Towards Automatic Generation of Semantic Types
in Scientific Workflows*

Shawn Bowers Bertram Ludischet*

TUC Davis Genome Center
‘Department of Computer Science
University of California, Davis
{sbowers, ludaesch}@ucdavis.edu

Abstract. Scientific workflow systems are problem-solving environments that
allow scientists to automate and reproduce data management and analysis tasks.
Workflow components includactors (e.g, queries, transformations, analyses,
simulations, visualizations), arghtasetsvhich are produced and consumed by
actors. The increasing number of such components creates the problem of discov-
ering suitable components and of composing them to form the desired scientific
workflow. In previous work we proposed the usesefmantic typeg&nnotations
relative to an ontology) to solve these problems. Since creating semantic types
can be complex and time-consuming, scalability of the approach becomes an is-
sue. In this paper we propose a framework to automatically derive semantic types
from a (possibly small) number of initial types. Our approach propagates the
given semantic types through workflow steps whose input and output data struc-
tures are related via query expressions. By propagating semantic types, we can
significantly reduce thefort required to annotate datasets and components and
even derive new “candidate axioms” for inclusion in annotation ontologies.

1 Introduction

Scientific analyses are often performed as a series of computation steps, grouped to-
gether to form the logical stages of an analysis. For example, pre-processing input data,
applying one or more statistical or data-mining techniques, and post-processing and vi-
sualizing analysis results or discovered patterns may each be constructed from a num-
ber of smaller computation steps. Scientific-workflow systesng, (TAVvERNA, TRIANA,

and KepLer [13]) have emerged as more versatile, extensible environments, compared
with shell scripts and spreadsheets, to model and execute such analytical processes.
Scientific workflows are useful to desigf][and execute end-to-end processes, and to
enable the composition and sharing of computation steps, allowing scientists to more
quickly experiment with and run complex analyses. Scientific workflows systems also
provide scientists with a single point of access to heterogeneous data and computation
services from multiple scientific disciplines and research groups. Providing such access

* This work supported in part by NAFR SEEK (DBI-0533368), NSFTR GEON (EAR-
0225673), and DOE SDM (DE-FC02-01ER25486)
! Seetaverna.sourceforge.net andwww.trianacode.org, respectively.

taverna.sourceforge.net
www.trianacode.org

enables “cross-cutting” scienaeg, allowing ecological and genomic data to be mixed

or complex statistical models to be combined across disciplines. A major challenge in
providing this capability are semantic and terminologicdliedlences across scientific
domains. Even within a discipline such as ecology, these problems exist, making data
integration and service compositiorfitiult both automatically and for a scientist. Our
work focuses on providing rich metadata and ontologies to help bridge this gap and to
enable wide-scale data and workflow interoperability. We have developed a framework
for registering the semantics of data and services basegmantic typeswhich are
mappings from datasets or services to concept expressions of an ontology. Our frame-
work has been used to (semi-)automate data integratior][and service composition

[5], and is currently being developed and used within tkeLkr scientific workflow
system P]. Providing semantic types, however, can be time-consuming for data and
service providers, thereby limiting the applicability of metadata-intensive approaches
to scientific data management.

In this paper, we describe an approach to make the management of semantic types
more scalable by automating the generation of intermediate types within workflows.
Our approach propagates the given semantic types through actors whose input and out-
put data structures are related by a query expression, possibly approximating an actor’s
function. In Sectior? we introduce the propagation problem and describe the benefits
of our approach. In Sectiod we present our semantic-type framework. In Sectlon
we develop our approach for propagating semantic types; related and future work is
discussed in Sectioh

2 The Propagation Problem

For our purposes, scientific workflowconsists of a number @fctors which are con-
nected via directed edges calleldannelg(Figure1). An actor is a componeng(g, a

web service, shell command, local function, remote job) that can consume and produce
data tokens. An actor has zero or more uniquely napwets designated as either input

or output. With each port we can associatstraictural type(or schem S describing

the structure of data (tokens) flowing through that ponteilr’s structural type sys-

tem, inherited from Ptolemy I17], includes atomic types.g, string anddouble,

and complex types such dist andrecord. In a workflow, actors exchange infor-
mation using channels that link an output port (token producer) to one or more input
ports (token consumers). Workflows are executed accordingrtodel of computation
(implemented by a so-calledirector [7]), which specifies the overall workflow orches-
tration and scheduling. Here we assume a model of computation that corresponds to a
dataflow process network []. Figure 1 shows a simple workflow in keLer for com-

puting species richness and productivity. The workflow performs a number of distinct
computations over two input datasets shown on the left of the workflow, which results
in the richness and productivity derived data products shown on the right.

