
1

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Outline of the Tutorial Modules

I. Overview on Scientific Data Management (Gertz)
13:30—14:15

II. From Conventional to Scientific Data Integration
(Ludaescher)

14:15—15:00

III.From Scientific Data Formats to Data Stream
Processing (Gertz)

15:30—16:15

IV. Introduction to Scientific Workflows (Ludaescher)
16:15-17:00

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Types of “Integration”

• Spatial (co-)registration/“overlay” of different data
– from 2D, 3D, 4D (x,y,z,t), (4+n) D

• Conventional (DB-oriented) integration:
– schema-based
– view-based
– at the data-level

• Extended DI approaches using “ontologies”
– ontologies? controlled vocabularies? metadata/annotations?

• Application/process integration
scientific workflows (Module IV)

• Other mechanisms of “integration”
– link-based (Aladin), clustering, …
– statistics, data mining, visualization, …

2

SDM Tutorial, EDBT’06, Gertz, Ludäscher

IV. Introduction to Scientific Workflows (SWF)

• Scientific Workflows in e-Science and CI

• SWF vs Business Workflows

• Features of a SWF System (Kepler)

• Flow-based Programming and Scientific Workflow
Design

• Semantic Extensions

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Information Integration Challenges:
S5 Heterogeneities

• Synthesis of applications, analysis tools, data & query
components, … into “scientific workflows”
– How to put together components to solve a scientist’s problem?

Scientific Problem Solving Environments (PSEs)

Portals, Workbench (“scientist’s view”)
+ ontology-enhanced data registration, discovery, manipulation
+ creation and registration of new data products from existing ones,

…

Scientific Workflow System (“engineer’s view”)
+ for designing, re-engineering, deploying analysis pipelines and

scientific workflows; a tool to make new tools …
+ e.g., creation of new datasets from existing ones, dataset

registration, …

3

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Motivation:
Scientific Workflows, Pre-Cyberinfrastructure
• Data Federation & Grid “Plumbing”:

– access, move, replicate, query … data (Data-Grid)
• authenticate … SRB Sget/Sput … OPeNDAP, … Antelope/ORBs

– schedule, launch, monitor jobs (Compute-Grid)
• Globus, Condor, Nimrod, APST, …

• Data Integration:
– Conceptual querying & integration, structure & semantics, e.g. mediation w/ SQL,

XQuery + OWL (Semantics-enabled Mediator)
• Data Analysis, Mining, Knowledge Discovery:

– manual/textbook (e.g. ternary diagrams), Excel, R, simulations, …
• Visualization:

– 3-D (volume), 4-D (spatio-temporal), n-D (conceptual views) …

one-of-a-kind custom apps., detached (island) solutions
workflows are hard to reproduce, maintain
no/little workflow design, automation, reuse, documentation

need for an integrated scientific workflow environment

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Scientific Workflows

A model of the way a scientist works with their data and tools
– Mentally coordinate data export, import, analysis via software systems

Emphasize dataflow (≠ business workflows)

Metadata: automatic data ingestion, analysis, provenance tracking …

Goals:
– SWF automation
– SWF component reuse
– SWF design & documentation

… make scientific data analysis
and management tasks easier
for the scientist!

4

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Types of Scientific Workflows (overlapping)

• What do we use scientific workflow systems for?
– Short answer:
… nearly everything …

• Types of Scientific Workflows
– “Modeling & Design”: Capture or reverse-engineer processes and

information flows at all levels
– “Knowledge discovery”: Automate repetitive data access, retrieval,

custom analysis (e.g. Blast), generic steps (PCA, cluster analysis, ..),
Ex: PIW, Motif analysis, NDDP, …

– “Plumbing”: Stage files, submit batch jobs, monitor progress, move
files off XT3 to analysis and viz cluster, archive, steer computation, …

Ex: Fusion simulation, Astrophysics (supernova simulation)
– “(Real-time) analysis pipelines”: processing of environmental and

earth science data from sensor networks

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Commercial & Open Source Scientific Workflow Systems

5

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Promoter Identification Workflow (PIW)
… or from a napkin drawing …

Source: Matt Coleman (LLNL)Source: Matt Coleman (LLNL)

SDM Tutorial, EDBT’06, Gertz, Ludäscher

… to an executable workflow (here: in KEPLER)

6

SDM Tutorial, EDBT’06, Gertz, Ludäscher

… to a plumbing workflow (Job Mgmt w/ NIMROD)

SDM Tutorial, EDBT’06, Gertz, Ludäscher

… more plumbing …

Workflow Kind:
• “Plumbing Workflow”
• RX/RC
(remote exec, remote control)

7

SDM Tutorial, EDBT’06, Gertz, Ludäscher

… more plumbing …

Streaming Actors Stream Put/Get
read & write files from and to

SRB as sequence of byte arrays.

