
1

Recompilation for Debugging Support in a JIT-Compiler

Mustafa M. Tikir
Computer Science Department

University of Maryland
College Park, MD 20742

tikir@cs.umd.edu

Guei-Yuan Lueh
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052

guei-yuan.lueh@intel.com

Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742

hollings@cs.umd.edu

ABSTRACT
A static Java compiler converts Java source code into a
verifiably secure and compact architecture-neutral interme-
diate format, called Javabyte codes. The Java byte codes
can be either interpreted by a Java Virtual Machine or
translated into native code by Java Just-In-Time compilers.
Static Java compilers embed debug information in the Java
class files to be used by the source level debuggers. How-
ever, the debug information is generated for architecture
independent byte codes and most of the debug information
is valid only when the byte codes are interpreted. Translat-
ing byte codes into native instructions puts a limitation on
the amount of usable debug information that can be used by
source level debuggers. In this paper, we present a new
technique to generate valid debug information when Just-
In-Time compilers are used. Our approach is based on the
dynamic recompilationof Java methods by a fast code gen-
erator and lazily generates debug information when it is
required. We also present three implementations forfield
watchsupport in the Java Virtual Machine Debugger Inter-
face to investigate the runtime overhead and code size
growth by our approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids.

General Terms
Algorithms, Measurement, Performance.

Keywords
Java, Just-In-Time Compilation, Debug Information, Java
Virtual Machine Debugger Interface, Field Access Watch,
Dynamic Recompilation.

1. INTRODUCTION
A static Java compiler converts Java source code into a
verifiably secure and compact architecture-neutral interme-
diate format, called Javabyte codes. At runtime, the Java
byte codes can be either interpreted by a Java Virtual Ma-
chine (JVM) or translated into native code by Java Just-In-
Time (JIT) compiler to improve the runtime performance.
The Java Virtual Machine Debugger Interface (JVMDI)[3]
is a two-way programming interface used by debuggers and
other programming tools to inspect, query and change the
state of the Java programs. The JVMDI clients are notified
of the interesting occurrences through events.

Static Java compilers embed debug information in Java
class files in the form of attributes, which can be used by
the source level debuggers. The debug information is gen-
erated for the architecture independent byte codes. That is,
the debug information in a class file is sufficient if the Java
byte codes are only interpreted by a JVM. However, trans-
lating byte codes into native instructions using JIT compil-
ers puts a limitation on the amount of usable debug infor-
mation. For example, the debug information in Java class
files might contain a mapping from source code lines to
byte code offsets but does not give any mapping from Java
byte code offsets to native code segments generated by the
JIT compilers.

Alternatively, the JIT compilers can dynamically generate
and store additional debug information during the transla-
tion of byte codes into native code. However, this approach
increases the memory requirement of the JIT compilers
when the debug information is not needed. Instead, JIT
compilers can simulate the translation of byte codes to na-
tive instructions and generate the debug information when it
is required. This approach has to simulate byte code transla-
tions without introducing a significant overhead.

In this paper, we present a new approach to generate the
necessary debug information when JIT compilers are used.
Our technique generates debug information when it is re-
quired at runtime. Our technique uses dynamic recompila-
tion of Java methods as an alternative to storing all debug
information during the first compilation of the methods. To
investigate the runtime overhead and code space growth for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PASTE’02, November 18-19, 2002, Charleston, South Carolina, USA.
Copyright 2002 ACM 1-58113-479-7/02/0011…$5.00.

2

our approach, we implemented three different algorithms to
instrument programs for the field watch support in JVMDI.
Our static and semi-static implementations insert all possi-
bly needed instrumentation code during the translation of
byte codes to native code. Static and semi-static approaches
eliminate the need for symbol table information after the
compilation of the Java methods. Our dynamic recompila-
tion technique, however, simulates the byte code transla-
tions and lazily inserts instrumentation code at runtime
when a field watch is activated first time.

