
Understanding the Global Semantics of
Referential Actions using Logic Rules

WOLFGANG MAY
Institut für Informatik, Universität Freiburg, Germany
and
BERTRAM LUDÄSCHER
San Diego Supercomputer Center, University of California San Diego, USA

The electronic appendix contains an example for the logic-programming char-
acterization of referential actions in case of update operations hat has been
given in Section 4.2. Additionally, it describes the detailed game-theoretic char-
acterization of that case that has been sketched in Section 4.3, illustrates
it by an example, and shows its equivalence with the logic programming
characterization.

A. EXAMPLE FOR THE LOGIC PROGRAMMING CHARACTERIZATION
OF REFERENTIAL ACTIONS WITH UPDATES

In Section 4.2, a logic programming characterization for full referential actions,
including modifications (i.e. ON UPDATE CASCADE) has been given. The following
example instantiates the logic rules for a given situation.

Example 12 Modifications: Diamond. Consider again Figure 1, all refer-
ences labeled with ON UPDATE OF PARENT CASCADE and ON UPDATE OF CHILD NO
ACTION, which is a completely plausible setting. Consider the external modifica-
tion request Bmod R1(1/n, (a, . . .)). Among many others, we have the following
rules:
External modification on R1 (EXT1):

mod R1(M , X̄) ← Bmod R1(M , X̄), ¬ blk mod R1(M , X̄).

From R2.1→ R1.1 ON UPDATE OF PARENT CASCADE (Refd), (MPC1), (MPC2): Prop-
agate the modification of the primary key R1.1 downwards to the foreign key
R2.1 of the child tuple (if possible, otherwise block the update), and do the

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0362-5915/02/1200-0001 $5.00

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002, Pages 1–16.

2 • W. May and B. Ludäscher

bookkeeping that the new value of R1.1 is referenced:

new refd R1.1 by R2.1(V̄) ← R2(X̄), chg R2.1(M , X̄), M (X̄)[1] = V̄ .
prp R1.1Ã R2.1(MC, X̄) ← chg R1.1(MP , Ȳ), R2(X̄), X̄ [1] = Ȳ [1],

MC = 1/MP (Ȳ)[1].
pot prp R1.1Ã R2.1(MC, X̄)← pot chg R1.1(MP , Ȳ), R2(X̄), X̄ [1] = Ȳ [1],

MC = 1/MP (Ȳ)[1].
blk chg R1.1(MP , Ȳ) ← pot chg R1.1(MP , Ȳ),

blk prop R1.1Ã R2.1 (MC, X̄),
X̄ [1] = Ȳ [1],
MC = 1/MP (Ȳ)[1].

blk prop R1.1Ã R2.1(M , X̄)← pot prp R1.1Ã R2.1(M , X̄),
blk chg R2.1 (M , X̄).

Analogously, from R3.1→ R1.1 ON UPDATE OF PARENT CASCADE (Refd), (MPC1),
(MPC2):

new refd R1.1 by R3.1(V̄) ← R3(X̄), chg R3.1(M , X̄), M (X̄)[1] = V̄ .
prp R1.1Ã R3.1(MC, X̄) ← chg R1.1(MP , Ȳ), R3(X̄), X̄ [1] = Ȳ [1],

MC = 1/MP (Ȳ)[1].
pot prp R1.1Ã R3.1(MC, X̄)← pot chg R1.1(MP , Ȳ), R3(X̄), X̄ [1] = Ȳ [1],

MC = 1/MP (Ȳ)[1].
blk chg R1.1(MP , Ȳ) ← pot chg R1.1(MP , Ȳ),

blk prop R1.1Ã R3.1(MC, X̄),
X̄ [1] = Ȳ [1], MC = 1/MP (Ȳ)[1].

blk prop R1.1Ã R3.1(M , X̄)← pot prp R1.1Ã R3.1(M , X̄),
blk chg R3.1(M , X̄).

Analogously, from R4.(1, 2)→ R2.(1, 2) ON UPDATE OF PARENT CASCADE (Refd),
(MPC1), (MPC2):

new refd R2.(1, 2) by R4.(1, 2)(V̄) ← RC(X̄), chg R4.(1, 2)(M , X̄),
M (X̄)[1, 2] = V̄ .

prp R2.(1, 2)Ã R4.(1, 2)(MC, X̄) ← chg R2.(1, 2)(MP , Ȳ), R4(X̄),
X̄ [1, 2] = Ȳ [1, 2], MC = (1, 2)/
MP (Ȳ)[1, 2].

pot prp R2.(1, 2)Ã R4.(1, 2)(MC, X̄)← pot chg R2.(1, 2)(MP , Ȳ), R4(X̄),
X̄ [1, 2] = Ȳ [1, 2], MC = (1, 2)/
MP (Ȳ)[1, 2].