SPut/SGet use parallel put/get
approaches as provided by

JARGON API

SRB Proxy Operations

SDM Tutorial, EDBT’06, Gertz, Ludäscher

ORB

8

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Why not just a Python script?

• Users who can define, reuse, modify, specialize
workflows may not be able to do the same (or as easily
as) for Python scripts

• Other advantages to scientific workflows

– Modular reuse and application interoperability

– Debugging and monitoring workflow execution

– Automated data management (e.g., provenance)

– Validation (e.g., data/structural/semantic typing)

… From integrated modeling to execution, optimization, archival, etc

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Business workflows born-again?

• Yes, there are similarities
– And we can learn from BWF – e.g. transactions!

• But also big differences:
– Scientific Workflows:

• dataflow oriented
• streaming/pipelined execution
• cf. signal processing
• popular Model of Computation (MoC):

– Process Networks (PN), Synchronous DataFlow (SDF), Discrete
Events (DE), Continuous Time (CT), …

– Business Workflows:
• task- and control-flow oriented
• popular MoC (for theory, abstraction, modeling):

– Petri-Nets, CSP!?, …

9

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Sample Business Workflow

• Focus is on …
– Tasks

– Control-flow

– Work items

• Useful stuff:
– Transactions!

– How to handle complex control-flow …

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Example scientific workflow run, executed as a Dataflow Process Network

A Simple Scientific Workflow

10

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Pop Quiz! BWF? SWF?

SDM Tutorial, EDBT’06, Gertz, Ludäscher

And the answer is …

11

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Wrong Question! (not just SWF vs. BWF, but Dataflow and
Data-orientation vs. Control-Flow/Orientation)

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Driving the point home…

• Dataflow-oriented scientific workflows have features of
– … stream-processing
– … data-, task-, and pipeline-parallelism
– … signal processing systems
– … visual PSEs: AVS/Express, IBM DataExplorer, OpenDX, LabView,

…

12

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Some Features of Scientific Workflows

• Actor-oriented, Hierarchical Modeling & Design
– study interactions of MoCs, compose, nest WFs, …
– simulate those systems

• Automated Provenance System
– Keep track of data & workflow provenance

“smart” re-run, crash recovery, live & post-mortem analysis &
debugging …

• Flow-Based Programming Paradigm
– data-stream oriented processing

• Basis for End-to-End Experiment Life-Cycle
Management
– from design, semantic types, to monitoring & control (“dashboard”),

and optimization

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Some Basic SWF Terminology (evolving)
• Workflow definition W (≈ WF graph we see)

– partial specification of a workflow (cf. program)
– parameters P need to be instantiated
– data-bindings D can be viewed as special parameters

• Model of Computation (MoC – PT terminology)
– Looking at W, P, D we still do not know how to execute W(P,D) to compute

result R
– A MoC is an algorithm telling us how to apply W on P and D to obtain R.
– Examples:

• MoC PN (Process Network):
– Network of independent processes, communicating through (infinite)

unidirectional buffers (queues), prefix-monotonic behavior; given a PN and
an input stream and prefix-monotonic, deterministic actors, the output stream
is determined! (lots of flexibility for execution!)

• MoC SDF (Synchronous Dataflow):
– Similar to PN, but actors must statically declare there token

production/consumption rates; solving for pos. int. solutions of balance
equations (“LGS”) yields static schedule guaranteeing fixed buffer size

13

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Some Basic SWF Terminology (evolving)

• WF Run: completed computation

• WF Execution: ongoing computation

• Computation graph: graph data structure keeping track of which
token has been computed from which other one(s)
– Simple examples: evaluating an arithmetic expression; running a “job DAG”

– But keeping track of “real dependencies” can be tricky
• Ex: output tuples of an SQL query have “witness tuples” in multiple

relations; clear for positive existential queries; what are witnesses for
universal and negated queries? R = A \ B ; witnesses anybody?

• Similar to the notion of “proof tree” in logic (and LP); negation-as-failure
looms it’s ugly (beautiful?) head!

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Research Area: Provenance

• (Abstract) Use Cases:
– “Total Recall”: capture everything the MoC can observe

• … and more: MoC-inherent plus addtl. observables
– Example: time-stamp token-in, token-out events benchmark actor

exec time, data movement time, …
– The 7 W’s: Who, What, Where, Why, When, Which, (W)how (C.

