
Towards Automatic Generation of Semantic Types
in Scientific Workflows?

Shawn Bowers† Bertram Lud̈ascher† ‡

†UC Davis Genome Center
‡Department of Computer Science

University of California, Davis
{sbowers,ludaesch}@ucdavis.edu

Abstract. Scientific workflow systems are problem-solving environments that
allow scientists to automate and reproduce data management and analysis tasks.
Workflow components includeactors (e.g., queries, transformations, analyses,
simulations, visualizations), anddatasetswhich are produced and consumed by
actors. The increasing number of such components creates the problem of discov-
ering suitable components and of composing them to form the desired scientific
workflow. In previous work we proposed the use ofsemantic types(annotations
relative to an ontology) to solve these problems. Since creating semantic types
can be complex and time-consuming, scalability of the approach becomes an is-
sue. In this paper we propose a framework to automatically derive semantic types
from a (possibly small) number of initial types. Our approach propagates the
given semantic types through workflow steps whose input and output data struc-
tures are related via query expressions. By propagating semantic types, we can
significantly reduce the effort required to annotate datasets and components and
even derive new “candidate axioms” for inclusion in annotation ontologies.

1 Introduction

Scientific analyses are often performed as a series of computation steps, grouped to-
gether to form the logical stages of an analysis. For example, pre-processing input data,
applying one or more statistical or data-mining techniques, and post-processing and vi-
sualizing analysis results or discovered patterns may each be constructed from a num-
ber of smaller computation steps. Scientific-workflow systems (e.g., T, T,1

and K [13]) have emerged as more versatile, extensible environments, compared
with shell scripts and spreadsheets, to model and execute such analytical processes.
Scientific workflows are useful to design [6] and execute end-to-end processes, and to
enable the composition and sharing of computation steps, allowing scientists to more
quickly experiment with and run complex analyses. Scientific workflows systems also
provide scientists with a single point of access to heterogeneous data and computation
services from multiple scientific disciplines and research groups. Providing such access

? This work supported in part by NSF/ITR SEEK (DBI-0533368), NSF/ITR GEON (EAR-
0225673), and DOE SDM (DE-FC02-01ER25486)

1 Seetaverna.sourceforge.net andwww.trianacode.org, respectively.

taverna.sourceforge.net
www.trianacode.org

enables “cross-cutting” science,e.g., allowing ecological and genomic data to be mixed
or complex statistical models to be combined across disciplines. A major challenge in
providing this capability are semantic and terminological differences across scientific
domains. Even within a discipline such as ecology, these problems exist, making data
integration and service composition difficult both automatically and for a scientist. Our
work focuses on providing rich metadata and ontologies to help bridge this gap and to
enable wide-scale data and workflow interoperability. We have developed a framework
for registering the semantics of data and services based onsemantic types, which are
mappings from datasets or services to concept expressions of an ontology. Our frame-
work has been used to (semi-)automate data integration [2,14] and service composition
[5], and is currently being developed and used within the K scientific workflow
system [2]. Providing semantic types, however, can be time-consuming for data and
service providers, thereby limiting the applicability of metadata-intensive approaches
to scientific data management.

In this paper, we describe an approach to make the management of semantic types
more scalable by automating the generation of intermediate types within workflows.
Our approach propagates the given semantic types through actors whose input and out-
put data structures are related by a query expression, possibly approximating an actor’s
function. In Section2 we introduce the propagation problem and describe the benefits
of our approach. In Section3 we present our semantic-type framework. In Section4
we develop our approach for propagating semantic types; related and future work is
discussed in Section5.

2 The Propagation Problem

For our purposes, ascientific workflowconsists of a number ofactors, which are con-
nected via directed edges calledchannels(Figure1). An actor is a component (e.g., a
web service, shell command, local function, remote job) that can consume and produce
data tokens. An actor has zero or more uniquely namedportsdesignated as either input
or output. With each port we can associate astructural type(or schema) S describing
the structure of data (tokens) flowing through that port. K’s structural type sys-
tem, inherited from Ptolemy II [7], includes atomic types,e.g., string anddouble,
and complex types such aslist andrecord. In a workflow, actors exchange infor-
mation using channels that link an output port (token producer) to one or more input
ports (token consumers). Workflows are executed according to amodel of computation
(implemented by a so-calleddirector [7]), which specifies the overall workflow orches-
tration and scheduling. Here we assume a model of computation that corresponds to a
dataflow process network [11]. Figure1 shows a simple workflow in K for com-
puting species richness and productivity. The workflow performs a number of distinct
computations over two input datasets shown on the left of the workflow, which results
in the richness and productivity derived data products shown on the right.