blk chg R2.(1, 2)(MP , Ȳ) ← pot chg R2.(1, 2)(MP , Ȳ),
blk prop R2.(1, 2)Ã R4.(1, 2)(MC, X̄),
X̄ [1, 2] = Ȳ [1, 2], MC = (1, 2)/
MP (Ȳ)[1, 2].

blk prop R2.(1, 2)Ã R4.(1, 2)(M , X̄)← pot prp R2.(1, 2)Ã R4.(1, 2)(M , X̄),
blk chg R4.(1, 2)(M , X̄).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 3

Analogously, from R4.(1, 3)→ R3.(1, 2) ON UPDATE OF PARENT CASCADE (Refd),
(MPC1), (MPC2):

new refd R3.(1, 2) by R4.(1, 3)(V̄) ← RC(X̄), chg R4.(1, 3)(M , X̄),
M (X̄)[1, 3] = V̄ .

prp R3.(1, 2)Ã R4.(1, 3)(MC, X̄) ← chg R3.(1, 2)(MP , Ȳ), R4(X̄),
X̄ [1, 3] = Ȳ [1, 2], MC = (1, 3)/
MP (Ȳ)[1, 2].

pot prp R3.(1, 2)Ã R4.(1, 3)(MC, X̄)← pot chg R3.(1, 2)(MP , Ȳ), R4(X̄),
X̄ [1, 3] = Ȳ [1, 2], MC = (1, 3)/
MP (Ȳ)[1, 2].

blk chg R3.(1, 2)(MP , Ȳ) ← pot chg R3.(1, 2)(MP , Ȳ),
blk prop R3.(1, 2)Ã R4.(1, 3)(MC, X̄),
X̄ [1, 3] = Ȳ [1, 2], MC = (1, 3)/
MP (Ȳ)[1, 2].

blk prop R3.(1, 2)Ã R4.(1, 3)(M , X̄) ← pot prp R3.(1, 2)Ã R4.(1, 3)(M , X̄),
blk chg R4.(1, 3)(M , X̄).

For the (primary and foreign) key R1.1 (CH1) and (RCK), translate the external
updates to R1 into their effects on R1.1 and do bookkeping of referenceable
values:

pot chg R1.1(M , X̄) ← pot prp BÃ R1.1(M ′, X̄), M (X̄)[1] 6= X̄ [1].
chg R1.1(M , X̄) ← prp BÃ R1.1(M ′, X̄), M (X̄)[1] 6= X̄ [1].
new refable R1.1(V̄) ← chg R1.1(M , X̄), M (X̄)[1] = V̄ .

The foreign key R2.1 does not overlap with other foreign keys, thus (CH1) con-
siders only its “own” parent key (again we omit BR2):

pot chg R2.1(M , X̄)←pot prp R1.1Ã R2.1(M ′, X̄), M=M ′[1], M (X̄)[1]6=X̄ [1].
chg R2.1(M , X̄) ← prp R1.1Ã R2.1(M ′, X̄), M = M ′[1], M (X̄)[1] 6= X̄ [1].

Analogous for R3.1.
For the key R2.(1, 2) (CH1) and (RCK), translate the incoming updates along
R2.1→ R1.1 ON UPDATE OF PARENT CASCADE to updates into their effects on
R2.(1, 2) and do bookkeping of referenceable values (for space restrictions, we
omit the influence of BR2 in (CH1)):

pot chg R2.(1, 2)(M , X̄) ← pot prp R1.1Ã R2.1(M ′, X̄),
M = M ′[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

chg R2.(1, 2)(M , X̄) ← prp R1.1Ã R2.1(M ′, X̄),
M = M ′[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

new refable R2.(1, 2)(V̄) ← chg R2.(1, 2)(M , X̄), M (X̄)[1, 2] = V̄ .

Analogous for the key R3.(1, 2).

The foreign key R4.(1, 2) can be influenced either by its own parent key (which
has to be regarded as atomic, thus, it cannot be augmented by any propagation
along R4.(1, 3)→ R3.(1, 2)), or (if there is no change at the parent) by a propa-
gation along R4.(1, 3)→ R3.(1, 2) (again we omit BR4). The rule schema (CH1)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

4 • W. May and B. Ludäscher

yields the following rules:

pot chg R4.(1, 2)(M , X̄) ← pot prp R2.(1, 2)Ã R4.(1, 2)(M ′, X̄),
M = M1[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

chg R4.(1, 2)(M , X̄) ← prp R2.(1, 2)Ã R4.(1, 2)(M1, X̄),
M = M1[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

pot chg R4.(1, 2)(M , X̄) ← pot prp R3.(1, 2)Ã R4.(1, 2)(M ′, X̄),
M = M1[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

chg R4.(1, 2)(M , X̄) ← prp R3.(1, 2)Ã R4.(1, 2)(M1, X̄),
¬∃M2 : prp R2.(1, 2)Ã R4.(1, 3)(M2, X̄),
M = M1[1, 2], M (X̄)[1, 2] 6= X̄ [1, 2].