Goble)
– Smart Re-run:

• after Pause or Stop, followed by parameter changes: rerun only
relevant parts

– Fault tolerance, crash recovery (cf. checkpointing)

– Result interpretation and post-mortem analysis

14

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Research Area: Provenance (2)

• Research Questions:
– Given a use case (as a query U) and a provenance schema PS, can

U be answered using PS?
(related to query answering using views – a reasoning problem!)

– Ultimately: design PS with U in mind! Also: optimize/specialize PS if
U is known/limited

– Note: the MoC can make a difference! For example, some MoCs
have explicit notion of “firing” or might exploit actor declarations
(“I’m a function! I have no state!”) This info is relevant e.g. for
checkpointing (Need to save state or not? When to save state..)

SDM Tutorial, EDBT’06, Gertz, Ludäscher

An Example System & Project

• Open-source cross-project collaboration:
– NSF/ITR SEEK, GEON, DOE SciDAC/SDM, …
– based on Ptolemy II Modeling & Simulation system
– R&D at Berkeley, SDSC, UCSB, NCSU, UCD, LLNL, Utah,

Rutgers, Penn State, Zurich, …

www.keplerwww.kepler--project.orgproject.org

Collab. tools: IRC, cvs, Wiki, FAQs, ..CollabCollab. tools: IRC, . tools: IRC, cvscvs, , WikiWiki, , FAQsFAQs, .., ..

15

SDM Tutorial, EDBT’06, Gertz, Ludäscher

GEON Dataset Generation & Registration
(and co-development in KEPLER)

Xiaowen (SDM)
Edward et al.(Ptolemy)

Yang (Ptolemy)

Efrat
(GEON)

Ilkay
(SDM)

SQL database access (JDBC)
Matt et al.

(SEEK)

% Makefile
$> ant run

% Makefile
$> ant run

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Web Services Actors (WS Harvester)

1
2

3

4

“Minute-made” (MM) WS-based application integration
• Similarly: MM workflow design & sharing w/o implemented components

16

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Some KEPLER Actors (out of 160+ … and counting…)

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Flow-Based Programming & Design for SWF

• Just doing visual-programming by itself does not lead to
modular, re-usable, maintainable workflows!

• To fully exploit the dataflow paradigm …
… think dataflow!

Flow-based Programming
… combined w/ Functional,

Collection-oriented Programming

• … similar to assembly-line metaphor

17

SDM Tutorial, EDBT’06, Gertz, Ludäscher

hand-crafted control
solution; also: forces
sequential execution!

designed to fit

designed to fit

hand-crafted
Web-service actor

Complex backward
control-flow

No data transformations
available

[Altintas-Ludaescher-et-al
PIW-SSDBM’03]

[Altintas-Ludaescher-et-al
PIW-SSDBM’03]

SDM Tutorial, EDBT’06, Gertz, Ludäscher

A Scientific Workflow Problem: More Solved
(Computer Scientist’s view)

• Solution based on declarative,
functional dataflow process
network

(= also a data streaming model!)

• Higher-order constructs: map(f)
⇒ no control-flow spaghetti
⇒ data-intensive apps
⇒ free concurrent execution
⇒ free type checking
⇒ automatic support to go from

piw(GeneId) to
PIW :=map(piw) over [GeneId]

map(f)-style
iterators

Powerful type
checking

Generic, declarative
“programming”

constructs

Generic data
transformation actors

Forward-only, abstractable sub-
workflow piw(GeneId)

18

SDM Tutorial, EDBT’06, Gertz, Ludäscher

A Scientific Workflow Problem:
Even More Solved (domain&CS coming together!)

map(GenbankWS)
Input: {“NM_001924”, “NM020375”}
Output: {“CAGT…AATATGAC",“GGGGA…CAAAGA“}

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Research Problem: Optimization by Rewriting

• Example: PIW as a declarative, referentially
transparent functional process
⇒ optimization via functional rewriting possible
e.g. map(f o g) = map(f) o map(g)

• Technical report &PIW specification in Haskell

map(f o g)
instead of

map(f) o map(g)

Combination of
map and zip

http://kbis.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdfhttp://kbis.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf

19

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Optimizing II: Streams & Pipelines

• Clean functional semantics facilitates algebraic workflow (program)
transformations (Bird-Meertens); e.g. mapS f • mapS g mapS (f • g)

Source: Real-Time Signal
Processing: Dataflow, Visual, and
Functional Programming, Hideki

John Reekie, University of
Technology, Sydney

Source: Real-Time Signal
Processing: Dataflow, Visual, and
Functional Programming, Hideki

John Reekie, University of
Technology, Sydney

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Traffic info for a list of highways: Uses
iterate (higher-order “map”) actor to access
highway info web service repeatedly, sending
out one email per highway.