Semantic Type Propagation. Figure2 depicts the problem of propagating an input
semantic typeα through an actor, yielding the output semantic typeα′. A semantic type
α associates elements of a schemaS with concepts from an ontologyO. The goal of

Fig. 1.Simple scientific workflow for computing species richness and productivity [9]

propagation is to automatically generateα′, givenα. This is only possible if something
is known about the relation between elements ofS and those inS’. A query expression
q provides this relation. The queryq can approximate2 the actual functionf : S → S’
computed by the actor,e.g., q might “overestimate”f such thatq(D) ⊇ f (D) for any
input dataD. The propagation problem is to determineα′ : S’ → O, the semantic
type of the output, given the input typeα and the queryq. We denote this problem as
computingα′ = α ◦ q−1 in Figure2, i.e., the composition ofα and (the inverse of)
q. Based on our semantic-type framework (Section3), we describe an initial approach
towards solving this problem (Section4). Our approach places few restrictions on where
initial semantic types are given. Semantic types may be provided for input data or for
inputs of some actor(s) only, significantly reducing the amount of semantic description
required to reuse workflows and actors. A user may also provide additional semantic
types at specific points within a workflow,e.g., when the result of a computation creates
new data values or adds semantic information. These semantic types are also propagated
through actors. The advantages of our approach directly benefit scientific workflow
engineers at various stages of workflow construction, including:

• Semantic types can be derived atworkflow design-time (even before all actors or data are
available), and thus can be used as a tool to help workflow engineers build new analyses. For
example, propagated types can be presented to the user after two actors are connected, showing
the resulting semantic types of combining the steps and the impact on the rest of the workflow.
• Scientific workflows can often be executed over different input datasets. The workflow’s global
inputs are typically quite generic, while a given dataset may have very specific semantic types.
Our approach can propagate these specific semantic types of datasets, resulting in more accurate
(specialized) semantic types atdata binding-time.

• When a workflow is executed, derived data products are automatically given the propagated
semantic type, minimizing the effort required to semantically type datasets atworkflow runtime .

2 Consider a filter functionf that removes outliers and returns only “good” tokens. This function
can be modeled as a selectionσθ whereθ is the filter condition. Obviously,S = S’ in this case,
which means thatα can be propagated as is (in fact,α′ = α ∧ θ can be derived).

workflow step
(“actor”)

S S′

α

O

workflow step
(“actor”)

S S′

α α′ = α(q-1)

q

O O

q

input-to-output
semantic type propagation

Fig. 2.Actor with semantic typeα, propagated via queryq, yielding semantic typeα′.

Another advantage of propagation isontology augmentation. Consider an actorA2

having as input species richness data. The developer ofA2 may provide a semantic type
α2 for A2’s input, stating that it was designed to “consume” R data.3 Assume a
workflow designer has connected the output of another actorA1 to the input ofA2, and
for the output ofA1 a semantic typeα1 has been derived via propagation, indicating
thatA′1s output is of typesum(O), i.e., the arithmetic sum (resulting from an
aggregation) of O data. For the link:

A1
α1 α2
−−−−−−→ A2

to be semantically type correct, we must have thatα1 is “compatible” withα2, i.e.,
sum(O) v R. If we choose to run our propagation system in “auto-
matic mode”, it will augment the given ontologyO with this additional axiom. Con-
versely, the system can be run in “interactive mode”, asking the user to determine
whether the inferred axiom is correct and can be included inO, or whether there is
something wrong with the connection. This example also illustrates that semantic type
constraints between connected actors are “soft” in the sense that one can still execute
the corresponding workflow steps, even though doing so may not be semantically mean-
ingful. In contrast, the structural type constraint when connectingA1 andA2 is “hard”,
i.e., the schema typesS1 andS2 must satisfy a subtyping constraintS1 � S2 for the
connection to be executable.