Analogous for R4.(1, 3).
(MCN) contributes rules for R4.(1, 2) and R4.(1, 3) since there we have over-
lapping foreign keys which are changed by different parent key propagations:

blk chg R4.(1, 2)(M , X̄)← pot chg R4.(1, 2)(M , X̄),
prp R3.(1, 2)Ã R4.(1, 3)(M ′, X̄),
M [1] = M ′[1], ¬ rem refable R2.(1, 2)(M (X̄)[1, 2]),
¬new refable R2.(1, 2)(M (X̄)[1, 2]).

blk chg R4.(1, 3)(M , X̄)← pot chg R4.(1, 3)(M , X̄),
prp R2.(1, 2)Ã R4.(1, 2)(M ′, X̄),
M [1] = M ′[1], ¬ rem refable R3.(1, 3)(M (X̄)[1, 3]),
¬new refable R3.(1, 3)(M (X̄)[1, 3]).

Finally, the schema (CH2) adds the following rules for interferences between
the overlapping foreign keys R4.(1, 2) and R4.(1, 3):

allow chg R4.(1.2)∩ (1, 3) (M , X̄)←
chg R4.(1, 2)(M1, X̄), ¬blk chg R4.(1, 2)(M1, X̄), M = M1[1],
chg R4.(1, 3)(M2, X̄), ¬blk chg R4.(1, 3)(M2, X̄), M = M2[1].

blk chg R4.(1, 2)(M , X̄) ← pot chg R4.(1, 2)(M , X̄),
¬allow chg R.(1, 2)∩ (1, 3) (M ′, X̄), M ′ = M [1].

blk chg R4.(1, 3)(M , X̄) ← pot chg R4.(1, 3)(M , X̄),
¬allow chg R.(1, 2)∩ (1, 3) (M ′, X̄), M ′ = M [1].

Evaluating this program wrt. the well-founded semantics (via the AFP charac-
terization) yields the following sequence of truth values (e.g., “tftf. . . ” denoting
“true-false-true-false-. . . ”):

Bmod R1(1/n, (a, . . .)) tttt. . .
pot chg R1.1(1/n, (a, . . .)) tttt. . .
pot prp R1.1Ã R2.1(1/n, (a, b, . . .)) tttt. . .
pot chg R2.(1, 2)(1/n, (a, b, . . .)) tttt. . .
pot prp R2.(1, 2)Ã R4.(1, 2)(1/n, (a, b, c, . . .)) tttt. . .
pot chg R4.(1, 2)(1/n, (a, b, c, . . .)) tttt. . .
pot prp R1.1Ã R3.1(1/n, (a, c, . . .)) tttt. . .
pot chg R3.(1, 2)(1/n, (a, c, . . .)) tttt. . .
pot prp R3.(1, 2)Ã R4.(1, 3)(1/n, (a, b, c, . . .)) tttt. . .
pot chg R4.(1, 3)(1/n, (a, b, c, . . .)) tttt. . .

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 5

mod R1(1/n, (a, . . .)) tftf. . .
chg R1.1(1/n, (a, . . .)) tftf. . .
prp R1.1Ã R2.1(1/n, (a, b, . . .)) tftf. . .
chg R2.(1, 2)(1/n, (a, b, . . .)) tftf. . .
prp R2.(1, 2)Ã R4.(1, 2)(1/n, (a, b, c, . . .)) tftf. . .
chg R4.(1, 2)(1/n, (a, b, c, . . .)) tftf. . .
prp R1.1Ã R3.1(1/n, (a, c, . . .)) tftf. . .
chg R3.(1, 2)(1/n, (a, c, . . .)) tftf. . .
prp R3.(1, 2)Ã R4.(1, 3)(1/n, (a, b, c, . . .)) tftf. . .
chg R4.(1, 3)(1/n, (a, b, c, . . .)) tftf. . .

new refable R1.1(n) tftf. . .
new refable R2.(1, 2)(n, b) tftf. . .
new refable R3.(1, 2)(n, c) tftf. . .
new refd R1.1 by R2.1(n) tftf. . .
new refd R2.(1, 2) by R4.(1, 2)(n, b) tftf. . .
new refd R3.(1, 2) by R4.(1, 3)(n, c) tftf. . .

