another ontology, Unified Medical Language System (UMLS)
which maps the terminology of 60 different biomedical source
vocabularies currently consists of one million biomedical con-
cepts and five million concept name [14]. Hence, in order to
drive and evaluate the next generation of information engines
and tools, a scalable graph generator that can build acyclic
graphs of varying characteristics is of immense importance.

Most of the generators currently used to build acyclic graphs
do so via random selection of edges. Unfortunately, the graphs
thus generated inherently have a tendency to collapse, i.e., as
we scale the number of nodes and edges, the depth of the DAG
exponentially decreases. Furthermore, the resulting DAG has
the same predictable structure. We measure the property of
“structural richness” by observing the distribution of random
walks from source to leaves. A DAG with a rich structure
would have a varied set of random path lengths. Figure 1
show this distribution for a randomly generated DAG. As we
can see that the path length varies in a very narrow range (0–
30) and that there is high concentrated of values in a even
narrower range (10–15). The implication is that almost any
path in a randomly generated dag, irrespective of the choice
of random generators, will have path length of approximately
10−−15. The depth distribution and degree distribution show
similar concentration of values (see section IV-A).

Hence, such schemes can only generate graphs that are
meaningful at small scales or have average degree of less than
5 ([4], [12], [21], [2]). Moreover, these schemes provide no
control over the structure, such as fan in and fan out degree
distributions, of the resulting acyclic graph. An approach with
more control on the output graph was proposed in [20] but
the approach does not scale due to the extensively large size978-1-4244-8396-9/10/$26.00 c© 2010 IEEE

2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140 160 180

1
0
0
0
0
0
0
x

1

2

3

4

5

6

 0 2 4 6

1
0
0
0
0
0
0
x

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 10 20 30

1
0
0
0
0
0
0
x

Fig. 1: Distribution of various properties in a randomly generated graph. Although a random (uniform) number generator is
used to build the graph, all its properties are highly skewed and concentrated within a narrow range. Most importantly the
depth distribution collapses to a few small values.

Fig. 2: Drawing of 128 node and 611 edges graph generated
by the random generator using the Graphviz graph layout
toolkit [9]. The aspect ratio of the figure is determined by
graphviz based up on the structure of the graph. The small ratio
of the figure clearly indicates that the graph has collapsed more
so when compared with the non-degenerate (and asthetically
sound) height to width ratio of the drawing of the graph
generated using our method (see figure 3).

Fig. 3: Graphviz drawing of 128 node and 556 edges graph
generated by our generator. The height to width ratio of the
figure is almost one which is a further evidence that the graph
has non-degenerate structure.

of the linear systems involved.
The purpose of this paper is to propose a generator for

acyclic graphs. It addresses three challenges central to acyclic
graph generation:
• Generate graphs that have “rich structure” and non-trivial

depth distribution 1.
• Scale generation of graphs to multi million nodes so that

they represent real world graphs to be dealt with in near
future

• Provide knobs to control the structure and shape of the
resulting DAG.

We analytically and experimentally show that using random
generation produces degenerate graphs, i.e., the resulting
graphs always have almost the same and predictable structure.
The maximum depth is very small (less than 3) thereby
reducing the DAG to a bipartite graph. The irregularity, as
measured by distribution of length of random walks from root
to leaves, is very small. We demonstrate that just as scale free
distribution was essential for structure of interaction graphs,
this distribution is also crucial for generating acyclic graphs
having rich structure.

The edge generation algorithm in our work is local and
greedy. It performs ‘best effort’ to find the most suitable
graph, given the input parameters. This allows the generator
to produce very large graphs, up to 227 nodes (experiments
in this paper are discussed over graphs with 223 nodes, larger
graphs can also be generated). Unlike previous schemes, it
provides more control to describe the structure of the resulting
DAG. It takes as input a set of distribution functions that
describe various DAG characteristics such fan-in, fan-out, and
depth distributions. It then generates a stochastic DAG whose
characteristics match with the input distributions. In addition,
even at large scale and average degrees ranging from 5 to 20,
the resulting DAGs have a “rich structure” and do not collapse
to bipartite graphs.

o

a

f

h

l

r

b c

d e g

i j k

m n

qp

Fig. 4: A sample DAG

II. EXISTING GRAPH GENERATORS

The simplest graph generator is due to Erdos-Renyi [10]
which generates a random graph. Let n, p be the number of

1Our interpretation of rich structure is any attribute that is of higher
complexity than number of nodes and edges. Such attributes include degree
distribution, path-length distribution IV-0a

3

nodes and the edge probability, respectively. The generator by
Erdos-Renyi creates a graph with n nodes and (expected) np
number of edges. An edge is created by picking two nodes at
random and joining them. They show that even such a simple
generator exhibits an interesting phenomena of phase change.
Namely, there exists a narrow range for p values for which
the number of connected components drop significantly for
very small increment in p. Planar triangulated graphs [17]
are another class of random graph generators in which the
points are embedded on a Euclidean plane. The Delaunay
triangulation of the points yields a random graph. The R-MAT
or Kronecker product based graph generators, mentioned in the
introduction, is by far the most widely used graph generator. It
has been extensively used to generate scale free graphs. All of
these generators are meant for creating random or scale free,
directed or undirected graphs.