3 The Semantic-Type Framework

Query Expressions. Actors may have an associatedquery expression q, which may
be derived from the component implementation (e.g., from a script or generated data
transformation) or explicitly given by a service provider (e.g., for “black-box” actors
whose inner workings are unknown). The most general form of a query expression is
a logic constraintϕS∪S’ associating schema elements of the input port(s)S of an actor
with those of its output port(s)S’. In analogy to data integration terminology, we can
call q anOutput-as-View(OAV) mapping if it has the formq = PS’ :- ϕS, and anInput-
as-View(IAV) mapping if it has the formq = PS :- ϕS’. Here,q is a logic atom defining
data elements of the output schemaS’ (or the input schemaS) in terms of the query
ϕS (or ϕS’) over S (or S’, respectively). In this paper we focus on query expressions

3 We use SC to denote concepts from an ontologyO.

given in the OAV form. Query expresssions can contain the standard relational operators
select, project, join, union, and group-by with aggregation (i.e., sum, count, avg, min,
and max). Note that a query expressionq does not need to exactly capture the function
f being computed by an actor. It is sufficient if q approximatesf such that all structural
associations betweenS andS’ are preserved. These structural associations will then be
used to propagate the semantic types fromS to S’.

We use Datalog notation [1], extended with aggregrate functions and grouping, to
denote query expressions. Relations are denoted using capitals (Biom, Sscd, etc.) and
variables are in lower-case (x, y, . . .). For example, queryq1 approximates theCreate
Seasonal Communitycomponent of Figure1:

Biom1(o, y, s, t, p,b) :- Biom(o, y, s, t, p,b), Sscd(p) (q1)

This query selectsBiom tuples (returned asBiom1 tuples) whosep-values are present in
theSscd data set.Biom represents a relational table consisting of measurements (with
measurment-ido) of biomassb for a particular speciesp, yeary, seasons, and plott.
TheSscd relation contains species found within a particular community.

Query expressions can contain group-by with aggregate operators syntactically writ-
ten agg(x|ȳ), whereagg is the name of the aggregate operation,x is the aggregation
variable, and ¯y is a comma-separated list of grouping variables. We introduce a new
variable in the head of an aggregate query and assign it (using the “^” symbol) to the
aggregate expression. For example, queryq2 gives the annual biomass for each plot and
species (theCompute Annual Biomassactor):

Biom2(y, t, p, z ^ sum(b|y, t, p)) :- Biom1(o, y, s, t, p,b) (q2)

Union operations are expressed in the normal way using multiple rules. For example,
queryq3 returns annual occurrence measurements (theCompute Occurrenceactor):

Biom3(y, t, p,1) :- Biom2(y, t, p,b), b > 0 (q3)
Biom3(y, t, p,0) :- Biom2(y, t, p,b), b ≤ 0

Ontologies. We use description logic to express ontologies, which are used to for-
mally define the terms (concepts) in a given domain and their relationships (roles). The
OWL-DL standard is also used in K for storing and exchanging ontologies. A
simple ontology is shown in Figure3, representing definitions for ecological measure-
ments (concept O) and ecological concepts such as A, R,
etc. According to the underlying description-logic definitions (not shown in the figure),
every observation has exactly one observed property (e.g., abundance) and item (e.g.,
species), and one or more spatial and temporal contexts. We assume a reasoning system
is available to compute subsumption hierarchies from concept and role definitions. We
use subsumption in particular to determine whether channels defined between actors
are semantically compatible.

Semantic Types.Each structural type of a dataset, input, or output port, may be given
a semantic type, which in its most general form is a logic constraintαS∪O associating

Observation

Spatial
Entity

Temporal
Entity

Observable
Item

Observable
Property

Occurrence

Abundance

is-a

Biomass

is-a

Productivity Richness

is-a is-a is-a

observedProperty observedItem

Species

is-a

Plot

is-a

Season Year

Winter Spring Fall

spatialContext temporalContext

is-a is-a

is-ais-ais-a

Fig. 3.Simplified ecological measurement ontology shown graphically

Biom(o, y, s, t, p,b) → O(o) (1)
Biom(o, y, s, t, p,b) → C(o, y) ∧ Y(y) (2)
Biom(o, y, s, t,q,b) ∧ s= ‘W’ → C(o, s) ∧W(s) (3)
Biom(o, y, s, t,q,b) ∧ s= ‘S’ → C(o, s) ∧ S(s) (4)
Biom(o, y, s, t,q,b) ∧ s= ‘F’ → C(o, s) ∧ F(s) (5)
Biom(o, y, s, t, p,b) → C(o, t) ∧ P(t) (6)
Biom(o, y, s, t, p,b) → I(o, p) ∧ S(p) (7)
Biom(o, y, s, t, p,b) → P(o,b) ∧ B(b) (8)