blk chg R1.1(1/n, (a, . . .)) tftf. . .
blk prop R1.1Ã R2.1(1/n, (a, b, . . .)) tftf. . .
blk chg R2.(1, 2)(1/n, (a, b, . . .)) tftf. . .
blk prop R2.(1, 2)Ã R4.(1, 2)(1/n, (a, b, c, . . .)) tftf. . .
blk chg R4.(1, 2)(1/n, (a, b, c, . . .)) tftf. . .
blk prop R1.1Ã R3.1(1/n, (a, c, . . .)) tftf. . .
blk chg R3.(1, 2)(1/n, (a, c, . . .)) tftf. . .
blk prop R3.(1, 2)Ã R4.(1, 3)(1/n, (a, b, c, . . .)) tftf. . .
blk chg R4.(1, 3)(1/n, (a, b, c, . . .)) tftf. . .
allow chg R4.(1.2)∩ (1, 3) (1/n, (a, b, c, . . .)) tftf. . .
blk chg R4.(1, 2)(1/n, (a, b, c, . . .)) tftf. . .
blk chg R4.(1, 3)(1/n, (a, b, c, . . .)) tftf. . .

Thus, all actual modifications and changes, as well as all blockings are unde-
fined in the well-founded model. Nevertheless, the modification is admissible.

B. GAME-THEORETIC CHARACTERIZATION OF REFERENTIAL ACTIONS
WITH UPDATES

In this section, we present an equivalent game-theoretic characterization of
maximal admissible sets of updates. Here, we need to consider also a history of
the game which was not required for the simpler game-theoretic characteriza-
tion in Section 3.3 with deletions only (which was in the famous win-move-style).

For given UB, Player I claims a subset U ⊂ UB to be maximal and admis-
sible. In her first move, Player II chooses to falsify either the maximality or
the admissibility. If Player II challenges the maximality, she chooses a proper
superset U ′ such that U (U ′ ⊂ UB which she claims to be maximal and
admissible, then the roles are changed. Thus, after finitely many moves, a
player challenges the admissibility of a set U suggested by the other player by
examining this set with respect to its coherence and feasibility by questions.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

6 • W. May and B. Ludäscher

The other player has to defend U to be admissible by stepwise showing what
updates are actually executed. By doing this, he constructs 1(U). The game
is an abstraction of the logic programming characterization in the sense that
I uses only non-subsumed updates (anticipating the overall result), thus the
details of interfering updates can be ignored. This abstraction step is similar
to that in Section 5 for deriving the practical results from the construction of
the well-founded and stable models.

B.1 Rules of the Game

B.1.1 Setting and Initialization

Setting. The positions of the game are all tuples of the database D:
R(x̄) such that R(x̄) ∈ D and |{Bins R(X̄) such that Bins R(X̄) ∈ UB}| many

positions ε . Thus, the “board” is practically a graphical representation of the
database (see Example 15 and Figures 6–8). The game is played by putting
plates that represent the update operations performed on the database: Each
plate consists of a source tuple (∈ D), an update (over the active domain of the
database and the updates; adom(D) ∪ adom(UB)), and a result tuple, for ex-
ample, R(a, b, c)| mod R([1/x, 2/ y], (a, b, c))|R(x, y , c) . The update plates also
contain positions (as many boxes as there are atomic updates described by
the plate), indicating how many cascading steps are needed for founding the up-
date. Each position can be filled with a pebble (as a question) or with a number.
For example, for the above plate, there are two positions (for [1/x] and for [2/ y]):
R(a, b, c)| mod R([1/x, 2/ y], (a, b, c)) 〈2, •〉|R(x, y , c) means that the modifica-
tion of position 1 to x is founded by two cascading steps, and II currently forces
I to tell her how many steps are needed for founding the modification [2/ y].
There are four kinds of update plates:

No change: R(x̄)|unchanged|R(x̄) ,

Deletion: R(x̄)|del R(x̄) 〈 〉|ε ,

Insertion: ε| ins R(x̄) 〈 〉|R(x̄) ,

Modification: R(x̄)|mod R([m1, ..., mn], x̄) 〈 n〉|R(M (x̄)) ; M = [m1, ..., mn].

Player I: Start. Player I claims that a set U ⊂ UB of updates is maximal
admissible and puts the following plates with numbers on suitable positions:

R(x̄)|del R(x̄) 〈0〉|ε : Bdel R(x̄) ∈ U

R(x̄)|mod R([m1, ..., mn], x̄) 〈0n〉|R(M (x̄)) : Bmod R(M , x̄) ∈ U ;

M = [m1, . . . , mn]

ε|ins R(x̄) 〈0〉|R(x̄) : B ins R(x̄) ∈ U

B.1.2 Questions and Answers. The game is played such that Player II
asks “questions”, attacking the claim of Player I: II attacks the admissibility

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 7

(cf. Definition 4.1) of U , that is, foundedness, completeness, and feasibility. Co-
herence is inherent to the game, and uniqueness of key values is guaranteed
by the winning conditions. I has to answer each attack—if he has no answer,
he loses. We will describe each aspect below by attack-defense-pairs: II asks a
question by pointing to an instance of one of the above aspects, and I has to
show how to guarantee the respective property. In most answers, I will put a
new plate (thereby constructing 1(U)); then the number positions of the plate
are initially empty.