In [20], the authors presented a linear programming based
approach for generating acyclic graphs. In their approach, each
node is a variable in the linear programming formulation.
While the graphs generated using this approach are rich, a
significant limitation of this algorithm is that it does not scale
to multi-millions node acyclic graphs due to the extensively
large size of the linear programming systems involved. The
other difficulty with this approach is that it consists of many
constraints. Setting up the constraints such that a solution to
the linear program exists is non-trivial. Another approach for
generating acyclic graphs was presented in [18], where the
authors strove to generate acyclic graphs with given number
of nodes uniformly at random. Their goal was to develop
test suites for graph drawing packages and focused mostly on
graphs of sizes in the range of 100–1000 nodes. The limited
dataset size feasible through this procedure hints that purely
random generation of acyclic graph is computationally very
expensive.

The most popular scheme for generating acyclic graphs is
to start with a simple acyclic structure (e.g. chains or binary
tree) and add edges between nodes (u, v) if the level of u is
less then the level of v. The nodes u, v in the node pair are
selected randomly. As mentioned earlier in section I, graphs
generated using such techniques, though scalable, have an
inherent tendency to collapse. In the rest of this section, we
pause briefly introduce notations (to be used throughout the
paper) and then proceed to discuss the limitations of random
acyclic generator.

A. Notations, Terminologies, and, Definitions

Given a directed graph G = (V (G), E(G)), let n = #V (G)
be the number of nodes and E(G) denote the number of edges
in G.

A path is a sequence of edges,

~P = 〈(v1 = u, v2), (v2, v3) . . . , (vt−2, vt−1), (vt−1, vt = v)〉.

Alternatively, the same path can be represented as a sequence
of vertices ~P = 〈v1, v2, . . . , vt〉. We say that a path is simple
if a node appears at most once in the sequence; else the path
has cycles. Graph G is a directed acyclic graph (DAG) if
all paths are simple. Hence, nodes in acyclic graphs naturally

induce a topological ordering. Let T (u) denote the rank of
node u induced by the topological ordering.

An edge e ∈ E(G), in acyclic graphs, is said to be out-
incident on node u and in-incident on node v if e = (u, v).
Further, u is termed as an in-incident neighbor (or parent) of
v and v is termed as an out-incident neighbor (or children)
of u. The total number of in-incident neighbors of a node u
is termed as it’s in-degree, denoted by I(u). Similarly, the
total number of out-incident neighbors of u is termed as it’s
out-degree, denoted by O(u). Nodes with in-degree zero are
termed as root nodes while nodes with out-degree zero are leaf
nodes. We call the rest of the nodes as DAG nodes. The rest
of the notations will be defined as and when required during
algorithm description. Figure 4 shows an example DAG with
parents(e) = {b} and children(e) = {h, l, i}.

B. Collapsing Nature of Acyclic Graphs

With very high probability random acyclic generators yield
bipartite graphs irrespective of the initial structure and the type
of random number generator. We demonstrate this phenomena
when the initial structure is a binary trees. Let BT be a binary
tree with n nodes and n − 1 edges. Let tdv denote the tree
depth of node v in this tree. We follow the convention that
root is at level 0. The level is in ascending order along the
child/descendant axis. To this tree we add cn(1 + ε) edges for
some fixed c and 0 < ε < 1, resulting in average degree of
the generated graph to be c(1 + ε). Each edge e = (u, v) is
directed from the source u to v if tdu < tdv. Let ddv denote
the depth of the node v in the graph after addition of random
edges, ddv being defined as

ddv = min{ddu + 1|u is-a parent of v}. (1)

Lemma 2.1: Let (u, v) be randomly selected pair under the
constraint that tdu < tdv . Let Ev denote the event that tdu <
tdv − 1. Then Pr(Ev) = 1

2
Proof: Let k be the number of nodes in the tree at depth =

tdv−1. Then, the total number of nodes with depth < tdv−1 is
k−1 (by property of binary trees). This implies that P (tdu <
tdv − 1) = P (tdu = tdv − 1) = k

2k−1 = 1/2, for all practical
purposes. Hence, P (Ev) = 1

2 .

Suppose the generation is performed in c iterations and
in each iteration n(1 + ε) edges are added. The source and
destination nodes are selected randomly. We say that a node
is selected in a iteration if it is a target of any of the n(1 + ε)
randomly selected edges.

Claim 2.1: In a iteration, with high probability (w.h.p)
almost every node selected as a target of a randomly selected
edge.

Proof: Let X̄γ denote that γ nodes are not selected as
target during an iteration. We are required to show that Pr[X̄γ]
approaches 0 from some small value of γ.