20

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Traffic info for a list of highways: Uses
iterate (higher-order “map”) actor to access
highway info web service repeatedly, sending
out one email per highway.

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Traffic info for a list of highways: Uses
iterate (higher-order “map”) actor to access
highway info web service repeatedly, sending
out one email per highway.

21

SDM Tutorial, EDBT’06, Gertz, LudäscherSrc: Timothy McPhillips et al.Src: Timothy McPhillips et al.

A Bioinformatics Workflow

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Towards Flow-based Design Patterns

• Generality vs specialization of actors
– also loosely coupled vs tightly coupled

• Data transformation pipelines
– alternate compute and data transformation steps

• Stage-execute-fetch pattern (Grid/HPC/HTC-WFs)
• Loops, higher-order functions (map, foldr, …)

– cf. Taverna’s automatic loop insertion based on data types

F-mapproducer

[f1, f2, …fn]

methods
functions

map

f

[x1, x2, …xn]

producer [f(x)1,…,f(xn)]

X

A B C

connect
JDBC/SRB connection tokens, proxies, certificates

22

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Scientific Workflow Design

“And that’s why our scientific workflows are
much easier to understand and maintain!”

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Simulation Monitoring WF: Design V0

AnalysisAnalysis VisualizationVisualization

ArchivalArchival ReplicationReplication

SIMULATION SIMULATION

XGC on XT3
@ORNL

analysis cluster

SRM

bbcp

hsi

HPSS@ORNL

eg via SCIRun-2

HPSS@NERSC

SCIRun
Kepler

23

SDM Tutorial, EDBT’06, Gertz, Ludäscher

WF Design, Simulation, Prototyping …

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Blurring Design (ToDo) and Execution

24

SDM Tutorial, EDBT’06, Gertz, Ludäscher

WF-Design: Adapters for Semantic & Structural “Gaps”

Adapters may:

– be abstract (no impl.)

– be concrete

– bridge a semantic gap

– fix a structural mismatch

– be generated automatically
(e.g., Taverna’s “list mismatch”)

– be reused components
(based on signatures)

C1 C1′ D1′C1

C2

C D C C′ D′ D

D D
C2 C2′ D2′

f2f1 [S] S′ T [S][S′]
f1

[T]f2

map

f2f1 [[S]] S′ T [[S]][[S′]]
f1 [[T]]f2

map
map

Source: [Bowers-Ludaescher, ER’05]Source: [Bowers-Ludaescher, ER’05]

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Additional Design Primitives for Semantic Types

Extended Transformations Starting Workflow Resulting Workflow

t9: Actor Semantic Type
Refinement
(T′ T)

T

t12: I/O Constraint
Strengthening
(ψ → ϕ)

t10: Port Semantic Type
Refinement
(C′ C, D′ D)

C

t14: Adapter Insertion

T′

t11: Annotation
Constraint Refinement
(α′ → α) s

Cα1

ψ

t15: Actor Replacement f f′

t16: Workflow Combination
(Map)

t13: Data Connection
Refinement

…f1

f2

f1…
f2

ϕ

Resulting Workflow

D C′ D C D′

t

Dα2 α′1
t

Dα2

s

C α1

t

Dα′2
s

C

Source: [Bowers-Ludaescher, ER’05]Source: [Bowers-Ludaescher, ER’05]

25

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Scientific Workflow Design

• Support SWF design & reuse, via:
– Structural data types
– Semantic types
– Associations (=constraints) between

them
– Type checking, inference, propagation

Separation of concerns:
– structure, semantics, WF orchestration,

etc.

Source: [Bowers-Ludaescher, ER’05]Source: [Bowers-Ludaescher, ER’05]

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Collection-Oriented SWF Modeling & Design
• Assembly line metaphor + Signal Processing + XML + …

• Streams are nested collections (≈ XML)
• Stream data schema is “registered” to a WF data model (really need this)
• use ideas from “punctuated streams” to delineate collections

• Advantages:
• Less “messy” WFs (more linear, less branching)
• “Add-only” mode (inject new derived information); augmentation instead

of transformation

• Tagging data for downstream processing (instead of “bombing”, pass on
“dirty” / faulty / strange data with a relevant tag

• Pipelined parallelism (can stream an array)

26

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Fault Tolerance & Maintenance Challenges

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Workflow Templates and Patterns

New Ingredients Proposed Layered Architecture

work w/ Anne Ngu, Shawn
Bowers, Terence Critchlow

27

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Use of Semantics in SWF…

“Smart” Search
– Concept-based, e.g., “find all datasets containing biomass measurements”

Improved Linking, Merging, Integration
– Establishing links between data through semantic annotations & ontologies

– Combining heterogeneous sources based on annotations
– Concatenate, Union (merge), Join, etc.

