

Scientific Data Formats

Data Diversity

- Scientific data come from a variety of sources (remote-sensing instruments, sensors, experiments, simulations...), often in proprietary data formats.
- Typical "raw data" and data products include multi-dimensional arrays, images, spectra, vector fields
- Different scientific communities have different data management and data processing needs, and thus use different data formats.

The purpose of specialized scientific data formats is to

- store, manage, exchange, share, and archive data from scientific applications
- provide the base for data management and analysis tools, such as data integration, sharing, visualization, and archiving
- Provide complete software solutions with support of a variety of programming languages, ranging from Fortran 77 to Java

SDM Tutorial, EDBT'06, Gertz, Ludäsche

Scientific Data Formats (2)

There are several key data formats Earth & Space Sciences

- HDF (Hierarchical Data Format)
- CDF/netCDF (Common Data Format)
- FITS (Flexible Image Transport System)
- XSIL (eXtensible Scientific Interchange Language)
- GML (Geography Markup Language)
- GRIB (Grids in Binary)
- CCM (Community Climate Model History Tape Format)

...and many XML-based languages in the Life Sciences...

Chemical Markup Language (*CML*) – Molecular Dynamics [Markup] Language (*MoDL*) – MicroArray and Gene Expression Markup Language (*MAGE-ML*) – Genome Annotation Markup Elements (*GAME*) – BIOpolymer Markup Language (*BIOML*) – Numerical Data Markup Language (*NDML*) – Protein Extensible Markup Language (*PROXIML*) – Systems Biology Markup Language (SBML) ...

(see also http://xml.coverpages.org/)

Common Data Format (CDF)

Designed and developed in 1985 by the National Space Science Data Center at NASA Goddard Space Flight Center.

- Conceptual data abstraction for storing, manipulating, and accessing multidimensional data sets.
- Basic component: software programming interface that is a device independent view of the CDF data model.
- CDF files created on any given platform can be transported to any other platform onto which CDF is ported and used with any CDF tools or layered applications.
- CDF software package is used by hundreds of government agencies, universities, and private and commercial organizations as well as independent researchers on both national and international levels.
- Adopted by the International Solar-Terrestrial Physics project as well as the Central Data Handling Facilities (CDHF) as their format of choice for storing and distributing data.

nssdc.gsfc.nasa.gov/cdf/cdf_home.html

SDM Tutorial, EDBT'06, Gertz, Ludäscher

Network Common Data Format (netCDF)

- Developed by University Corporation for Atmospheric Research around 1990.
- netCDF library defines a machine-independent format for representing scientific data.
- Together, the APIs for array-oriented data access, library, and format support the creation, access, and sharing of scientific data.

Objectives:

- Self-describing. A netCDF file includes information about the data it contains.
 Portable. A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- Direct-access. A small subset of a large dataset may be accessed efficiently,
- Appendable. Data may be appended to a properly structured netCDF file
- Sharable. One writer and multiple readers may simultaneously access file
- Archivable. Access to all earlier forms of netCDF data will be supported by current and future versions of the software.

http://www.unidata.ucar.edu/

Flexible Image Transport System (FITS)

- Developed 1981 by NASA
- Data format most widely used within astronomy for transporting, analyzing, and archiving scientific data files.
- More than just another image format (such as JPG or GIF)
- Primarily designed to store scientific data sets consisting of multi-dimensional arrays (images) and 2-D tables organized into rows and columns of data.

- FITS file is comprised of segments called Header/Data Units (HDUs)
- First HDU is called the "Primary Array", which can contain a 1-999 dimensional array of integers or floating point numbers.
- A typical primary array could contain a 1-D spectrum, a 2-D image, or a 3-D data cube.
- Any number of additional HDUs may follow the primary array; these are referred to as FITS "extensions" (Images, ASCII tables, binary tables)

Trends and Developments

There are many efforts two wrap scientific data represented in the data format XYZ into XML. For example,

- XML-based markup language called CDF Markup Language to describe CDF data and metadata and created the following two utilities in Java:
 - CDF2CDFML dumps the contents of a CDF file into a XML file that conforms to the CDF DTD or CDF schema.
 - CDFML2CDF creates a CDF file from an XML file that conforms to the CDF DTD or CDF schema.
- To promote data exchanges among space scientists, the CDF office has developed a Web service called Data Translation Web Service (DTWS) and a client to talk to DTWS via a web browser. The DTWS is a web service based on SOAP. Supported translations include
 - CDF-to-netCDF, CDF-to-FITS, CDF-to-CDFML, netCDF-to-CDF
 - FITS-to-CDF, HDF4-to-CDF

http://translators.gsfc.nasa.gov

- XSLT is a helper in doing such transformations!