Consider a node u. Let Xi
u denote the event that the node

is selected as target node for the ith randomly generated edge.
Let Xu = Σi∈[1:(1+ε)n]X

i
u denote the event the u is selected

at least once as destination and X̄u denote the event that u is
never selected target i.e Pr[X̄u] = 1− Pr[Xu].

4

Since there are n possible choices for choosing a target node
it follows that Pr[Xi

u] = 1/n and Pr[X̄i
u] = 1−1/n. Hence,

Pr[X̄u] = Πi∈[1:n(1+ε)]Pr[X̄u] = (1− 1/n)n(1+ε) (2)

The probability that a given set of γ nodes, u1, u2, . . . , uγ
are never chosen as target is

Πj∈[1:γ]Pr[X̄uj] = (1− 1/n)nγ(1+ε) (3)

Since there are
(
n
γ

)
ways of selecting γ points, the proba-

bility that γ nodes remain unselected comes out to be:(
n

γ

)
(1− 1/n)nγ(1+ε) (4)

Simplifying the equation using elementary estimates we
have

Pr[X̄γ] =
(
n
γ

)
(1− 1/n)nγ(1+ε)

< (enγ)γe−
1
nnγ(1+ε)

< (enγ)γ 1
eγ(1+ε)

< nγ

γγ
1
eγε

(5)

Assuming γ = ε = log n we get(
n
γ

)
(1− 1/n)nγ(1+ε) < nlogn

lognlogn
1

elognlogn

< nlogn

lognlogn
1

nlogn

< nlogn

lognlogn
1

nlogn

< 1
lognlogn

(6)

The above derivation states that if in each round n log n edges
are added then the probability that more than log n nodes are
not assigned new edges is less than O(1

lognlogn). Since this
expression quickly approaches zero we conclude that w. h.p.
almost all nodes will be the target for at least one of the newly
inserted edge.

An alternative bound for this can be obtained by applying
Chernoff bound [5] on X̄ = Σu∈V X̄u. Since Pr[X̄u] = (1−
1/n)n(1+ε) it follows that the expected value µ of X̄ is n ∗
Pr[X̄u] = n(1− 1/n)n(1+ε). By, Chernoff inequality

Pr[X̄ > µ(1 + δ)] < (
eδ

(1 + δ)1+δ
)µ

Let (1 + δ) = β = log log n and let ε = log n − 1. Again,
using basic estimates we obtain

µ(1 + δ) = n(1− 1/n)n(1+ε)(1 + δ)
< ne−(1+ε)β
< ne− lognβ
< log log n

(7)

Focusing on the RHS side of the Chernoff expression

e(β−1)µ

ββµ
< eβ−1

ββ

< elog logn

e log lognlog logn

< logn
elog lognlog logn

(8)

In other words, if n log n new edges are added to the graph
then the probability that the number of unselected nodes is
more than log log n is less than logn

elog lognlog logn .

Claim 2.2: With high probability ddv < max(2, tdv2c).
Proof: (Sketch) Consider BT with n = 2. This tree has

only two nodes, one being the root, the other being the leaf.
Hence, adding a new edge does not induce any reduction in
depth. Therefore,

ddv = tdv = 1 < 2. (9)

Now we consider BT with n > 2. Through claim 2.1 we know
that if in each iteration n(1 + ε) edges are added, where ε >
log n−1 then almost every node with high probability (w.h.p)
is a target node in at least one of the inserted edges. Let c such
iterations be performed. Let v be such a “selected” node. Let
u be the corresponding new parent. Next, from equation (1),
ddv ≤ ddu + 1. By construction,

ddu ≤ tdu. (10)

Using lemma (2.1) and equation (10), we get,

ddv ≤ tdu+1 < (tdv−1)+1 = tdv with probability
1

2
. (11)

That is,

ddv < tdv with probability
1

2
. (12)

Equation (12) says that every time an edge is added to a
node, the node suffers at least a unit decrease in depth with
probability 1/2. Since there are log n edges per node (on
average) we can derive a better bound on the probability that
the node will suffer depth reduction. This is because for the
node to not suffer depth reduction all the edges should have
source node from depth tdv − 1. The probability of this is
1/2

logn
= 1/n. Alternatively, we can say that with probability

1− 1/n the node suffers a depth reduction.
Furthermore since (almost) every edge suffers a depth

reduction it follows that the DAG depth of node v would be
at least half of tdv i.e ddv < tdv/2 at the end of the iteration
with probability at least 1− 1/n.