Completeness/Cascading. If an update plate is positioned on a tuple that
has a child tuple with a CASCADE reference, II can ask I to cascade the update
(e.g., when trying to follow aDC∗ ◦DR orDC∗ ◦DN chain to a problem situation).
II answers by materializing the cascaded update:

Cascade Attack. For a deletion plate RP (ȳ)|del RP (ȳ) 〈 〉|ε or a modifica-

tion plate RP (ȳ)|mod RP (MP , ȳ) 〈 〉| . . . , a rac RC. EF→ RP . EK ON DELETE/UPDATE

OF PARENT CASCADE, and a tuple RC(x̄) s.t. x̄[EF] = ȳ[EK] and—in case of a
modification— ȳ[EK] 6= MP (ȳ)[EK], Player II can put a propagate-wire labelled
with the ric from the updated parent tuple to the referencing tuple, asking
“what about this reference?”:

Cascade Answer. A propagate-wire from a plate RP (ȳ)|del RP (ȳ) 〈 〉|ε or

RP (ȳ)|mod RP (MP , ȳ) 〈 〉| . . . to a tuple RC(x̄) is answered by putting a plate

RC(x̄)|del RC(x̄) 〈 〉|ε respectively RC(x̄)|mod RC(MC, x̄) 〈 n〉| . . . onto RC(x̄),

and putting an action wire labelled with RC. EF→ RP . EK from the update com-
ponent of the parent to the update component of the child.

In case of a modifi-
cation, the values of
the corresponding can-
didate keys and foreign
keys must be consis-
tent, that is, x̄[EF] =
ȳ[EK].

If the target tuple already holds a plate, there is nothing more to do than
adding an action wire from the update component of the parent to the update
component of the child. Player I loses if the plates are inconsistent (i.e., the
child plate does not represent the correct key value—trapped).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

8 • W. May and B. Ludäscher

Feasibility: Restricting. If an update plate is positioned on a tuple that has
a child tuple with a RESTRICT reference, II can show the reference and wins
immediately:

Restrict Attack. For a deletion plate
RP (ȳ)|del RP (ȳ) 〈 〉|ε or a modification

plate RP (ȳ)|mod RP (M , ȳ) 〈 〉| . . . , a rac

RC. EF→ RP . EK ON DELETE/UPDATE OF PARENT
RESTRICT, and a tuple RC(x̄) s.t. x̄[EF] =
ȳ[EK], Player II can point to this tuple, and
Player I immediately loses.

Feasibility: No Action. If an update plate is positioned on a tuple that has a
child tuple with a NO ACTION reference, II can show the reference, asking what
happens to that child/reference. I answers by showing (claiming) that the child
is deleted or modified (which must be founded from somewhere else and which
must be admissible, leading to II’s next move):

No Action Attack. For a deletion plate RP (ȳ)|del RP (ȳ) 〈 〉|ε or a modifica-

tion plate RP (ȳ)|mod RP (MP , ȳ) 〈 〉| . . . , a rac RC. EF→ RP . EK ON DELETE/UPDATE

OF PARENT NO ACTION, and a tuple RC(x̄) such that x̄[EF] = ȳ[EK] and—in case
of a modification— ȳ[EK] 6= MP (ȳ)[EK], Player II can put a no-action-wire la-
belled with the ric from the source tuple of the update to the referencing tuple,
asking “what about this reference?” (the deletion situation on the left side will
be continued in Example 13 with the answer and a following Founding Attack
step):

No Action Answer. For showing how the referencing tuple is adapted,
Player II puts some (consistent) update plate on the result tuple.

Such situations frequently occur in a diamond, where the update cascades
along another way (cf. the Example 15 that describes a complete game).

Example 13 Update Game—Selected Steps.
Continuing the above situation (left
side; deletion), I puts a deletion plate
on the referencing tuple, arguing that
this tuple will also be deleted. Note
that this “deletion” is at that time just
a claim, and its foundedness will very
probably be attacked by II (as will be
shown below).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 9

In case that the referencing tuple already holds a plate, there is nothing to
do. In this case, player I loses if the plates are inconsistent (i.e., the child plate
does not represent the correct key value—again trapped).

Founding. If I answers—for example as described above—with putting a
delete or update plate somewhere, II can ask him how this modification is
founded (or, if it is an update plate where several foreign keys change, how each
component of it is founded). I has to answer by showing a parent that cascades
an appropriate modification, and by saying how many steps are needed to prove
the correctness.