Semantic Type Propagation. Figure 2 depicts the problem of propagating an input
semantic typer through an actor, yielding the output semantic typeA semantic type
a associates elements of a schesmaith concepts from an ontolog®. The goal of

¥ file:/C: iworkflows/biodiv.xml
File View Edit Graph Debug Help

@a@a D P HOPR RO e

biom dataset Create Seasonal Community ~ Compute Annual Biomass Compute Occurrence Compute Richness
Faip

See e
sscd dataset biom1 | biom2 | biom3 | biumd
B

o7,

SDF Director

result! daiaset

Compute Annual Productivity Sum Productivity

biom1 | bioms | KA

< k3

|

result2 dataset
1

Fig. 1. Simple scientific workflow for computing species richness and productivjty [

propagation is to automatically generate givena. This is only possible if something

is known about the relation between elements ahd those irs’. A query expression

q provides this relation. The querycan approximatethe actual functiorf : S — S’
computed by the actoe.g, g might “overestimate™ such thag(D) 2 f(D) for any

input dataD. The propagation problem is to determiae: S’ — O, the semantic

type of the output, given the input typeand the query. We denote this problem as
computinge’ = a o gt in Figure 2, i.e.,, the composition ofr and (the inverse of)

g. Based on our semantic-type framework (Secfipnwe describe an initial approach
towards solving this problem (Sectidh Our approach places few restrictions on where
initial semantic types are given. Semantic types may be provided for input data or for
inputs of some actor(s) only, significantly reducing the amount of semantic description
required to reuse workflows and actors. A user may also provide additional semantic
types at specific points within a workfloa,g, when the result of a computation creates
new data values or adds semantic information. These semantic types are also propagated
through actors. The advantages of our approach directly benefit scientific workflow
engineers at various stages of workflow construction, including:

e Semantic types can be derivedvadrkflow design-time (even before all actors or data are
available), and thus can be used as a tool to help workflow engineers build new analyses. For
example, propagated types can be presented to the user after two actors are connected, showing
the resulting semantic types of combining the steps and the impact on the rest of the workflow.

¢ Scientific workflows can often be executed ovefeatient input datasets. The workflow’s global

inputs are typically quite generic, while a given dataset may have very specific semantic types.
Our approach can propagate these specific semantic types of datasets, resulting in more accurate
(specialized) semantic typesdta binding-time.

e When a workflow is executed, derived data products are automatically given the propagated
semantic type, minimizing thefert required to semantically type datasetaatkflow runtime .

2 Consider a filter functiorf that removes outliers and returns only “good” tokens. This function
can be modeled as a selectiopwhered is the filter condition. Obvioushg = S’ in this case,
which means that can be propagated as is (in faet,= @ A 6 can be derived).

(0] (e} (e}
A
aT aT L ac=a(q?)
S S¢ S S¢
workflow st workflow st
> (“actor”) P P —> 4 (“actor”))
3 A input-to-output) A

semantic type propagation

Fig. 2. Actor with semantic type, propagated via queny, yielding semantic type’.

Another advantage of propagationastology augmentatiorConsider an actak,
having as input species richness data. The developermiy provide a semantic type
a for Ay's input, stating that it was designed to “consumatiRess data® Assume a
workflow designer has connected the output of another agtto the input ofa,, and
for the output ofA; a semantic typer; has been derived via propagation, indicating
thatA7s output is of typesum(Occurrence), i.e., the arithmetic sum (resulting from an
aggregation) of @currence data. For the link:

(e a2
K 1Y

to be semantically type correct, we must have thais “compatible” with ay, i.e,,
sum(Occurrence) C Richness. If we choose to run our propagation system in “auto-
matic mode”, it will augment the given ontology with this additional axiom. Con-
versely, the system can be run in “interactive mode”, asking the user to determine
whether the inferred axiom is correct and can be include@,ior whether there is
something wrong with the connection. This example also illustrates that semantic type
constraints between connected actors are “soft” in the sense that one can still execute
the corresponding workflow steps, even though doing so may not be semantically mean-
ingful. In contrast, the structural type constraint when connedingndaA, is “hard”,

i.e, the schema typeS; and S, must satisfy a subtyping constraigf < S, for the
connection to be executable.