Fig. 4.An example semantic type linkingbiom elements to elements

schema elementsS with concept expressions from an ontologyO. We consider a syn-
tactic form that we callTerminology-as-View(TAV) in which the ontology structure
O is “virtually populated” with elements from the data schemaS, thereby establishing
the desired semantic typeα = αS → αO. More precisely, we consider semantic types
having the formα = ∀x̄∃ȳ αS(x̄) → αO(x̄, ȳ), whereαS(x̄) is a query over a data struc-
tureS, linking selected elements (captured via bindings of the variables ¯x) to concept
expressionsαO(x̄, ȳ) over the ontologyO.

Figure4 gives example semantic-type constraints linking schema elements of the
Biom data structureS used above to concepts and roles from the ontologyO given in
Figure3. Line (1) states that every measurement inBiom represents an O.
Line (2) states (i) that all year values inbiom are instances of the Y concept, and (ii)
that the year instance is a temporal context of the corresponding observation instance.
Lines (3–5) are similar, but contain an additional condition on the value of the season,
and lines (7–8) annotate species and biomass values.

4 Propagating Semantic Types

We divide our approach for propagating semantic types through actors into three classes
of increasing expressibility for query expressions: conjunctive queries (i.e., containing
only select, project, and join operations); conjunctive queries with aggregation; and
conjunctive queries with aggregation and union.

The Conjunctive Case.Let queryq and semantic typeα be of the form:

– q = ∀ū∃v̄ PS’(ū) :- ϕS(ū, v̄)
– α = ∀x̄∃ȳ αS(x̄)→ αO(x̄, ȳ)

Here,PS’ is a logic atom over the output schemaS’ andϕS is a query over the input
schema(s)S. Similarly, for semantic typesα, we relate instances of a schemaS with
those of an ontologyO via subformulasαS andαO, respectively.

The basic idea of computingα′ = α ◦ q−1 is as follows. We would like to relate
instances of the output schemaS’ with instances ofO. Assume a substitution that satis-
fiesϕS (in q) impliesαS (in α). For this substitution we can establish the desired relation

betweenS’ andO, denoted abstractly asS’
q−1

{ S
α
{ O. More precisely, we considerq

as a logical constraint of the form:

q(ū) = PS’ → Q1 ∧ · · · ∧ Qn ∧ ψ︸ ︷︷ ︸
ϕS

andα of the form
α(x̄) = A1 ∧ · · · ∧ Ak︸ ︷︷ ︸

αS

→ αO

wherePS’ is a logic atom over the output schemaS’, Qi andA j are logic atoms over
the input schema(s)S, andψ andαO are quantifier-free formulas. We assume that all
∃-quantified variables (¯v andȳ above) have been eliminated through Skolemization so
thatq andα can be seen as (implicitly)∀-quantified formulas with variables ¯u and x̄.4

For propagatingα “through”qwe use the inverse ofq, i.e., the left-to-right (‘head→
body’) direction of the query (‘head :- body’). This direction is the one used in LAV-
style query rewritings (e.g., for sound views) and also corresponds to the usually im-
plicit direction in Datalog-style rules (aka Clark’s completion [10]). More precisely,q
is defined by the equivalence∀ū∃v̄ PS’(ū) ↔ ϕS(ū, v̄) where intuitively, ifϕS(ū, v̄) is a
result of the queryq (in a modelM), thenPS’(ū) must also be true (inM) [10,12].

Observe thatq can be written as a conjunctionq1∧· · ·∧qn∧qψ with qi = PS’ → Qi ,
andqψ = PS’ → ψ. If we assume there is a substitutionσ that unifies some atomQi0
and someA j0, i.e., Qσ

i0
= Aσ

j0
5, we can infer fromqi0 = PS’ → Qi0 andα a new semantic

typeα′i0 of the form:
α′i0 = Pσ

S’ ∧ (αS \ A j0)
σ → ασ

O

4 We assume that the variables ¯u in q(ū) are disjoint from the variables ¯x in α(x̄).
5 Tσ denotes the result of applyingσ to a termT.

where (αS \ A j0) is the conjunctionA1 ∧ · · · ∧ Ak with A j0 removed. It is easy to show
that the semantic typeα′i0 is implied byqi andα. In this way, by successively “resolving
away” atomsA j from αS with matching atomsQi from ϕS, we can obtain new semantic
typesα′ that relate elements of the output schemaS’ to those in the ontologyO.