Applying c iterations of edge insertions, will give

ddv < tdv/2
c with probability (1− 1/n)c. (13)

Equations (9) and (13) together yield the claim.
Since the depth of a binary tree is log n, if we perform

merely log(log n) iterations, we get ddv < tdv
2log logn <

max tdv
2log logn = logn

logn = 1. That is, the entire tree (but
for log log nlog logn nodes w.h.p) will collapse to a single
depth bipartite graph with probability O(1− 1/n)

log logn
<

O(e− log logn/n) < 1/ log n
1/n

In section IV-A we verify this phenomena for graphs gen-
erated using [13], which is a random acyclic graph generator
similar to the one described above, except that they start with
random sequences of nodes (instead of a tree) and add random
edges of form (u, v) if the rank of u is less than the rank
of v. We show using various DAG characteristics that the
resulting graph collapses to depth of less than 3 and has a
very “regular structure” when compared to DAG generated
using our approach.

The collapsing phenomena, demonstrated here for binary
trees, occurs irrespective of the initial shape of the tree.

5

Benchmarks based on such generators would simply test set-
membership and set intersections and would not stress any
graph centric capabilities of the applications, kernels and
algorithms. Many real world acyclic graphs have average
degree of more than 1. For e.g., citation datasets such as arxiv
(from arxiv.org), and ,pubmed (from http://www.ncbi.nlm.nih.
gov/pmc/), semantic knowledge database from www.mpi-inf.
mpg.de/yago-naga/yago/, and, gene ontology terms along with
their annotation files www.uniport.org have average degrees
of 11.12, 4.45, 6.38, and 4.99, respectively [21]. Studying
these databases, therefore, calls for a different graph generating
algorithm.

An alternative approach for producing acyclic graphs would
be to modify or post process existing random generator and
R-MAT generator to produce acyclic graphs. It is feasible to
do so by finding strongly connected components (SCC) and
reducing each connected component into a single node.

Claim 2.3: Acyclic graphs produced using SCCs have very
few nodes irrespective of the size of the original digraph.

Proof: Let C1, C2, . . . Cc be the maximally strongly con-
nected components (SCCs) of a digraph G. A component of
graph is strongly connected if there is a path from every node
to every other node.2. We create a DAG D with the set of
new nodes V (D) = {v1, v2, . . . , vc}, where each node vi is
the node produced by reducing the SCC Ci. Edges in D result
from edges between distinct SCCs. Specifically, let E(D) be
the set of all edges in D. Then, ∃(vi, vj) ∈ E(D) iff there is
an edge (ci, cj) ∈ E(G), where ci ∈ Ci and cj ∈ Cj , i 6= j.
We call D the reduced-DAG of digraph G. Typically, graphs
produced by random and R-MAT generators have one giant
and possibly few other SCCs [7]. (This phenomena is referred
as “six degrees of separation” in social sciences and popular
media.) Consequently, V (D) is a very small set, and so is
E(D). Hence, any acyclic graph created starting with the
graphs produced from these generators would have very few
nodes irrespective of the size of the original digraph.

The next section describes the proposed scalable acyclic
graph generator. The algorithm is designed with the idea of
allowing more control on the characteristics of the output
graph and allowing scalability at the same time.

III. GENERATING LARGE ACYCLIC GRAPHS

Our algorithm takes the number of nodes n, the desired
depth d and four distribution functions as input — the fan-
out, fan-in, slot and slot depth distributions. Notice that these
distribution functions control the shape and characteristics of a
graph. We denote these distributions by Xo, Xi, Xs, and, Xsd,
respectively. Let xo, xi, xs, and xsd be the outcomes from their
respective distributions on an invocation, i.e., x = X().

The algorithm begins by creating n nodes and maxs slots
where maxs >> d. The n nodes are distributed over the maxs
slots based on the slot distribution criteria Xs. We use Si to
denote the list of nodes shelved at slot i. Nodes at slot 0 form
the roots of the DAG and nodes at slot s form the leaves. A
node in any other slot can be a root, a leaf, or, a DAG-node.

2By definition, a single node is a SCC although not necessarily maximal.

Once the nodes have been slotted, we pick nodes starting
from the topmost (low slot number) slot and build its out-
edges. Suppose we are at slot i and building out-edges for
node ui ∈ Si. We select j > i based on slot depth distribution
criteria Xsd, i.e. j = i+Xsd(). Then, from slot j, we randomly
choose a node uj and introduce an edge (ui, uj). With the
introduction of this edge, ui has one out-degree satisfied
and uj has one in-degree satisfied. We repeat this process
of selecting uj , j > i, O(ui) number of times to satisfy
all the out-degree requirements of ui. Our implementation
guarantees that each iteration picks a unique out-incidence
node for ui through the use of function rpick uniq. This
function guarantees that uj is not present previously among
the adjacent nodes of ui. The in-degree of uj must also be
satisfied. To this end, we place I(uj) copies of uj in slot
j. Algorithms 1, 2, and 3 outline a broad description of the
generator.

Let P be permutation of numbers from [0 : n] and P[i]
denote the ith value from this permutation. Algorithm 1
distributes the nodes into slots based on Xs and builds the
permuted list for each slot. For each node u it invokes the
slot distribution function xs = Xs() (line 2) and the in-degree
distribution function xi = Xi(). It places xi copies of u in
slot xs (line 4–6). Finally, the algorithm permutes the nodes
in each slot (line 8–10).