3 The Semantic-Type Framework

Query Expressions. Actors may have an associatgqdery expression,qvhich may

be derived from the component implementatierg(from a script or generated data
transformation) or explicitly given by a service providetd, for “black-box” actors
whose inner workings are unknown). The most general form of a query expression is
a logic constrainips,s- associating schema elements of the input po&(sl) an actor

with those of its output port(’. In analogy to data integration terminology, we can
call ganOutput-as-VieWOAV) mapping if it has the forng = Ps: : - ¢s, and arinput-
as-View(IAV) mapping if it has the forng = Ps : - ¢s-. Here,gis a logic atom defining

data elements of the output schefva(or the input schema&) in terms of the query

s (or ¢s+) overS (or S’, respectively). In this paper we focus on query expressions

3 We use SiaLLCaps to denote concepts from an ontolo@y

givenin the OAV form. Query expresssions can contain the standard relational operators
select, project, join, union, and group-by with aggregatian, (Sum, count, avg, min,

and max). Note that a query expressgpdoes not need to exactly capture the function

f being computed by an actor. It isfgient if g approximated such that all structural
associations betweenandS’ are preserved. These structural associations will then be
used to propagate the semantic types fotm S’.

We use Datalog notation], extended with aggregrate functions and grouping, to
denote query expressions. Relations are denoted using capitaig §scd, etc.) and
variables are in lower-case,(y, ...). For example, queryg; approximates th€reate
Seasonal Communigomponent of Figuré:

Bioml(o,y, s t,p,b) :- Biom(o,y, s t, p,b), Sscd(p) (q1)

This query selectBiom tuples (returned a&iom1 tuples) whose-values are presentin
the Sscd data setBiom represents a relational table consisting of measurements (with
measurment-i@) of biomassb for a particular speciep, yeary, seasors, and plott.
TheSscd relation contains species found within a particular community.

Query expressions can contain group-by with aggregate operators syntactically writ-
ten agg(x|y), whereaggis the name of the aggregate operatirrs the aggregation
variable, andy’is a comma-separated list of grouping variables. We introduce a new
variable in the head of an aggregate query and assign it (using-theymbol) to the
aggregate expression. For example, quprgives the annual biomass for each plot and
species (th€ompute Annual Biomasgtor):

Biom2(y,t, p,z <+ sum(b|y,t, p)) : - Bioml(0,y, S, t, p,b) (%)

Union operations are expressed in the normal way using multiple rules. For example,
queryqgs returns annual occurrence measurements@thapute Occurrencactor):

Biom3(y,t, p, 1) : - Biom2(y,t, p,b), b>0 (@3)
Biom3(y,t, p,0) : - Biom2(y,t, p,b), b< 0

Ontologies. We use description logic to express ontologies, which are used to for-
mally define the termscpnceptyin a given domain and their relationshipselés). The
OWL-DL standard is also used ineiier for storing and exchanging ontologies. A
simple ontology is shown in Figur& representing definitions for ecological measure-
ments (concept f3ervarion) and ecological concepts such asuApance, RICHNESS,

etc. According to the underlying description-logic definitions (not shown in the figure),
every observation has exactly one observed propetty, @bundance) and itene.Q,
species), and one or more spatial and temporal contexts. We assume a reasoning system
is available to compute subsumption hierarchies from concept and role definitions. We
use subsumption in particular to determine whether channels defined between actors
are semantically compatible.