Example 1(Propagation for Conjunctive Queries).Consider queryq1 expressed as a
first-order formula:

Biom1(o, y, s, t,q, p,b)→ Biom(o, y, s, t,q, p,b) ∧ Sscd(p) (1)

This formula can be resolved with semantic-type expression (8) in Figure4, resulting
in the new formula:

Biom1(o, y, s, t,q, p,b)→ P(o,b) ∧ B(b) (2)

Observe that we now have biomass valuesb for the output schemaBiom1 semantically
typed as B instances, linked through theP role.

Handling Aggregation. The approach for propagating conjunctive queries can also
be used for aggregation, due to the particular syntactic representation used to express
aggregate operators. As mentioned in Section2, we perform an additional step for ag-
gregate queries that connects aggregate operators to certain ontology concept defintions,
which can be further used to infer new connections between components. The following
simple example demonstrates how propagation is used with aggregation.

Example 2(Propagation for Aggregate Operators).Consider the following Skolem-
ized queryq for theCompute Richnessactor of Figure1:

Biom4(y, t, r ^ sum(c | y, t))→ Biom3(y, t, fp(y, t, c), c) (1)

and the following (additional) output semantic type of theCompute Occurrenceactor6:

Biom3(y, t, p, c)→ O(c) (2)

We can resolve (1) and (2) above, resulting in the new formula:

Biom4(y, t, r ^ sum(c | y, t))→ O(c) (3)

Observe that in this example we have “preserved” the fact thatr is thesum of a
variablec, and that values forc are O instances. Thus, we can see thatr is
exactly thesum of O. For propagated semantic types of this form, we also
propagate a semantic-type expression wherer is an instance of a new concept formed
from the aggregate name andc’s assigned concept. Thus, for the previous propagated
semantic type we also propagate:

Biom4(y, t, r ^ sum(c | y, t))→ sum(O)(r) (4)

With this additional step it becomes possible,e.g., to determine that theCom-
pute Richnessactor can safely be connected to other actors that input R data,
leveraging definitions in the ontology such assum(O) v R. Here,
sum(O) represents an ontology concept that is “linked” with a certain func-
tionality in the query expression language.

6 e.g., given by the actor developer to account for the new data produced byCompute Occurrence

Handling Union. Let the union queryq be of the form:

q = ∀ū∃v̄ PS’(ū) :- ϕ1
S(ū, v̄)

∀ū∃v̄ PS’(ū) :- ϕ2
S(ū, v̄)

which can also be written as the constraintq(ū) = PS’ → ϕ1
S ∨ ϕ

2
S for ϕ1

S = Q1
1 ∧ · · · ∧

Q1
n∧ψ

1 andϕ2
S = Q2

1∧· · ·∧Q2
n∧ψ

2. To resolveq andα, we rewriteq into clausal form,
generating the two formulasq′(ū) = PS’ ∧ ¬ϕ2

S → ϕ1
S andq′′(ū) = PS’ ∧ ¬ϕ1

S → ϕ2
S.

Observe thatq′ (and similarlyq′′) can be rewritten as a conjunctionq′1∧· · ·∧q′n∧q′ψ
with q′i = PS’ ∧¬ϕ2

S → Q′i andq′ψ = PS’ ∧¬ϕ2
S → ψ1. Assume there is a substitutionσ

that unifies some atomQi0 and someA j0 for a semantic typeα(x̄) = A1∧· · ·∧Ak → αO.
Fromq′ andα we can inferα′ of the form:

α′ = Pσ
S’ ∧ ¬ϕ

2 σ
S ∧ (αS \ A j0)

σ → ασ
O

where (αS \A j0) is the conjunctionA1∧· · ·∧Ak with A j0 removed, similar to the regular
conjunctive case. As before, we successively “resolve away” atomsA j from αS with
matching atomsQ1

i from ϕ1
S.

We note thatα′ may not be in the desired form for semantic types (it may not be
in clausal form) because,e.g., ¬ϕ2

S may result in a disjunctive formula. For such cases,
we can apply the following simple conversion. Assuming query expressionsq = P→
(Q ∧ R) ∨ (Q′ ∧ R′) and semantic typesα = Q → αO, using resolution we infer,e.g.,
α′ = P∧¬(Q′∧R′)→ αO, which becomesα′1 = P∧¬Q′ → αO andα′2 = P∧¬R′ → αO.