Let adj(u) be the adjacencies (out-incident) nodes of u.
Algorithm 2 builds the edges for a given node u. It first selects
a slot xsd = Xsd() and then picks a node v from the list Sxsd
to form directed edge e = (P[u],P[v]). The number of out-
edges incident on u is sampled from degree distribution Xo.

Algorithm 3 builds the acyclic graph given the various
distribution functions. It calls algorithm 1 to distribute nodes
into slots. Once the nodes are distributed in their respective
slots, it calls algorithm 2 for each node u, in ascending order
of the slot, to build its out edges. This generates the desired
acyclic graph.

Algorithm 1 shelve nodes(Xs, Xi)

Require: maxs, xs, Xi the maximum slot value, slot, and fan-
in distributions respectively

1: for u ∈ [0 : n] do
2: xs ←− Xs()
3: xi ←− Xi()
4: for j ∈ [0 : xi] do
5: append(Sxs , u)
6: end for
7: end for
8: for i ∈ [0 : D] do
9: random shuffle(Sd)

10: end for

A. Choosing Distribution Functions

The choice of distribution functions affects the shape and
various characteristics of the resulting DAG. Some combina-
tions of distribution functions may not be feasible at all or may
yield degenerate graph. Here we provide a set of distribution

6

Algorithm 2 build out edges(u, s,Xo, Xsd)

Require: Xsd,P the depth distribution and permutation vec-
tor respectively

1: for i ∈ [0 : Xo] do
2: xsd ←− Xsd()
3: v ←− rpick uniq(Sxsd+s)
4: append(adj(P[u]),P[v])
5: end for

Algorithm 3 acyclic generator(max s,Xs, Xi, Xsd, Xo)

Require: Xs, Xi, Xsd, Xo as slot, input, depth, and output
distributions respectively

1: Shelve Nodes(maxs, Xs, Xi)
2: for s ∈ [0 : maxs] do
3: for u ∈ Ss do
4: build out edges(u, s,Xo, Xsd)
5: end for
6: end for

functions that lead to non-degenerate graphs whose shapes
can be controlled by tuning the parameters of the distribution
function.

We consider Gaussian distribution with mean m and vari-
ance µ = m/5 (X = N (m, m5)), where m is the average
degree of the desired DAG. (So, the total number of edges in
the graph, #E(G) = mn.) Figures in 5 display the Gaussian
distribution (top row) for this set-up with m = 5, 10, 15,
and 20. Gaussian distributions form good candidates for Xi

and Xo. The slot distribution is set as the discrete geometric
distribution with parameter p, i.e., P (X = k) = (1 −
p)k−1p, 0 < p < 1. The slot depth distribution may be
chosen to be a scale free distribution and is parametrized by
scale γ, i.e., P (k) ≈ ckγ . Figures 5 (bottom row) show the
frequency distribution resulting from the geometric and scale
free distributions for p = 0.001 and γ = 0.04, respectively.

The distribution functions presented here are in accordance
with those used in other statistical and graph generators.
The scale free distribution function used here is the same as
the functions used in the R-MAT graph generator, just used
differently. In R-MAT generator, this distribution is used as
a joint probability distribution to pick both the source and
the destination. This work uses this distribution for a fixed
source to arrive at the slot of the target node. The target is then
chosen randomly from the set of all nodes present in the target
slot. It turns out that unlike Xi, Xo, and Xs, which we are
free to choose, the slot depth distribution function Xsd should
preferably be a scale free distribution so that the acyclic graph
does not collapse. We conjecture that scale free distribution is
central to the structure of the acyclic graph just as it was in
the R-MAT graph generator for interaction graphs.

Correctness

We briefly discuss the correctness of the algorithm i.e. the
proposed generators always will produce an acyclic graph. Our
claim rests on the observation that if the graph is acyclic then

there exists a partial ordering PO of the nodes such PO(u) <
PO(v) for all edges (u, v) of the DAG.

The slot depth distribution function Xsd naturally imposes
such an ordering. For each node u, let PO(u) be the same
as the depth of the slot it is assigned to. We know that the
algorithm generates edge (u, v) by finding a node v under
following constraints:
• u and v do not belong to the same slot depth
• Slot depth of u less than slot depth of v (line 2–4,

Algorithm 2)
Both the constraints imply that for any generated edge

(u, v), PO(u) < PO(v). Hence, the generated graph cannot
contain any cycles.

Moreover, for small size graph we have verified through
cycle detection algorithms that the generated graph does not
contain any cycles. For large graphs we verify using the
Erdös-Gallai theorem [6] which provides constraints of degree
distribution of the nodes in a simple graph. It states that a
sequence of non-negative integers d1 ≥ d2 ≥ d3 ≥ . . . can be
represented as finite simple graph on n vertices if and only if
d1 + d2 + d3 + . . . dn is even and

Σki=1di ≤ Σni=kmin(di, k) + k ∗ (k − 1)

for all k ∈ [1 : n]. We have verified this constraint (for all
values of k) for each of the large generated graphs.