Semantic Types. Each structural type of a dataset, input, or output port, may be given
a semantic type, which in its most general form is a logic constrairyp associating

Observation

\?patiaICtJntext

observedProperty

observeditem temporalContext

Biomass

Fig. 3. Simplified ecological measurement ontology shown graphically

Biom(o,Y, S, t, p, b) — OBSERVATION(O) ()
Biom(0,Y, S t, p,b) — TEMPORALCONTEXT(O, Y) A YEAR(Y))]
Biom(0,Y,S,t,q,b) A s= ‘W’ — TEMPORALCONTEXT(O, S) A WINTER(S) (3)
Biom(0,Y,St,0,0) A s= ‘S’ — TEMPORALCONTEXT(O, S) A SPRING(S) 4)

Biom(0,Y,St,0,b) A s= ‘F’ — TEMPORALCONTEXT(O, S) A FALL(S) (5)
Biom(0,Y, S t, p,b) — sPATIALCONTEXT(O, t) A Pror(t) (6)
Biom(0,Y, S, t, p, b) — 0BSERVEDITEM(O, p) A SpECIES(P) (7
Biom(0,Y, S t, p,b) — 0BSERVEDPROPERTY(O, b) A Biomass(b) (8)

Fig. 4. An example semantic type linkirigi om elements t@ntoLocy elements

schema elemen&swith concept expressions from an ontolo@yWe consider a syn-
tactic form that we callferminology-as-ViewTAV) in which the ontology structure
O is “virtually populated” with elements from the data schesnghereby establishing
the desired semantic type= as — ap. More precisely, we consider semantic types
having the formy = Vx3y as(X) — ao(X,Y), whereas(X) is a query over a data struc-
tures, linking selected elements (captured via bindings of the variab)lés concept
expressiong(X, y) over the ontology.

Figure4 gives example semantic-type constraints linking schema elements of the
Biom data structures used above to concepts and roles from the ontot@given in
Figure 3. Line (1) states that every measuremenBim represents an €9ERVATION.
Line (2) states (i) that all year valueshtiom are instances of theeXr concept, and (ii)
that the year instance is a temporal context of the corresponding observation instance.
Lines (3-5) are similar, but contain an additional condition on the value of the season,
and lines (7-8) annotate species and biomass values.

4 Propagating Semantic Types

We divide our approach for propagating semantic types through actors into three classes
of increasing expressibility for query expressions: conjunctive qudresdontaining

only select, project, and join operations); conjunctive queries with aggregation; and
conjunctive queries with aggregation and union.

The Conjunctive Case. Let queryg and semantic type be of the form:

— Q= YuavPs (U) : - ¢s(u,V)
— a= Vxdyas(X) = ao(X.Yy)

Here,Ps: is a logic atom over the output scher®iaandys is a query over the input
schema(sg. Similarly, for semantic typea, we relate instances of a scheSavith
those of an ontology via subformulasrs andayg, respectively.

The basic idea of computing = o o g is as follows. We would like to relate
instances of the output scheawith instances o). Assume a substitution that satis-
fieseps (in q) impliesas (in @). For this substitution we can establish the desired relation

-t a . .
betweers’ andO, denoted abstractly & L s S 0. More precisely, we considey
as a logical constraint of the form:

qu) = Pss > Qi A---AQuAY

Ps

anda of the form
a(X)= AdA---ANAC—o ap
N —’

as

wherePs: is a logic atom over the output scher®ig, Q; andA; are logic atoms over
the input schema(sy, andy andap are quantifier-free formulas. We assume that all
3-quantified variablesv(andy above) have been eliminated through Skolemization so
thatg anda can be seen as (implicitlyj-quantified formulas with variablasandx.*

For propagating “through” g we use the inverse of i.e,, the left-to-right (head —
body’) direction of the query fiead : - body’). This direction is the one used in LAV-
style query rewritingsd.g, for sound views) and also corresponds to the usually im-
plicit direction in Datalog-style rules (aka Clark’s completidri]). More preciselyq
is defined by the equivalenstiadv Ps: (U) < ¢s(U, V) where intuitively, ifps(U, V) is a
result of the query (in a modelM), thenPs: (U) must also be true (iM) [10,17].

Observe that) can be written as a conjunctionA - - - Agn AQy With g = Ps: — Q;,
andg, = Ps: — . If we assume there is a substitutiorthat unifies some ator@;,
and some&\;;, i.e,, Q;; = A(J.’O5, we can infer frong;, = Ps: — Qj;, anda a new semantic
typeq; of the form:

ai'o = PJ A(as \ Ajp) — ap

4 We assume that the variables g(U) are disjoint from the variablesin a/(X).
5 T denotes the result of applyirgto a termT.

where @s \ Aj,) is the conjunctiom; A --- A A with Aj; removed. It is easy to show
that the semantic type is implied byq; ande. In this way, by successively “resolving
away” atomsA; from as with matching atom); from ¢s, we can obtain new semantic
typesa’ that relate elements of the output scheSndo those in the ontologg.