The rest of the paper is organized as follows. Section 2 de-
scribes the compilation model of the Intel JVM. Section 3
presents our debugging support mechanisms using dynamic
recompilation. Section 4 describes our approaches to im-
plement the field watch support in JVMDI. Section 5 pre-
sents our experiments and results. Finally, Section 6 gives
the concluding remarks.

2. COMPILATION MODEL
The Intel JVM [14] uses Java JIT compilers to improve the
runtime performance. The Intel JVM consists of three ma-
jor components: a fast code generator, an optimizing com-
piler, and profiling information[2]. Every method is com-
piled to native code by the fast code generator when it is
first invoked. Profiling instrumentation code is inserted into
the native code to collect the profiling information. Based
on the collected profiles, some methods are identified ashot
and then recompiled at runtime by the optimizing compiler.
In this paper, we only used the fast code generator compo-
nent of the Intel JVM and disabled the optimizing compiler
component to avoid the complexity of handling thecode
location and data-valueproblems[12]. The global optimi-
zations and instruction scheduling done by optimizing com-
piler can also cause the existence of theendangeredor non-
residentvariables[13].

The fast code generator component of Intel JIT generates
native IA32 instructions in two phases. Theprepassphase
performs a linear-time traversal of the byte codes to collect
information and thelazy code selection[1] phase generates
the native IA32 instructions directly from byte codes in a
single pass using the collected information. Since the fast
code generation takes only two linear time traversals over
byte codes, the compilation is simple and fast.

3. DEBUGGING SUPPORT
In this section we broadly describe how and when the dy-
namic recompilation of methods is used to support stack
frame accesses, data-value accesses and control breakpoints
when the JIT compilers are used.

3.1 Stack Frame Accesses
To support stack frame accesses, the JIT compiler has to
provide a mechanism to identify and access the caller’s
frame context. The stack unwinding process starts with a
frame context of a thread and continues unwinding until it

identifies the context of the caller. The mechanism already
exists in the exception handling modules of the JVM to find
the exception handler that catches the exception.

If the active frame belongs to a Java method compiled by
the JIT compiler, the JVM makes calls to the JIT compiler
to perform the unwinding operation. Information about the
returnip, the location and size of the spill area, location for
saving callee-save registers and outgoing arguments can
only be obtained from the JIT compiler. To unwind stack
frames for exceptions and compute the root set of live ref-
erences for garbage collection, a Garbage Collection (GC)
map is generated during the compilation for each method.
In the Intel JVM, we take a lazy approach to compute the
GC map [2]. A small GC map that contains some minimal
but essential information is generated when a method is
compiled for the first time. The JIT compiler dynamically
recompiles the method to produce full GC map when it
needs to compute the root set or unwind the stack frame.

3.2 Data-Value Accesses
The fast code generator uses a simple register allocation
scheme to allocate the machine registers to the variables
during native code generation. It maps the local variables to
dedicated registers or locations in the spill area. For trans-
lated methods, only the JIT compiler stores information
about the location of the variables.

To support data-value accesses, the JIT compiler provides a
runtime library function that returns the address of the loca-
tion where a local variable resides. The address of a vari-
able can either be in the spill area of the stack frame or the
callee-save area. The runtime library retrieves the address
of the variable in three steps. 1) The full GC map is re-
trieved. If the full GC map is not already available, the JIT
compiler dynamically recompiles the method that the vari-
able queried is in. 2) The JIT compiler constructs the stack
frame context for the current method to figure out the stack
frame layout of the method. 3) The JIT compiler computes
the address of the variable using the map from registers to
variables, stored in the GC map.

3.3 Control Breakpoints
The JIT compilers must be able to map each byte code to its
corresponding translated native instruction sequence. Intel’s
fast code generator performs several simple optimizations
such as strength reduction and constant folding during
compilation of byte codes to the native code. It does not
perform any aggressive optimizations, which could poten-
tially cause thecode locationproblem (accurate mapping of
source code to optimized machine code). The lazy code
generator passes over the byte code sequence and generates
the native instructions for each byte code sequentially.