IV. EXPERIMENTAL RESULTS

This section presents some of the experiments on the use of
the proposed generator and the choice of distribution function.
We generate a large acyclic graph and study its various
characteristics. We validate our model across following three
criteria:
• Ability to produce non-degenerate graphs as we scale the

number of nodes and edges.
• The shape of the in- and out- degree frequency distribu-

tion of the resulting graph.
• The shape of the DAG depth distribution.
• The shape of the path length distribution discussed below.

a) Path Length Frequency Distribution:: We characterize
acyclic graphs based on the frequency distribution of the length
of random walks starting from roots to the destination. The
path length distribution characterizes the “richness” in the
resulting structure. This attribute of acyclic graph is important
because the depth parameter does not reveal the degree of
irregularity. Two acyclic graphs with same depth value can
have very different random path length frequency distributions.
We can illustrate this by constructing a DAG D = (V,E)
where the nodes in V can be partitioned into sets V1, V2, . . . Vt
and the edges in E into E1, E2, . . . Et−1 such that an edge
e = (u, v) ∈ Ei =⇒ u ∈ Vi and v ∈ Vi+1. This graph is a
DAG with roots as V1 and leaves as Vt and can be visualized
as t bi-partite graphs stacked over each other. The depth of
the graph is t. However, the path length frequency distribution
contains only a single value t, i.e., every path in D has length
t. Such a graph will not be very meaningful for benchmarking
and characterization even though it may satisfy other acyclic
graph properties.

7

2

4

6

8

10

12

14

 0 10 20 30

m=5

 0 10 20 30

m=10

 0 10 20 30

m=15

 0 10 20 30

m=20

10
0

10
1

10
2

10
3

1
0

2

1
0

3

1
0

4

m=20

10
0

10
1

10
2

10
3

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

m=20

Fig. 5: Shapes of various distributions used in the generator. Top row illustrates Gaussian distributions (Xi, Xo) for various
values of m. Bottom left is a plot for geometric frequency distribution p = 0.001 (Xs), while bottom right show scale free
distribution γ = 0.045 (Xsd).

Graphs using our approach: While the generator has
been able to generate graphs of size up to 227 nodes, in this
paper we display experiments with graphs of size n = 223

nodes. We experimented with various input distributions. For
the experiments presented here, the Gaussian distributions
suggested in section III are used for in-degree and out-degree
distributions. For simplicity in presentation, we keep Xi same
as Xo, i.e., Xi = Xo = N (m, m5). The values of p and γ
for the discrete geometric and the scale free distributions are
fixed p = 0.001 and γ = 0.04. Values of p less than this
lead to degenerate acyclic graphs while values higher than
this have little influence on the resulting depth distribution.
We present results for different values of m. (Notice that the
in- and out-degree distributions are independent of slot and
slot depth distributions and allow freedom in choice even for
fixed p, γ.)

Figures 6 (top row) show the resulting fan-out distribution
for various values of m. Fan-out is directly controlled by vari-
able Xo because the generator exactly creates Xo() number of
out-edges per chosen node u. Hence, as we vary m, the fan-
out degree distribution of the output graph follows closely the
input Gaussian distribution displayed in figures 5 (top row).

The fan-in distribution of the resulting DAG is shown in
figures 6 (2nd row). Unlike out-degree, the in-degree of any
node v is controlled by the input distribution Xi indirectly.
Specifically, as explained in the algorithm description, the
resulting fan-in degree distribution is derived by uniform
sampling of Xi. Hence, the fan-in distribution shape of the

output graph is a slightly perturbed Gaussian.
Plots in third row of figure 6 demonstrate that the graph

generated by the proposed algorithm does not collapse under
increased degree. In fact, a comparison of the depth distribu-
tions for m = 5 and m = 20 shows that the maximum depth
increases on increasing the number of edges in the graph.

We now turn our attention to the “structural richness” of
the generated DAG. We measure this property by observing
the distribution of random walks from source to leaves. A
DAG with a rich structure would have a varied set of random
path lengths. For the DAG generated by our generator, the
path length distribution is displayed in figures 6 (last row).
We see that the path length distribution follows a power
law distribution. Moreover, adding more edges increases the
structural richness of the graph, i.e., there is a wider variety
of path lengths for greater number of edges. The steepness of
the distribution (i.e., the slope of the exponent) decreases as
we increase m.

b) Varying slot distribution function Xp: In the above
experiments we choose the slot distribution function as discrete
geometric distribution with parameter p, i.e, P (X = k) =
(1−p)k−1p where p was set to .001. The paramter p controls
the depth attribute of the graph. We demonstrate this through
illustration (using Graphviz) of graphs with varying value of
p. The scale s of the graph is 9 while mean degree m is
5 with variance 1. Figures 7,8,9,10, and, 11 are drawings of
the graph for p = .03, .05, .08, .1, and, .3 respectively. The
width-to-height ratio in figure is same as determined by the