Example 1(Propagation for Conjunctive Queriesktonsider queryy; expressed as a
first-order formula:

Bioml(0,y, s t,q, p,b) — Biom(0,y, S t,q, p,b) A Sscd(p) 1)

This formula can be resolved with semantic-type expression (8) in Figuesulting
in the new formula:

Bioml1(0,Y, S, t,q, p,b) — oBservEDPrOPERTY(O, b) A Bromass(b) (2)

Observe that we now have biomass valbésr the output schemgioml semantically
typed as Bomass instances, linked through theservebPropErTY role.

Handling Aggregation. The approach for propagating conjunctive queries can also

be used for aggregation, due to the particular syntactic representation used to express
aggregate operators. As mentioned in Secfipwe perform an additional step for ag-
gregate queries that connects aggregate operators to certain ontology concept defintions,
which can be further used to infer new connections between components. The following
simple example demonstrates how propagation is used with aggregation.

Example 2(Propagation for Aggregate Operatorsfonsider the following Skolem-
ized queryg for the Compute Richnesxctor of Figurel:

Biom4(y,t,r < sum(c|y,t)) — Biom3(y,t, f,(y,t,cC),C) (1)
and the following (additional) output semantic type of @@mpute Occurrencactor:

Biom3(y,t, p,c) — OcCURRENCE(C) (2)
We can resolve (1) and (2) above, resulting in the new formula:

Biom4(y,t,r < sum(C|Y,t)) — OccurrENCE(C) 3)

Observe that in this example we have “preserved” the factrtlimthe sum of a
variablec, and that values fot are Q:currence instances. Thus, we can see thas
exactly thesum of Occurrence. For propagated semantic types of this form, we also
propagate a semantic-type expression whasean instance of a new concept formed
from the aggregate name and assigned concept. Thus, for the previous propagated
semantic type we also propagate:

Biom4(y,t,r < sum(C|Y,t)) — sum(Occurrencg)(r) (4)

With this additional step it becomes possibéeg, to determine that th€om-
pute Richnesactor can safely be connected to other actors that inpuinBs data,
leveraging definitions in the ontology such suan(Occurrence) T Ricuness. Here,
sum(OccURRENCE) represents an ontology concept that is “linked” with a certain func-
tionality in the query expression language.

5 e.g, given by the actor developer to account for the new data produc€dimpute Occurrence

Handling Union. Let the union query be of the form:

g =Yuav Ps:(U) : - ¢g(U,V)
YUV Ps: (U) < - ¢5(0,V)

which can also be written as the constraj@i) = Ps: — ¢z v ¢2 for 3 = QI A -+ A
Qi Ayt andp? = QZA--- A Q2 A2 To resolver ande, we rewriteq into clausal form,
generating the two formulag(U) = Ps: A =93 — ¢t andq”(U) = Ps: A ¢t — ¢2.

Observe thaty’ (and similarlyq”) can be rewritten as a conjunctighA - - - A g, A Q)
with of = Ps: A =% —> Q andq, = Ps: A -p2 — Y. Assume there is a substitution
that unifies some atoi®;, and some?;, for a semantic type(X) = A1 A--- A A — ao.
Fromg anda we can infere’ of the form:

2
@ = PLA-@g” Aas \ Aj)” — ap

where (s \ Aj,) is the conjunctiory A - - - A Ay with Aj; removed, similar to the regular
conjunctive case. As before, we successively “resolve away” agniom as with
matching atom! from ?.

We note that’ may not be in the desired form for semantic types (it may not be
in clausal form) because,g, wg may result in a disjunctive formula. For such cases,
we can apply the following simple conversion. Assuming query expresgien® —
(QAR) VvV (Q AR) and semantic types = Q — ayp, using resolution we infee.g,

' = PA-(Q' AR) — ap, which becomes’ = PA-Q" — ap anda’, = PA-R — ap.