The JIT compiler does not generate the code location map
until it is needed. That is, when a breakpoint is set or
cleared the code location map is generated using dynamic

3

recompilation. To set or clear a breakpoint, the JIT com-
piler provides an interface function that triggers dynamic
recompilation and returns the native code offset for a given
byte code in a method. Moreover, as soon as the lazy code
selector reaches the byte code offset, recompilation is ter-
minated and the next emit offset is returned. We do not
store the location map generated but recompile the method
every time a breakpoint is set or cleared.

3.4 Data Breakpoints
Data breakpoints, also called aswatchpoints, provide users
with a mechanism to stop the program execution in terms of
the changes in program’s memory states. Data breakpoints
stop the execution when a specified memory location is
accessed or modified. Data breakpoints can be set for ac-
cesses or modifications of local variables, class fields or
arbitrary memory locations. Java is a type safe language
and does not allow arbitrary memory accesses or updates in
the heap. Therefore, JVMDI includes only interface func-
tions for thewatchpointsfor the class fields.

The JVMDI specification for field watch requires anevent
hook functionto be called every time the watched field is
accessed or modified. Field access or modification events
are generated when the field specified is about to be ac-
cessed or modified. JVMDI also supports cancellation of
field watches during program execution. The hook function
is called with an argument describing the event type and
additional information specific to the event.

The field access events require information about the thread
that the event occurred, the class/method that accessed the
field, the location of the field access, the class field belongs
to, the field itself, and the object of which the correspond-
ing field is accessed. For modification events, additionally,
the signature of the field and the new value are also passed.

When the byte codes are interpreted by a JVM, field watch
support can be provided in a straightforward manner using
the information in the constant pool of Java class files and
operand stack. That is, while interpretinggetstatic, put-
static, getfield and putfiled byte codes, the JVM calls the
event hook function if the field watch is activated for the
corresponding field. However, when the JIT compiler is
used, the locations that fields are accessed or modified
might not be easily identifiable. Moreover, the JIT compiler
has to provide the ability to interrupt the execution before
the field access and modification points to call the event
hook function.

The Intel JIT compiler implements support for data break-
points using a code-patching scheme[15]. In our implemen-
tations, we insert additional instrumentation code to the
method’s code space either just before the field access or
modification points or at the end of the address space. In-
strumentation code is inserted either during the method’s
first compilation or later when the field watch is activated.
The instrumentation code passes necessary arguments to a

runtime library function. The runtime library function calls
the event hook function with the information passed to it.
Moreover, to keep the state of the memory consistent before
and after the call to the runtime library function, the JIT
compiler generates spill code for the operands on the oper-
and stack that are live across the call sites[1]. To prevent
significant runtime overhead caused by the inactivated field
watches, we guard the execution of the instrumentation
code by modifying the method’s address space or using
Boolean flag for each Java class field.

4. Field Watch Support
To investigate the runtime overhead and code space growth
for our dynamic recompilation approach, we present three
different implementations to support field watch feature in
JVMDI when JIT compilers are used. We believe the field
watch feature is representative of other debug features for
using our dynamic recompilation approach. Additionally,
field watches are easy to implement and conduct experi-
ments with. Our implementations differ inwhereandwhen
the additional instrumentation code is inserted andhow the
execution of the instrumentation code is guarded.

4.1.1 Static Implementation
Static implementation inserts instrumentation code for the
field watches during the compilation of a method when it is
first invoked. Instrumentation code is inserted at every
point the native code is generated forgetfield, getstatic, and
putfieldandputstaticbyte codes.