Founding Attack. For any plate with some empty number position,
R(x̄)|del R(x̄) 〈 〉|ε or R(x̄)|mod R([m1, . . . , mn], x̄) 〈k1, . . . , , . . . , kn〉| . . . , Player
II can place a pebble on the number position, asking “why mi?”:
R(x̄)|del R(x̄) 〈•〉|ε or R(x̄)|mod R([m1, ..., mn], x̄) 〈k1, ..., ki−1, •, ki+1, ..., kn〉|

Example 13 Update Game—Selected Steps (Cont’d).
Continuing the above
situation, II will ask
how the newly placed
deletion plate is founded
(by putting a pebble on
the empty “ ” on the
plate).

Founding Answer. For a new pebble, RC(x̄)|del RC(x̄) 〈•〉|ε respectively

RC(x̄)|mod RC([m1, ..., mn], x̄) 〈k1, ..., ki−1, •, ki+1, ..., kn〉| . . . , I chooses a suitable
plate for founding the questioned update (this can be either a plate that is
already present, or I puts a new plate):

— in case of a deletion: RP (ȳ)|del RP (ȳ) 〈 〉|ε such that x̄[EF] = ȳ[EK], or

— in case of a modification: RP (ȳ)|mod RP (MP , ȳ) 〈 〉| . . . such that x̄[EF] =
ȳ[EK], [m1, ..., mn][EF] = EF/MP (ȳ)[EK], and mi ∈ EF/MP (ȳ)[EK]).

Then, I adds an action-wire marked with a ric RC. EF→ RP . EK from the update
component of the founding plate to the update component del RC(x̄) respec-
tively mod RC([m1 . . . , mn], x̄) 〈k1, . . . , ki−1, ki, ki+1, . . . , kn〉 of the plate under
consideration and replaces the pebble by some ki ∈ IN (claiming that the up-
date is founded in ki steps):

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

10 • W. May and B. Ludäscher

Example 13 Update Game—Selected Steps (Cont’d). Consider again the
above situation. Player I answers the pebble by showing another parent tu-
ple (now, R ′P (ȳ ′) comes actually into play) of the referencing tuple from which
the deletion cascades, and telling how many steps are required from a founding
update:

The next move by II is probably again a Founding Attack against the new plate.
This is continued until I’s answers
reach a founding external update
(showing only the right side of the
example board): I places the pebble
on the update plate at R ′P (ȳ ′), II re-
places it by a “1” and links it to the
founding update plate for an exter-
nal update, del R ′′P (ȳ ′′) (which has
been put in the initialization).

Feasibility: Referenced Parents Needed. Feasibility of an update is not only
concerned with the children of the tuple (as handled above by Restrict Attack
and No Action Attack), but has also to consider updates of foreign keys, search-
ing for parents.

If I answers with putting an update plate somewhere that changes a foreign
key, II can ask him what parent is referenced (note that this is different from
asking how the update is founded). I has to answer by showing a parent that
provides an appropriate key value (this can either be an unchanged tuple of the
original database, or the result of a modification or insertion).

Referencing Attack. For a modification R(x̄)|mod R(M , x̄) 〈 〉| . . . or inser-

tion ε|ins R(x̄) 〈 〉|R(x̄) and a ric R. EF→ RP . EK , Player II can put a reference-
wire with a loose end, labelled with the ric, on the result entry, asking “refer-
encing what?”:

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 11

Example 14 Update Game: Referencing. A Reference Attack is for example
played if a tuple is “moved” from one parent to another: Consider relations RC,
RP and R ′P with ric’s RC.(1, 2)→ RP .(1, 2) CASCADE and RC.(1, 3)→ R ′P .(1, 2)
NO ACTION where the foreign keys overlap. Let D contain the tuples RP (a, x),
R ′P (a, y), R ′P (b, y), RC(a, x, y). Then, the modification Bmod RP ([1/b], (a, x))
cascades to mod RC([1/b], (a, x, y)), resulting in the tuple RC(b, x, y) that
now references R ′P (b, y). The game starts with the database and the
plate RP (a, x)|mod RP ([1/b], (a, x)) 〈0〉|RP (b, x) . After playing Cascade Attack
and Cascade Answer, the situation looks as depicted below. In this situation,
Player II—knowing that the reference from R ′P (a, y) breaks—plays Reference
Attack for the reference RC.(1, 3)→ R ′P .(1, 2):

Player I has then to find a target for the open reference.

Referencing Answer. A dangling reference wire starting in a plate
. . . | . . . |RC(x̄) labelled with a ric RC. EF→ RP . EK is answered by connecting it
to a plate (which also can be positioned in this move on a tuple not holding a
plate) such that the result tuple provides the referenced key value RP (ȳ), i.e.,
ȳ[EK] = x̄[EF]:

In case that I puts a new plate, II can again attack its founding and
admissibility.