8

2

4

6

8

10

12

14

16

18

20

 0 10 20 30 40 50

1
0
0
0
0
0
0
x

m=5

 0 10 20 30 40 50

m=10

 0 10 20 30 40 50

m=15

 0 10 20 30 40 50

m=20

2

4

6

8

10

12

14

16

18

20

 0 10 20 30 40 50

1
0
0
0
0
0
0
x

 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1

2

3

4

 0 2 4 6 8

1
0
0
0
0
0
0
x

 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 500 1000 0 500 1000 0 500 1000 0 500 1000

Fig. 6: Characteristics of the resulting DAG from our generator. Top row: fan-out degree closely follows the input. 2nd row:
fan-in degree of the graph obtained from the generator is a perturbed version of the input. 3rd row: Depth distribution suggest
collapse free structure. Bottom row: path length distributions imply high structural richness.

9

Fig. 7: p = 0.03

Graphviz program. We see that as we increase p the depth
becomes smaller. Such control over the shape of dag is not
feasible with the random generator.

c) Scalability of the generator: So far we have studied
various characteristics of the graphs produced by the generator.
We now present experiment to study the scalability of the
generator itself. We study the time required to generate the
graph as function of graph size and mean degree. Figures 12
and 13 show the results. In figure 12 we study the scalability
with respect to mean degree for a fixed scale graph while
in figure 13 we study the scalability with respect to the
graph scale parameter but for a fixed mean degree. The y-axis
represent time, in log scale, to generate the graph, while the x-
axis denote mean degree and scale respectively for figures 12
and 13. As we can see the generation time growth is linear with
respect to mean degree. However the slope of growth is higher
at larger scale graphs. This is because the complexity of data
structures use to maintain Si, i.e., list of nodes at depth i and
its associated operation, rpick uniq(Si) for any depth i grows
non-linearly with the scale of the graph. The generator also
scales nicely with respect graph size, i.e., linear in log scale
with respect to the scale, or, linear in absolute generation time
with respect to the number of nodes in the graph assuming a
fixed mean degree. The memory requirements of our algorithm
is proportional to the requisite graph size.

Fig. 8: p = 0.05

Fig. 9: p = 0.08

Fig. 10: p = 0.1

10

Fig. 11: p = 0.3

 10

 100

 1000

 10000

 5 10 15 20

T
im

e
 (

s
e

c
s
)

mean degree

s=21
s=23
s=25

Fig. 12: The generator is linearly scalable with respect to mean
degree. However, slope of the curve is higher for larger scale.
This is because book keeping data structures for Si scale non-
linearly with the size of the graph.

A. Random Acyclic graphs

We illustrate the distributions obtained through a random
acyclic graph generator to support some of the arguments
presented in sectionII-B and to compare the characteristics
of graph with those generated by our scheme. The number of
nodes n and the number of edges m was used as the input
to the generator. Figures 14 (top row) show the fan-in degree
distributions (fan-out degree distributions are similar). Notice
that the user can only specify the number of nodes and edges
and does not have much control over the shape of the various
degree distributions of the output DAG. In general, the fan-in
degree distribution turns out to be an exponential distribution.
Figures 14 (middle row) show the depth distribution. We see

 10

 100

 1000

 10000

 21 23 25

T
im

e
 (

s
e

c
s
)

scale

m=5
m=10
m=15
m=20

Fig. 13: The generator shows linear growth with respect to
graph size.

that irrespective of the number of edges in the graph, the DAG
depth collapses to a very small value (≤ 3). Figures 14 (bottom
row) display the path length distribution. Again, here we see
that there is not enough irregularity in the structure. Any
random path from a root to a leaf is very highly likely to have
path length of ≈ 12. This is in quite in contrast with the path
length distribution generated through our scheme which shows
a natural scale free distribution with path lengths ranging from
0 to 800.

V. CONCLUSION

Acyclic graphs used in literature to study the performance
of many semantic and information centric operators are often
generated using random selection of edges in an already
existing tree. We analytically and experimentally show that
such schemes produce degenerate graphs. Moreover, there
is no control on the shape and structure of the resulting
graph. The few schemes designed so far to generate non-
degenerate graphs are not scalable. We present a scalable
algorithm that relies on carefully selecting various distribution
functions and their associated parameters so as to produce
acyclic graphs. Scale free distribution turns out to be crucial
to maintaining the non-degeneracy of directed acyclic graphs.
Via the input parameters, the user has much control over
the graph to be generated. The richness in the overall DAG
characteristics (output dags) is seen in properties such as it’s
binomial depth distribution, Gaussian degree distribution, and
scale free path length distribution. Furthermore, richness in the
structure of the generated DAG is verified using the variety in
path lengths (path length distribution). Our experiments yield
positive and encouraging verification of all these properties.
An interesting future problem is to find the right parameters
for the generator that will model given real world DAGs. We
are also looking into the problem of generating labeled DAGs
to model ontology data coming out of various life sciences
discipline.

