Lecture 18
CSE11 — Fall 2013
Inheritance

What Is Inheritance?

« Inheritance allows a software developer to derive a new class
from an existing one

« Write code once, use many times (code reuse)
Specialization
extends IS the java keyword that indicates inheritance

The existing class is called the parent class, or superclass, or
base class

The derived class is called the child class or subclass.

« As the name implies, the child inherits characteristics of the
parent

« That is, the child class inherits the methods and data defined for
the parent class

Inheritance Hierarchy

Person

T

UCSD_Person

/—"—\

Student Instructor

/\ %
Y 4
4'
Undergrad Grad TA Professor

® . o’

e l? ?,?)

T . g Can Only have one
e % Parent!
~ ~ .’O

ISA

» Defines an inheritance relationship

* Examples:

« UCSD_Person isA person
Instructor ISA UCSD_ Person
Student ISA UCSD Person
Undergrad IsA Student
TAISA Instructor

e Transitive: TAISAUCSD Person

e Undergrad isA Person

What do you get when you inherit
(extend a class)

e all methods and variables

e But, if a method/variable i1s private the subclass
cannot access the method/variable

* Private means private to the class in which the
method/variable is defined

e constructor(s) of your parent

* |t's recursive, you get
method/variables/constructors of your parent,
grandparent, great-grandparent

the Object class

« Every java class is descended from the Object
class.

* ODbject defines a few Interesting methods (and
hence ALL classes have these methods)

« getClass() - returns the runtime class
e toString() - returns a String Representation of the class

« equals() - method to determine if two objects are equal
to each other (Note the String class defines the
equals() method to be a character by character
comparison of two string objects)

Constructors

* The constructor for every parent class is called
whenever you do a new

* |f your code does not supply it, the no-
parameter constructor of you parent is
implicitly inserted by the compiler as the first
line of your constructor

 Your constructor can explicitly call super(. ...) as
the first line of your subclass constructor. If it

does. It must be the first statement.

Hierarchy Revisited

Class 1

Class 2

private variables and methods
inherited variables and methods

Spoylsw sajgelren ayeaud

Constructor of 2 Calls Constructor of 1. Constructor 1 Calls Constructor of O.
This is so each layer of the hierarchy can initialize all private variables

Dynamic Method Invocation

Java always uses the method defined “closest” to the class when the
Instance was created

Suppose ClassC extends ClassA

« ClassC is a subclass, ClassA is the superclass
Both classes define methodX()

Now suppose you declare

e ClassC myInstance = new ClassC();
Which methodX() code is executed In

« MyInstance.methodX () ?

Now Declare

e« ClassA referAsA = mylInstance;

« Which method is invoked via referAsA.methodX();

protected

Private variables/methods are private to the class. They CANNOT
be seen by any subclasses

Public variables/methods are available to all classes (including
subclasses)

protected variables/methods are seen by subclasses, but not by
external classes

Declare a method/variable as public, private or protected
canvas IS a protected variable of the WindowController Class

« This is why you can use it without declaring it

Overriding Method Defintions

* A subclass can redefine a method with the
identical signature of its superclass.

 There are times when you want to invoke the
method of your super class when (re)defining in
your subclass

e use the super .method()
* to Invoke method() of your Superclass

final

 Have applied £inal to variables to make them
Into constants

« You can apply £final to methods to indicate
that they cannot be overridden by subclasses

e You can apply £inal to classes to indicate that
they cannot be extended

e €.0. public final class Math

abstract

 abstract methods are methods with no body

 They look a lot like interfaces

* To be useful, a subclass must provide an
iImplementation for abstract method

e |f a class defines an abstract method, the class must
be defined as abstract

* Purpose: define a hierarchy of
methods/capability (outline of functionality)

 The AWT has many examples of abstract

* http://docs.oracle.com/javase/6/docs/api/java/awt/Toolkit.ntml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