SDM Tutorial, EDBT'06, Gertz, Ludäscher

Processing Scientific Data

In Earth Sciences and Astrophysics

- Almost exclusively based on a file-processing approach:
 - 1. obtain files from instrument, experiment, or simulation (ftp, gridFTP,...)
 - 2. run program on files, typically local
 - 3. record data product as file and store it either locally or remotely
- Data and metadata go through numerous complex processing steps formulated as (image) pipelines and workflows (→ Module 4)
- Pipelines are assembled manually, often through scripting (Perl, Python, ...)

There are many applications settings in which incoming data is delivered in a continuous, streaming fashion but the processing occurs in a file-based approach.

- Weather forecasting, wildfire detection, hurricane tracking...
- In general, there are many types of remote-sensing applications in which real-time processing is crucial.

Data Stream Processing

Objectives:

- Exploit models, techniques, and concepts developed for traditional (relational and XML) data stream management systems
- Develop stream management system against which users can formulate queries and analytical operations
- Move query processing and computation to the data

How to go about this?

- Get an understanding of the science domain, talk to scientists
- Develop formal data model for scientific data of concern (e.g., multidimensional arrays in HDF), streams of such data, and operations on data streams
- Start with the design and implement a stream simulator that takes science data files and converts them into stream

There are some scientific data models out there (developed by the DB community) that look at non-streaming data, e.g.,

- Multi-dimensional arrays (Marathe and Salem, VLDB Journal 2002; Libkin, SIGMOD 1996)
- Array algebra (Baumann, VLDB Journal 1994, RasDaMan)
- Gridded data sets (Howe and Maier, VLDB 2004)

Can't we just take "conventional" data stream processing models, techniques, and architectures?

- It is not a good idea to map hundreds of millions of pixels to relations
- Operations on multi-dimensional data (e.g., raster images) are often much more complex than selection, project, join (e.g., re-projections or affine image transforms)
- Data sets exhibit spatio-temporal characteristics
- Queries are typically formulated using graphical user interfaces

SDM Tutorial, EDBT'06, Gertz, Ludäsche

Streaming Geospatial Image Data

A case study:

- GeoStreams: A query processing architecture for streaming remotely-sensed image data <u>http://geostreams.ucdavis.edu</u>
- GOES West, geostationary weather satellite operated by NOAA
- 5 imager bands, 19 sounder channels
- Delivers data in GVAR format at a rate of 2.1Mbits/sec (~22GB/day)

How does the stream data model look like?

- Infinite *point set*, with points of the form (x,y,t), each point has *point value* x,y = spatial location of point (pixel), t = timestamp
- Point set is a topological space, value set is a homogeneous algebra
- Spatial component of point set corresponds to a regularly space lattice and is *geo-referenced* (we are talking about field-based data...)

References Module III

- Hierarchical Data Format (HDF). <u>http://hdf.ncsa.uiuc.edu/</u>
- HDF: the hierarchical data format. Brand Fortner, DR DOBB'S J SOFTWARE TOOLS
 PROF PROGRAM. Vol. 23, no. 5, pp. 42, 44-48. May 1998
- Common Data Format (CDF). <u>http://cdf.gsfc.nasa.gov/</u>
- A software package for the data-independent management of multidimensional data L.Treinish, M. Gough, EOS. Vol. 68, pp. 633-635. 14 July 1987
- Network Common Data Format (netCDF). <u>http://www.unidata.ucar.edu/software/netcdf/</u>
- NetCDF: an interface for scientific data access, R. Rew, G. Davis, Computer Graphics and Applications, Jul 1990, 10(4): 76-82
- Flexible Image Transport System (FITS). <u>http://fits.gsfc.nasa.gov/</u>
- FITS a Flexible Image Transport System, D.C. Wells, E.W. Greisen, International Workshop on Image Processing in Astronomy. Proceedings of the 5th. Colloquium on Astrophysics, held in Trieste, Italy, June 4-8, 1979. Editors, G. Sedmak, M. Capaccioli, R.J. Allen.; Publisher, Osservatorio Astronomico di Trieste, Trieste, Italy, 1979
- eXtensible Scientific Interchange Language (XSIL). http://www.cacr.caltech.edu/SDA/xsil/
- A High-Performance Active Digital Library, Roy Williams, Bruce Sears, Proceedings of HPCN98, Amsterdam, April 1998, eds. L. O. Herzberger and P. M. A. Sloot, Lect. Notes Comp. Sci. (Springer)
- Geography Markup Language. <u>http://www.opengeospatial.org/</u>
- Deep Lens Survey. http://dls.bell-labs.com/
- GeoStreams project. <u>http://geostreams.ucdavis.edu</u>