REFERENCES

[1] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509, 1999.

[2] R. Bramandia, B. Choi, and W. K. Ng. Incremental maintenance of
2-hop labeling of large graphs. IEEE Trans. on Knowl. and Data Eng.,
22(5):682–698, May 2010.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In M. W. Berry, U. Dayal, C. Kamath, and D. B.
Skillicorn, editors, SDM. SIAM, 2004.

[4] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing
reachability labelings for large graphs with high compression rate. In
Proceedings of the 11th international conference on Extending database
technology: Advances in database technology, EDBT ’08, pages 193–
204, New York, NY, USA, 2008. ACM.

[5] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. The Annals of Mathematical Statistics,
23(4):493–507, 1952.

[6] S. Choudum. A simple proof of the erdos-gallai theorem on graph
sequences. Bulletin of the Australian Mathematical Society, 33(01):67–
70, 1986.

[7] R. Cohen and S. Havlin. Scale-Free Networks Are Ultrasmall. Phys.
Rev. Lett., 90:058701, 2003.

[8] H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb: an ontology-
based database for data intensive applications. In Proceedings of
the 12th international conference on Database systems for advanced
applications, DASFAA’07, pages 497–508, Berlin, Heidelberg, 2007.
Springer-Verlag.

11

2

4

6

8

10

 0

 4
5

 9
0

 1
3
5

 1
8
0

1
0
0
0
0
0
x

m=5

 0

 4
5

 9
0

 1
3
5

 1
8
0

1
0
0
0
0
0
x

m=10

 0

 4
5

 9
0

 1
3
5

 1
8
0

1
0
0
0
0
0
x

m=15

 0

 4
5

 9
0

 1
3
5

 1
8
0

1
0
0
0
0
0
x

m=20

1

2

3

4

5

6

 0 2 4 6

1
0
0
0
0
0
0
x

 0 2 4 6 0 2 4 6 0 2 4 6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Fig. 14: Random DAG generator: Fan-in degree of the graph is unchanged for different inputs. Depth degree distribution of
the graph remains same for all inputs and is mostly focused around three values. High concentration of path length distribution
in small range of 15 – 25 implies predictable structure.

[9] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz - open source graph drawing tools. In P. Mutzel, M. Jnger, and
S. Leipert, editors, Graph Drawing, 9th International Symposium, GD
2001 Vienna, Austria, September 23-26, 2001, Revised Papers, volume
2265 of Lecture Notes in Computer Science, pages 483–484. Springer,
2001.

[10] P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math.
Inst. Hungary. Acad. Sci., 5:17–61, 1960.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the internet topology. In Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communication, SIGCOMM ’99, pages 251–262, New York, NY, USA,
1999. ACM.

[12] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering
reachability queries on very large directed graphs. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD ’08, pages 595–608, New York, NY, USA, 2008. ACM.

[13] R. Johnsonbaugh and M. Kalin. A graph generation software package.
In Proceedings of the twenty-second SIGCSE technical symposium on
Computer science education, SIGCSE ’91, pages 151–154, New York,
NY, USA, 1991. ACM.

[14] J. Köhler, S. Philippi, and M. Lange. Semeda: ontology based semantic
integration of biological databases. Bioinformatics, 19(18):2420–2427,
2003.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,

and E. Upfal. Stochastic models for the web graph. In Proceedings of
the 41st Annual Symposium on Foundations of Computer Science, pages
57–, Washington, DC, USA, 2000. IEEE Computer Society.

[16] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani. Kronecker graphs: An approach to modeling networks. J. Mach.
Learn. Res., 11:985–1042, March 2010.

[17] S. Meinert and D. Wagner. An experimental study on generating planar
graphs. In M. Atallah, X.-Y. Li, and B. Zhu, editors, Frontiers in
Algorithmics and Algorithmic Aspects in Information and Management,
volume 6681 of Lecture Notes in Computer Science, pages 375–387.
Springer Berlin / Heidelberg, 2011.

[18] G. Melancon, I. Dutour, and M. Bousquet-Melou. Random generation of
dags for graph drawing. Technical report, Amsterdam, The Netherlands,
The Netherlands, 2000.

[19] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger. Network topology generators: degree-based vs. structural. SIG-
COMM Comput. Commun. Rev., 32:147–159, August 2002.

[20] Y. Theoharis, G. Georgakopoulos, and V. Christophides. On the synthetic
generation of semantic web schemas. In V. Christophides, M. Collard,
and C. Gutierrez, editors, SWDB-ODBIS, volume 5005 of Lecture Notes
in Computer Science, pages 98–116. Springer, 2007.

[21] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: scalable reachability index
for large graphs. Proc. VLDB Endow., 3:276–284, September 2010.