Example 3(Propagation for Union).Consider queryq3 as the first-order formula:

Biom3(y, t, p, c)→ (Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) > 0 ∧ c = 0) ∨ (1)
(Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) ≤ 0 ∧ c = 1)

and the Skolemized semantic-type propagated from theCompute Annual Biomassactor
(note that we only include the resultz of the original aggregrate operator):

Biom2(y, t, p, z)→ I(fo(y, t, p), p) ∧ S(p) (2)

Rewriting (1) into clausal form gives:

Biom3(y, t, p, c) ∧ ¬(Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) > 0 ∧ c = 0)→ (3)
Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) ≤ 0 ∧ c = 1

Biom3(y, t, p, c) ∧ ¬(Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) ≤ 0 ∧ c = 1)→ (4)
Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) > 0 ∧ c = 0

Resolving (2) and (3),e.g., results in the new annotation:

Biom3(y, t, p, c) ∧ ¬(Biom2(y, t, p, fb(y, t, p)) ∧ fb(y, t, p) ≤ 0 ∧ c = 1)→ (4)
I(fo(y, t, p), p) ∧ S(p)

We can now rewrite (5) into our desired form for semantic types.

5 Concluding Remarks

The creation of rich semantic-type annotations can be a complex task, making the prob-
lem of automatic generation of such types important for scalable “metadata-intensive”
and “semantics-intensive” scientific applications. To this end, we have developed and
presented a semantic-type propagation approach and sketched how queries involving
selection, projection, join, aggregation, and union could be handled. Our approach is
based on an inference procedure similar to the chase [1], which itself can be seen as
a form of resolution [4]. Propagating semantic types is also related to work on data
provenance [3,8] where the focus (in terms of propagation) is on supporting simple text-
based annotations of relational table cells (instead of formulas over schemas), and on
augmenting SQL to allow users to state specific schemes for propagating these value-
based annotations to query results. In contrast, our semantic types are formal logic-
based descriptions linking structural types to ontologies. These semantic types can be
propagated within the framework of scientific workflows. We are currently investigat-
ing the properties of a specialized inference procedure, based on algorithms in [15] for
composing mappings given by logic constraints. We plan to implement semantic type
propagation within K as part of future work.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison Wesley, 1995.
2. C. Berkley, S. Bowers, M. Jones, B. Ludaescher, M. Schildhauer, and J. Tao. Incorporating

semantics in scientific workflow authoring. InProc. of SSDBM, 2005.
3. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation management

system for relational databases. InProc. of VLDB, 2004.
4. J. Biskup and A. Kluck. A new approach to inferences of semantic constraints. InIn Proc.

of Advances in Databases and Information Systems, 1997.
5. S. Bowers and B. Lud̈ascher. An ontology-driven framework for data transformation in

scientific workflows. InProc. of DILS, volume 2994 ofLNCS, 2004.
6. S. Bowers and B. Lud̈ascher. Actor-oriented design of scientific workflows. In24th Intl.

Conf. on Conceptual Modeling (ER), 2005.
7. C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. The Ptolemy II

Manual (vol. 1-3). Technical report, UC Berkeley, 2004.
8. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data prove-

nance. InProc. of ICDT, volume 1973 ofLNCS, 2001.
9. D. Chalcraft, J. Williams, M. Smith, and M. Willig. Scale dependence in the species-

richness-productivity relationship: The role of species turnover.Ecology, 85(10), 2004.
10. K. L. Clark. Negation as failure. InLogic and Databases. Plemum Press, 1977.
11. E. A. Lee and T. M. Parks. Dataflow process networks.Proc. of the IEEE, 83(5), 1995.
12. M. Lenzerini. Data integration: A theoretical perspective. InProc. of PODS, 2002.
13. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,

and Y. Zhao. Scientific workflow management and the kepler system.Concurrency and
Computation: Practice& Experience, 2005. to appear.

14. B. Ludäscher, A. Gupta, and M. E. Martone. Model-based mediation with domain maps. In
Proc. of ICDE, 2001.

15. A. Nash, P. A. Bernstein, and S. Melnik. Composition of mappings given by embedded
dependencies. InProc. of PODS, 2005.