Example 14 Update Game: Referencing (Cont’d). In the above situation, I
takes the open end, puts an unchanged plate on R ′P (b, y) and connects the open
end to its result:

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

12 • W. May and B. Ludäscher

Key Condition. If I answers by placing an update or insert plate whose key
value does already exist, II can ask him how to retain the uniqueness of the
key. I can answer by deleting or modifying the other tuple.

Key Attack. Player II can put an empty plate R(x̄)|?|? on a database tuple

R(x̄) s.t. EK is a key of R and there exists an insertion or modification plate with
a result tuple R(ȳ) such that x̄[EK] = ȳ[EK] asking “what will happen to this
tuple?”.

Key Answer. Player I has to replace/fill the empty plate R(x̄)|?|? by a delete
or update plate (which then has to change the key value).

Maximality. Player II has another way to refute I’s claim that his pro-
posed set is maximal admissible: with the above attacks, only admissibility
was checked. In her first move, II can also claim, that U is not maximal by
choosing a subset U ′ such that U (U ′ ⊂ UB. Then, the roles are changed:
I now asks questions in order to prove that U ′ is not admissible (or still not
maximal).

B.1.3 Winning Conditions and Termination. Some winning conditions
have already been mentioned above, for example, when II traps I by show-
ing a restricting reference, or when I cheats by putting inconsistent plates, or
when he has no defending answer. The more intricate situations have to do with
the number of steps to justify an update. Since the game uses a “history”, there
are no infinite cycles (that lead to drawn positions in the delete-game).
For IN0 ∪ {•} let <• be the complete ordering <IN ∪{(•, n) | n ∈ IN0}.
For every deletion plate PC = RC(x̄)|del RC(x̄) 〈k〉|ε , let

kC := 1+min•{kP | there is a plate PP = RP (ȳ)|del RP (ȳ) 〈kP 〉|ε and an action

wire labeled with a ric RC. EF→RP . EK ON DELETE CASCADE from
PP to C}.

For every modification plate C = RC(x̄)|mod RC([c1, ..., cn], x̄) 〈k1, ..., kn〉| . . . ,
let kCi := 1+min•{l j | there is a PP=

RP (ȳ)|mod RP ([p1, . . . , pm], ȳ) 〈l1, . . . , lm〉| . . . and an action
wire labeled with a ric RC. EF→ ON UPDATE OF PARENT CASCADE
from P to C, ci ∈ EF and pj ∈ EK }.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 13

A situation is won for Player II if one of the following conditions holds:

— Player I cannot answer.
— Player II shows a restriction (cf. Restrict Attack).
— There are two plates with the same key value.
— Player I “lies”:

— either, when an action wire connects two plates of different types, or when
the numbers of founding steps are inconsistent:

— There is an action wire connecting two deletion plates
RP (x̄)|del RP (x̄) 〈kP 〉|ε and RC(ȳ)|del RC(ȳ) 〈kC〉|ε such that kC ≤ kP .

— An action wire labeled with a ric RC. EF→ RP . EK connects
two modification plates RP (x̄)|mod RP (MP , x̄) 〈k̄P 〉| . . . and

RC(ȳ)|mod RC(MC, ȳ) 〈k̄C〉| . . . such that MC ⊇ EF/MP (x̄)[EK] and

kC(EF (i)) ≤ kP (EK (i)) (i ∈ {1, . . . , | EF |}).
— An action wire labeled with a ric RC. EF→ RP . EK connects two modification

plates RP (x̄)|mod RP (MP , x̄) 〈 〉| . . . and RC(ȳ)|mod RC(MC, ȳ) 〈 〉| . . .
such that MC 6⊇ EF/MP (x̄)[EK].
(Note that this is enforced in a regular game by the rules Cascade Answer
and Referencing Answer).

— A no-action wire labeled with a ric RC. EF→ RP . EK goes from a parent plate
RP (ȳ)| | to a child plate RC(x̄)| |RC(x̄ ′) and x̄ ′[EF] = ȳ[EK].

A situation is won for Player I if Player II has no more questions. Obviously,
the game is finite since there are only finitely many positions, where a plate
can be placed and every plate has only finitely many positions.

Definition B.1. A starting set U is won for Player I iff he has a winning
strategy: no matter how Player II moves, Player I can win the game.

B.2 Example

The following example illustrates the game-theoretic characterization by play-
ing a complete game for a given situation.

Example 15 Update Game. Consider again Example 7 with the database
with racs as given in Figure 2 (using only R1, . . . R5), where the ON UPDATE rac
is the same as the rac given for ON DELETE. Consider the user request UB =
{Bdel R1(a), Bmod R1(1/c, b)}.