Example 3(Propagation for Union)Consider querys as the first-order formula:

Biom3(y,t, p,c) — (Biom2(y,t, p, fu(y,t,p) A fo(y,t,p) >0 A c=0) v Q)
(Biom2(y,t. p, fo(y:t. P)) A fuo(y,t,p) <0 A €=1)

and the Skolemized semantic-type propagated fronCtrapute Annual Biomasstor
(note that we only include the resulbf the original aggregrate operator):

Biom2(y,t, p,Z2) — osserveplTeEM(fo(Y,t, p), P) A SpeciEs(p) (2
Rewriting (1) into clausal form gives:

Biom3(y,t, p,c) A =(Biom2(y,t, p, fo(y,t, P)) A fo(y,t, P) >0 A Cc=0)— (3)
Biom2(y,t, p, fo(y,t, P) A fo(y,t,p) <0 A Cc=1

Biom3(y,t, p,C) A ~(Biom2(y,t, p, fo(Y;t, P) A fo(y,t.P) <O A C=1)— (4)
Biom2(y,t, p, fo(y.t. P)) A fo(y,t,p) >0 A c=0

Resolving (2) and (3).g, results in the new annotation:

Biom3(y,t, p,c) A ~(Biom2(y,t, p, fo(y.t. P) A fo(y. . p) <O A C=1)—> (4)
oBserVEDITEM(To (Y, t, P), P) A SpPECIES(P)

We can now rewrite (5) into our desired form for semantic types.

5 Concluding Remarks

The creation of rich semantic-type annotations can be a complex task, making the prob-
lem of automatic generation of such types important for scalable “metadata-intensive”
and “semantics-intensive” scientific applications. To this end, we have developed and
presented a semantic-type propagation approach and sketched how queries involving
selection, projection, join, aggregation, and union could be handled. Our approach is
based on an inference procedure similar to the chdsevhich itself can be seen as

a form of resolution 4]. Propagating semantic types is also related to work on data
provenanced,8] where the focus (in terms of propagation) is on supporting simple text-
based annotations of relational table cells (instead of formulas over schemas), and on
augmenting SQL to allow users to state specific schemes for propagating these value-
based annotations to query results. In contrast, our semantic types are formal logic-
based descriptions linking structural types to ontologies. These semantic types can be
propagated within the framework of scientific workflows. We are currently investigat-
ing the properties of a specialized inference procedure, based on algorithnifior |
composing mappings given by logic constraints. We plan to implement semantic type
propagation within KpLer as part of future work.

References
1. S. Abiteboul, R. Hull, and V. VianuFoundations of Database#&ddison Wesley, 1995.
2. C. Berkley, S. Bowers, M. Jones, B. Ludaescher, M. Schildhauer, and J. Tao. Incorporating

semantics in scientific workflow authoring. Rroc. of SSDBNM2005.

3. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation management
system for relational databases.Rroc. of VLDB 2004.

4. J. Biskup and A. Kluck. A new approach to inferences of semantic constrainks.Piroc.
of Advances in Databases and Information Syst€ra87.

5. S. Bowers and B. Luischer. An ontology-driven framework for data transformation in
scientific workflows. InProc. of DILS volume 2994 of NCS 2004.

6. S. Bowers and B. Luascher. Actor-oriented design of scientific workflows. 24" Intl.
Conf. on Conceptual Modeling (ER)005.

7. C. Brooks, E. A. Lee, X. Liu, S. Neuendter, Y. Zhao, and H. Zheng. The Ptolemy II
Manual (vol. 1-3). Technical report, UC Berkeley, 2004.

8. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data prove-
nance. InProc. of ICDT, volume 1973 of.NCS 2001.

9. D. Chalcraft, J. Williams, M. Smith, and M. Willig. Scale dependence in the species-
richness-productivity relationship: The role of species turndenlogy 85(10), 2004.

10. K. L. Clark. Negation as failure. lhogic and Database$?lemum Press, 1977.

11. E. A. Lee and T. M. Parks. Dataflow process netwofkc. of the IEEE83(5), 1995.

12. M. Lenzerini. Data integration: A theoretical perspectivePioc. of POD$2002.

13. B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao. Scientific workflow management and the kepler syst€oncurrency and
Computation: Practice& Experience2005. to appear.

14. B. Ludascher, A. Gupta, and M. E. Martone. Model-based mediation with domain maps. In
Proc. of ICDE 2001.

15. A. Nash, P. A. Bernstein, and S. Melnik. Composition of mappings given by embedded
dependencies. IRroc. of POD$2005.