Transforming
– Construct mappings from schema S1 to S2 based on annotations

Semantic Propagation
– “Pushing” semantic annotations through transformations/queries

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Typing Workflow Components

Semantic Type Editor is used to assign one or more
semantic types to the component or to the component’s
input and output ports. In the simplest case, a semantic
type is a class taken from an OWL-DL ontology. Multiple
types define a conjoined concept expression.

A simple ontology browser is provided in Kepler to navigate a
classified OWL-DL ontology. Classes can be searched for and
selected as a semantic type.

28

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Checking Type Constraints
Kepler can statically perform semantic and
structural type checking of connections. A type
checker allows the user to see potentially mismatched
port connections as well as known type conflicts before
workflow execution.

The user can navigate the unsafe and potentially unsafe channels
using the Kepler Type Checker dialog. When a channel is selected: (a) it is
highlighted on the canvas, (b) the structural type and status is shown
(here, the channel is structurally well typed), and (c) the semantic type
and status is shown (here, the connection produce a semantic type error).

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Kepler Actor-Library
• Ontology-based actor organization / browsing
• Customizable libraries based on ontologies
• Text search with concept-based expansion

Users can discover
ImageJ using various
search terms. Here,
ImageJ shows up in
multiple tree locations
based on its given
annotations. The library
search permits text-
based matching against
the component’s
metadata (its given
name and certain
properties), expanded
with concept matches.

29

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Semantic Searching

Kepler provides a more advanced
ontology-based search mechanism.
Users can start the Semantic Search
dialog, where components can be search
for based on their semantic types.

The Semantic Search dialog allows a
user to search components by any
combination of actor, input, and
output semantic types.

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Ontology-Guided Data Transformation

Source
Service
Source
Service

Target
Service
Target
Service

Ps Pt

Semantic
Type Ps

Semantic
Type Ps

Semantic
Type Pt

Semantic
Type Pt

Structural
Type Pt

Structural
Type Pt

Structural
Type Ps

Structural
Type Ps

Desired Connection

Compatible (⊑)

Structural/Semantic
Association

Structural/Semantic
Association

CorrespondenceCorrespondence

Generate δ(Ps)δ(Ps)

Ontologies (OWL)Ontologies (OWL)

Transformation

Source: [Bowers-Ludaescher, DILS’04]Source: [Bowers-Ludaescher, DILS’04]

30

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Summary: Scientific Workflows

• Scientific Workflows in e-Science and CI
• SWF vs Business Workflows
• Features of a SWF System (Kepler)
• Flow-based Programming and Scientific Workflow Design
• Semantic Extensions

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Back then … KEPLER… was ahead of his time was ahead of his time ……

31

SDM Tutorial, EDBT’06, Gertz, Ludäscher

… but such is life … ;-)

What’s
a

semantic
type?

… so,you see,
scientific workflows need

domain and data-
polymorphic actors and

semantic types!

What’s
a scientific
workflow?

What’s
a poly-
morphic
actor?

SDM Tutorial, EDBT’06, Gertz, Ludäscher

Polymorphic Actors: Components Working
Across Data Types and Domains

• Actor Data Polymorphism:
– Add numbers (int, float, double, Complex)
– Add strings (concatenation)
– Add complex types (arrays, records, matrices)
– Add user-defined types

• Actor Behavioral Polymorphism:
– In dataflow, add when all connected inputs have data
– In a time-triggered model, add when the clock ticks
– In discrete-event, add when any connected input has data, and add

in zero time
– In process networks, execute an infinite loop in a thread that

blocks when reading empty inputs
– In CSP, execute an infinite loop that performs rendezvous on input

or output
– In push/pull, ports are push or pull (declared or inferred) and

behave accordingly
– In real-time CORBA*, priorities are associated with ports and a

dispatcher determines when to add
*hey, Ptolemy has been out for long!

By not choosing
among these
when defining the
component, we
get a huge
increment in
component re-
usability. But how
do we ensure that
the component
will work in all
these
circumstances?

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