The first moves are described in Figure 6: I claims that UB is admis-
sible. Thus, the initialization consists of placing the corresponding plates
R1(a)|del R1(a) 〈0〉|ε and R1(b)|mod R1(1/c, b) 〈0〉|R1(c) at R1(a) and R1(b),
respectively.

Player II first challenges the deletion (targeting to the NO ACTION ref-
erence from R4 to R3) by Cascade Attack and puts an action wire from
R1(a)|del R1(a) 〈 〉|ε to R3(a, y). I answers by Cascade Answer, putting

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

14 • W. May and B. Ludäscher

Fig. 6. Update Game: intermediate situation, fighting the “a”-deletion

R3(a, y)|del R3(a, y) 〈 〉|ε on R3(a, y) and adding the action wire from the first
plate to the second one.

Now, Player II uses the NO ACTION child R4(a, x, y) for a No Action Attack and
puts a wire from R3(a, y)|del R3(a, y) 〈 〉|ε to R4(a, x, y). Player I answers

by putting a deletion plate R4(a, x, y)|del R4(a, x, y) 〈 〉|ε on R4(a, x, y) (cf.
Figure 6). Continue with Figure 7 with the next moves.

Player II now asks “why can you do this” by Founding Attack, placing a pebble
on the position of the plate that now looks like R4(a, x, y)|del R4(a, x, y) 〈•〉|ε .

I replaces the pebble by a “2” and puts a R2(a, x)|del R2(a, x) 〈 〉|ε plate on
R2(a, x) and connects them by a CASCADE wire (action from R2 to R4).

Again, Player II applies Founding Attack, placing a pebble on the position
of that plate, yielding R2(a, x)|del R2(a, x) 〈•〉|ε . Now, I replaces the pebble by

a “1” and connects the plate by another action wire from R1(a)|del R1(a) 〈0〉|ε
(that has been placed in the initialization).

As an intermediate result, I has now won the deletion of R1(a) since II has no
more questions. Player I has generated all internal updates that are necessary
to execute Bdel R1(a) (cf. Figure 7).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 15

Fig. 7. Update Game: Situation after I won the “a”-deletion.

An analogous sequence of moves can for example be played for showing that
I wins the modification of R1(b) for R2, R3, and R4—but II already knows this
so she doesn’t play it.

Instead, Player II challenges then the modification of R1(b) with a
No Action Attack by putting a wire from R1(b)|mod R1(1/c, b) 〈0〉|R1(c) to
R5(b). She has not yet won! Player I can still answer by putting a
R5(b)|mod R5(1/c, b) 〈 〉|R5(c) on R5(b). This move is completely legal. But
now, Player II applies Founding Attack, placing a pebble on the position of
that plate. Then, Player I has no answer (since this update is unfounded) and
loses (see Figure 8).

B.3 Equivalence

For a game on given D, UB, and R A with a starting set U which is played until
Player I wins, let

3 := {upd | ∃R(x̄) : R(x̄)|upd | . . . is played} and

D′ := {R ′(x̄ ′) | ∃R(x̄) : R(x̄)| . . . |R ′(x̄ ′) is played} ∪
∪ {R(x̄) | R(x̄) ∈ D and there is no plate on position R(x̄) } .

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

16 • W. May and B. Ludäscher

Fig. 8. Update Game: Excerpt of the situation after I lost the “b”-modification in R5.

As mentioned above, the main difference between the game and the logic
programming characterization is that only non-subsumed updates are “played”,
corresponding to already guessing a (<a-maximal) stable model and showing
its admissibility.

THEOREM B.2. If a game is won for Player I, 3 = 1(U).

PROOF. The starting situation guarantees that U ⊂ 3. Completeness is
guaranteed by the “cascade” question, and minimality of 3 with respect to U
is guaranteed by the “founding” question.

COROLLARY B.3. D′ = D ±3 is the database obtained by executing U on D.

The final theorem states that the game characterizes exactly the <a-maximal,
that is, maximal admissible subsets:

THEOREM B.4. A starting set U ⊂ UB is won for Player I, if and only if U is
maximal with respect to UB and admissible.

PROOF. For every property, Player II can ask questions:
Maximality: If U is not maximal, Player II choses a maximal admissible super-
set and wins his game.
The above lemma proved that 3 = 1(U).
3 satisfies conditions (1) and (2) of feasibility because otherwise Player IIwould
have won by Restrict Attack (if she finds a restriction, Player II shows it and
wins) or No Action Attack (Player I has to show what to do with the child tuple
such that it no longer references the parent key value).
3 satisfies conditions (3) and (4) of feasibility because otherwise Player IIwould
have won by “referencing” (Player I has to show which tuple is referenced).
3 is coherent since Player I can only place one plate on each tuple. 3 is key-
preserving since otherwise Player II would have won by “key condition”.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