1. aload 6
2. getfield #42
3. mov ecx, DWORD PTR [esp + 10h]
4. mov edx, DWORD PTR [ecx + 04h]
5. mov DWORD PTR [esp + 08h], edx
6. cmp BYTE PTR [F10B78h], 01h
7. jnz NoWatch
8. push 0f10b50h
9. push ecx
10. call 10A837A0h
11. iload 4
12. if_icmpne 80
13. NoWatch :
14. mov eax, DWORD PTR [esp + 18h]
15. cmp eax, DWORD PTR [esp + 08h]

Figure 1: Static Instrumentation for Field #42 Access

Figure 1 shows a byte code sequence of a method and the
native instruction sequence for this segment. In Figure 1,
the additional instrumentation code is given in lines 3-10.
Lines 3-5 shows native instruction sequence to spill the
contents of Java operand stack to their canonical spill loca-
tions. The operands that are spilled are live at the field ac-
cess point. The code section in bold face, lines 6-10, is the
main code segment to decide whether field access watch is
activated or not.

Two values are passed to the library function as arguments,
shown in lines 8-9. The first argument is the pointer to the

4

internal data structure for the corresponding class field in
the JVM (field identifier). The second argument is the
pointer to the object being accessed (object identifier).

In static implementation, to guard the execution of instru-
mentation code, the Intel JIT stores a Boolean variable for
each class field in its internal data structures. The Boolean
flag for the field is set to true when the field watch is acti-
vated and to false when it is cleared. In Figure 1, line 6
compares the value of the Boolean flag to decide whether
the call to the event hook function will be executed. To
activate or clear a field watch for a particular field, we sim-
ply set or clear the field’s Boolean flag, respectively.

The spill code, lines 3-5 in Figure 1, is always executed
during the program execution even though the field watch
may not be activated. This is due to the fact that the mem-
ory state has to be kept consistent for the garbage collection
and exception handling mechanism.

4.1.2 Semi-Static Implementation
Similarly, our semi-static implementation inserts instrumen-
tation code during the first compilation of the methods.
However, instead of inserting instrumentation code before
the field access or modification points, it inserts all instru-
mentation code after the original byte code sequence is
compiled and emitted. Semi-static implementation inserts
jump 0 instructions at the field access and modification
points, which are used to jump into the instrumentation
code when the corresponding field watch is activated.

1. dconst_1
2. aload_0
3. getfield #159
4. mov eax, DWORD PTR [ebp + 08h]
5. jmp Watch
6. i2d

WatchRet :
7. fild DWORD PTR [eax + 44h]
8. ldc2_w #191
9. ddiv
10. fld QWORD PTR [F7DB08h]
11. fdivr st(0), st(1)
12. fstp st(1)

13. areturn

Watch:
14. push eax
15. mov ecx, DWORD PTR [eax + 44h]
16. mov DWORD PTR [ebp + FFFFFFB4h], ecx
17. mov edx, DWORD PTR [57F710h]
18. mov DWORD PTR [ebp + FFFFFFB8h], edx
19. fstp QWORD PTR [ebp + FFFFFFC0h]
20. push 013282a0h
21. push eax
22. call 10A837A0h
23. fld QWORD PTR [ebp + FFFFFFC0h]
24. pop eax
25. jmp WatchRet

Figure 2: Semi-Static Instrumentation for Field #159

The native code shown in Figure 2 corresponds to the state
when the field access watch for field #159 is activated. In-
strumentation code for the field access watch is given in
lines 5 and lines 14-25 in bold face. Line 5 contains the
jump instruction that is used to branch into the instrumenta-
tion code. The offset of the jump instruction is 0 if the field
watch is not activated. When the field watch is activated,
the JIT compiler changes the offset of jump instruction into
the instrumentation code.

Unlike the static implementation, during the lazy code se-
lection, the semi-static implementation assumes that the
jump to the instrumentation code is never taken. Hence, no
spill code is generated for the contents of the operand stack
at the field access point (line 4). Spilling is delayed until the
instrumentation code is actually executed (line 14). Since
the spilling of operands does not happen at the field access
or modification points, the semi-static implementation saves
the global state of the registers before the event hook func-
tion is called and restores them afterwards. The global
memory state varies from one field access or modification
point to another. For instance, saving the floating-point
stack is not required if no floating-point value is live after
the field access or modification point. For memory and reg-
ister consistency, however, we push the live scratch regis-
ters on the call stack (line 14) and restore them before re-
turning to the function address space.

Unlike our static implementation, our semi-static implemen-
tation executes fewer instructions when no field watch is
activated. Only a jump instruction is executed. However,
semi-static implementation executes more instructions when
the field watch is activated due to the additional code to
maintain the register and memory state consistent. Our
semi-static implementation also tries to prevent cache foot-
print changes by moving the instrumentation code at the
end of the method’s code space.

For the semi-static implementation, the JIT compiler keeps
track of the locations wherejump 0 instructions are in-
serted. Activation or cancellation of a field watch is linear
in the number of locations the field is accessed or modified.
During the first compilation of a method, for the activated
field watches in the method, semi-static implementation
inserts jump instruction with the correct offset to the in-
strumentation code.

4.1.3 Dynamic Recompilation
One way to be able to generate the instrumentation code for
field watch support is to store necessary information about
the compilation states at field access and modification
points, and to lazily use this information when a field watch
is activated. At each field access or modification point, the
compilation state includes the state and content of the oper-
and stack, the state of the registers, as well as the informa-
tion about the field itself. However, for programs with
many field access and modification byte codes, this infor-

5

mation may significantly increase the memory usage of the
JVM.

Our dynamic recompilation approach saves the memory
usage at the cost of recompilation. When a field watch is
activated, the JIT compiler recompiles the methods that
access or modify the field and generates the debug informa-
tion necessary for the instrumentation code. Dynamic re-
compilation always simulates the method’s first compila-
tion. Like in our semi-static implementation, we only insert
jump 0 instructions at the field access and modification
points during the method’s first compilation. For the dy-
namic recompilation approach, the same sequence of in-
structions as in Figure 2 is generated for the same code
segment. The only difference is that instead of inserting the
instrumentation code at the end of method’s code space we
allocate new stub space from heap for each instrumentation
code.

The JIT compiler stores a map from field access and modi-
fication points to their stub addresses, if the stubs are al-
ready generated. The generated stubs remain in the code
space even after the corresponding field watch is cleared.
Like in our semi-static implementation, if a field watch is
already activated, the JIT compiler generates the stub and
inserts the jump to the stub during the first compilation of
the method.

However, insertion ofjump 0 instruction is not absolutely
required for our semi-static and dynamic implementations.
The JIT compiler can alternatively relocate several of the
original instructions, such as in [15][17], to the code stub
(line 4) and replants it with a jump instruction into the stub.

5. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of our dynamic recompilation
approach, we ran a set of experiments with a different num-
ber of field watch activations using our static, semi-static
and dynamic approaches. We tested our implementations
with the benchmark programs in the SPEC JVM98[11]
suite. The experiments are conducted on a 550MHz Pen-
tium III with 512MB of main memory running Windows
NT 4.0. We repeated our experiments several times and
used the average values over all results. We measured the
execution time slowdown ratios with respect to the original
execution times and the code space growth percentage of
benchmark programs using our approaches.

Table 1 presents the number of the field access and modifi-
cation byte codes and number of the actual field accesses
and modifications during the execution of benchmark pro-
grams. The fourth and fifth columns show the number of
field accesses and modifications during the program execu-
tion in Millions.

Table 1: Number of field access/modification byte bodes
in source code and calls in program execution

Benchmark
Programs

Method
Count

Static
Field

Accesses

Static Field
Modifica-

tions

Field
Accesses

(M)

Field
Modifica-
tions (M)

compress 318 1,226 444 1,973 392
db 330 1,244 426 458 15
jack 557 2,255 991 484 280
javac 1,100 4,610 1,162 277 81
jess 744 2,137 675 248 27
mpegaudio 481 2,120 637 951 148
mtrt 449 1,480 516 241 44

5.1 Slowdown by Field Watch Support
We evaluate our implementations for the field watch sup-
port under five different scenarios. These scenarios differ
by the total number of the field watches that are activated or
cleared during the execution of the benchmark programs.
We used the scenario where all field watches are activated
during the first compilation of the methods to investigate
the maximum runtime overhead introduced. We also used
the scenario without any field watch activation to investi-
gate the degradation in performance of the benchmark pro-
grams when the field watch debugging support is not used.
Moreover, we used three more scenarios that randomly ac-
tivate and clear the field watches to investigate the runtime
overhead introduced by dynamic recompilations triggered.

5.1.1 Scenario I: Every Field Watch is Activated

Slowdown for Every Field Watch Activation

0

2

4

6

8

10

co
mpr

es
s db

jac
k

java
c

jes
s

mpe
gaudio

m
trt

Ratio

static semi-static dynamic

Figure 3: Slowdown when every field watch is activated
during the first compilation of the methods

Figure 3 shows the execution time slowdown ratios of the
benchmark programs when every field access and modifica-
tion watch is activated during the first compilation of the
methods. Under this scenario, no dynamic recompilation is
triggered for our dynamic recompilation approach since all
field watches are activated during the first compilation of

6

the methods. Figure 3 shows that the slowdown ratios for
benchmark programs range from 2.1 to 10.2. The slowdown
ratios are mainly proportional to the number of field access
and modification calls during the program execution.

Figure 3 shows that all three implementations perform al-
most the same with slight differences. Static implementation
performs slightly better compared to the others for all
benchmark programs. This is due to the fact that less in-
strumentation code is executed for static implementation for
each field watch activated.

5.1.2 Scenario II: No Field Watch is Activated
Figure 4 shows the execution time slowdown ratios for the
scenario where no field access or modification watch is
activated throughout the execution of the benchmark pro-
grams. Figure 4 shows that our static implementation per-
forms significantly worse compared to the semi-static and
dynamic implementations. This is due to the fact that for
our static implementation, the spill code for the live oper-
ands in Java operand stack is executed for each field watch
point even though it is not activated.

Slowdown for No Field Watch Activation

0.0

0.5

1.0

1.5

co
m

pre
ss db jac

k
jav

ac jes
s

m
pe

ga
ud

io
m

trt

Ratio

static semi-static dynamic

Figure 4: Execution time slowdown when no field watch
is activated during the program executions.

The runtime overhead introduced by our static implementa-
tion is as high as 41.8%. The runtime overhead of our semi-
static and dynamic implementations is under 12.0% and
13.0%, respectively. Moreover, runtime overhead for the
semi-static and dynamic implementations can be completely
eliminated by the relocation of original instructions into the
stubs rather than insertingjump 0instructions. Figure 4 also
shows negative slowdown for db with semi-static and dy-
namic implementations. We believe that the negative slow-
down is due to the change in instruction cache footprint
caused by the instrumentation code.

5.1.3 Random Field Watch Activation Scenarios
We evaluated our implementations under three more sce-
narios where the field access and modification watch activa-

tion occurs in a random manner. These scenarios differ in
the number of requests to activate and clear the field
watches. Based on the number of dynamic recompilations
triggered, we label these scenarios asheavy, moderateand
light. We believe that most of the software developers’ be-
havior when debugging software fits intolight scenario
(Due to space consideration we present execution time
slowdown and code space growth results for onlylight sce-
nario).

Table 2: Number of recompilations triggered when field
watches are activated or cleared randomly.

Random ScenariosBenchmark
Programs

#Method
In

Benchmark Heavy Moderate Light

compress 318 397 90 21
db 330 372 85 21
jack 557 566 158 101
javac 1,100 1,316 514 175
jess 744 696 156 37
mpegaudio 481 611 125 31
mtrt 449 478 111 23

Table 2 presents the number of recompilations triggered by
our dynamic recompilation implementation during the exe-
cution of the benchmark programs underheavy, moderate,
andlight scenarios. Table 2 shows that inheavyscenario, in
the average, every method is compiled once more.

Random Field Watch Activation (Light)

0.0

0.5

1.0

1.5

co
m

pre
ss db

jac
k

jav
ac jess

m
pegaudio

m
trt

Ratio

static semi-static dynamic

Figure 5: Execution time slowdown when a few field
watches are activated.

Figure 5 shows the execution slowdown ratios of bench-
mark programs under thelight scenario. In this scenario, the
number of field access and modification points that call the
event hook function is significantly less than in both heavy
and moderate scenarios. In Figure 5, the execution time
slowdown ratios for the benchmark programs range from
1.1 to 1.6. Moreover, the static and semi-static implementa-

7

tions are mostly outperformed by both our dynamic recom-
pilation approach. The static implementation executes more
additional instrumentation code compared to semi-static
and dynamic implementations. Figure 5 also shows that
dynamic recompilations do not introduce significant over-
head compared to semi-static implementation, which inserts
the same instrumentation code but statically during the first
compilation of the methods.

5.2 Native Code Space Growth
We believe growth in generated code space is another im-
portant factor to evaluate the effectiveness of our imple-
mentations. Thus, we investigated the code space growth
percentage of the benchmark programs compared to the
original code space size of the translated native code.

Our static implementation inserts instrumentation code to
the points where fields are accessed or modified independ-
ent from whether the corresponding field watches are acti-
vated or not. Thus, for our static implementation, the total
code space size in terms of native instructions does not
change under different scenarios. Similarly, the total code
space size for our semi-static implementation does not
change with respect to the different scenarios. For our dy-
namic implementation, the total code space size varies de-
pending on the number of field watches activated. In all of
our implementations, field watch deactivations do not have
any affect on the size of the instrumentation code existing in
the program’s address space.

0%

10%

20%

30%

40%

50%

60%

70%

co
m

pre
ss db ja

ck
java

c
jes

s

m
peg

au
dio m

trt

static semi-static dynamic every
dynamic heavy dynamic moderate dynamic light
dynamic no

Figure 6: Code space growth percentage with respect to
the original code size of the generated native code.

Figure 6 shows the code space growth percentage in terms
of native instructions compared to the size of the original
code without any field watch support. The first two bars in
Figure 6 represent the code size growth percentage for our

static and semi-static implementations for all scenarios. The
third bar is used for our dynamic recompilation implemen-
tation when every field watch is activated during the first
compilation. The next four bars are for dynamic recompila-
tion for the heavy, moderate, and light scenarios, and the
scenario for no field watch activations occur, respectively.

Figure 6 shows that the growth in code space ranges from
42.7% to 62.2% compared to the original code size for the
benchmark programs when static implementation is used.
Our semi-static implementation always introduces more
instrumentation code compared to the static implementa-
tion, which results in a code space growth percentage that
ranges from 47.8% to 69.3%. The code space growth per-
centage for our dynamic implementation is the same as our
semi-static implementation when every field watch is acti-
vated during the first compilation of the methods.

The forth bar shows the percentage of code space growth
for the heavy scenario using our dynamic implementation.
Even for theheavyscenario, the dynamic approach is still
able to reduce the code size significantly compared to the
first three approaches. The code size growth drops substan-
tially for moderateand light scenarios (fifth and sixth bars)
using dynamic implementation. Under themoderatesce-
nario the code space growth percentage is below 15% for
all the benchmark programs exceptjavac. Under thelight
scenario the code space growth is even smaller and ranges
around 10% for most of the benchmark programs. The last
bar in Figure 6 shows the code space growth percentage for
our dynamic implementation when there is no field watch
activation, which can totally be eliminated by relocation of
original instructions into the stubs rather than inserting
jump instructions.

6. CONCLUSIONS
In this paper we presented debugging support for the Intel
JVM when JIT compilers are used. In the Intel JVM, dy-
namic recompilation of Java methods is used to provide
debugging support for stack frame accesses, control break-
points, data-value accesses, and data breakpoints.

Our experiments show that static implementation for field
watch support significantly increases the size of the code
space of the benchmark programs independent of the num-
ber of the field watches activated. Similarly, our semi-static
implementation increases the code space size by 47.8-
69.3% for the benchmark programs even if no field watch is
activated.

Dynamic recompilation however controls the growth in
code space depending on the number of the field watches
activated during the program execution. For our dynamic
implementation code space grows by 6.3-9.6% when there
is no field watch activation. Moreover, the code space
growth can totally be eliminated by relocation of the origi-
nal instructions instead of insertingjump 0instructions.

8

Our experiments also show that when only a few field
watches are activated, dynamic recompilation outperforms
the static and semi-static implementations. Our dynamic
recompilation implementation slows down the execution of
benchmark programs by at most 13% when there is no field
watch activation, which can also be eliminated completely
by relocating original instruction(s) to the stubs instead of
inserting jump instructions. Our experiments show that our
dynamic recompilation approach is effective controlling the
code size growth without degrading the performance sig-
nificantly.

Acknowledgements
We thank Tatiana Shpeisman and Michal Cierniak for their
valuable help in understanding the internals of the Intel
JVM and JIT compilers.

7. REFERENCES
[1] A. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V.M.

Parikh, and J.M. Stichnoth. Fast, Effective Code Gen-
eration in a Just-In-Time Java Compiler.Conference
on Programming Language Design and Implementa-
tion, May 1998, pp. 280-290.

[2] M. Cierniak, G-Y. Lueh, J. M. Stichnoth, Practicing
JUDO: JavaTM Under Dynamic Optimizations,Confer-
ence on Programming Language Design and Imple-
mentation, June 2000, pp. 13-26

[3] Sun Microsystems, Java Virtual Machine Debug Inter-
face Reference.
http://java.sun.com/j2se/1.3/docs/guide/jpda/jvmdi-
spec.html

[4] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[5] K. Arnold and J. Gosling. The Java Programming Lan-
guage. Addison-Wesley, 1997.

[6] J. Gosling, B. Joy and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[7] Intel Corp. Intel Architecture Software Developer’s
Manual, 1997 (Order number 243192).

[8] Intel Corp. Intel IA-64 Architecture Software Devel-
oper's Manual, 2000 (Order number 245319).

[9] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Second Edition. Addison-Wesley, 1999.

[10]J.M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support
for Garbage Collection at Every Instruction in a Java
Compiler.Conference on Programming Language De-
sign and Implementation, May 1999, pp. 118-127.

[11]Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks, http://www.spec.org/osg/jvm98

[12]P. Zellweger. Interactive Source-Level Debugging of
Optimized Programs. PhD Thesis, University of Cali-
fornia, Berkeley, May 1984.

[13]A. Adl-Tabatabai and T. Gross. Source-Level Debug-
ging of Scalar Optimized Code.Conference on Pro-
gramming Language Design and Implementation,May
1996, pp. 33-42.

[14] Intel Corporation, Open Runtime Platform.
http://www.intel.com/research/mrl/orp.

[15]P.B. Kessler. Fast Breakpoints: Design and Implemen-
tation.Conference on Programming Language Design
and Implementation,June 1990, pp. 78-84.

[16]R. Wahbe. Efficient Data Breakpoints. In Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October
1992, pp. 200-212.

[17]R. Buck and J.K. Hollingsworth. An API for Runtime
Code Patching, Journal of High Performance Comput-
ing Applications, 14 (4), Winter 2000, pp. 317-329

[18]R. Wahbe, S. Lucco, and S.L. Graham. Practical Data
Breakpoints: Design and Implementation.Conference
on Programming Language Design and Implementa-
tion, June 1993, pp. 1-12

