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A database mediator system combines information from multiple existing source
databases and creates a new virtual, mediated database that comprises the inte-
grated entities and their relationships. When mediating scientific data, the techni-
cally challenging problem of mediator query processing is further complicated by
the complexity of the source data and the relationships between them. In partic-
ular, one is often confronted with complex multiple-world scenarios in which the
semantics of individual sources, as well as the knowledge to link them, require
a deeper modeling than is offered by current database mediator systems. Based
on experiences with federation of brain data, this chapter presents an extension
called model-based mediation (MBM). In MBM, data sources export not only
raw data and schema information but also conceptual models (CMs), including
domain semantics, to the mediator, effectively lifting data sources to knowledge
sources. This allows a mediation engineer to define integrated views based on (1)
the local CMs of registered sources and (2) auxiliary domain knowledge sources
called domain maps (DMs) and process maps (PMs), respectively, which act as
sources of glue knowledge. For complex scientific data sources, semantically rich
CMs are necessary to represent and reason with scientific rationale for linking a
wide variety of heterogeneous experimental assumptions, observations, and con-
clusions that together constitute an experimental study. This chapter illustrates
the challenges using real-world examples from a complex neuroscience integra-
tion problem and presents the methodology and some tools, in particular the
knowledge-based integration of neuroscience data (KIND) mediator prototype
for model-based mediation of scientific data.
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12.1 BACKGROUND

Seamless data access and sharing, handling of large amounts of data, federation
and integration of heterogeneous data, distributed query processing and applica-
tion integration, data mining, and visualization are among the common and recur-
ring broad themes of scientific data management. A main stream of activity in the
bioinformatics domain is concerned with sequence and structural databases such
as GenBank, Protein Data Bank (PDB), and Swiss-Prot, and much work is devoted
to algorithmic challenges stemming from problems (e.g., efficient sequence align-
ment and structure prediction). However, in addition to the well-known challenges
of bioinformatics applications such as algorithmic complexity and scalability (e.g.,
in genomics), there are other major challenges that are sometimes overlooked, par-
ticularly when considering scientific data beyond the level of sequence and protein
data (e.g., brain imagery data). These challenges arise in the context of information
integration of scientific data and have to do with the inherent semantic complex-
ity of (1) the actual source data and (2) the glue knowledge necessary to link the
source data in meaningful ways. Traditional federated database system architec-
tures, and those of the more recent database mediators developed by the database
community, need to be extended to handle adequately information integration of
complex scientific data from multiple sources. This extension is a combination of
knowledge representation and mediator technology. In a nutshell:

Model-Based Mediation = Database Mediation + Knowledge Representation

With respect to their semantic heterogeneity (ignoring syntactic and system
aspects), information integration/mediation scenarios (scientific or otherwise) can
be roughly classified along a spectrum as follows: On one end, there are simple
one-world scenarios; somewhere in the middle are simple multiple-world scenar-
ios; and at the other end of the spectrum are complex multiple-world scenarios.
An example of a simple one-world scenario (i.e., in which the modeled real-world
entities can be related easily to one another and come from a single domain)
is comparison shopping for books. A typical query is to find the cheapest price
for a given book from a number of sources such as amazon.com and bn.com.
An example of a simple multiple-world scenario is the integration of realtor and
census data to annotate and rank real estate by neighborhood quality. Here, the
approach combines and relates quite different kinds of information, but the re-
lations between the multiple worlds are simple enough to be understood without
deep domain knowledge. Examples of complex multiple-world scenarios are often
found in scientific data management and are the subject of this chapter. Thus,
simple and complex here refer to the degree in which specific domain semantics
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is required to formalize or even state meaningful associations and linkages be-
tween data objects of interest; it does not mean that the database and mediation
technology for realizing such mediators is simple.1 For example, to state the prob-
lem of what the result of an integrated comparison shopping view should be,
a basic understanding of a books schema (title, authors, publisher, price, etc.)
is sufficient. In particular, the association operation that links objects of inter-
est across sources can be executed (at least in principle) as a syntactic join on
the ISBN. Similarly, in the realtor example, data can be joined based on ZIP
code, latitude and longitude, or street address (i.e., by spatial joins that can be
modeled as atomic function calls to a spatial oracle). To understand the basic
linkage of information objects, no insight into the details of the spatial join is
required.

This is fundamentally different for complex multiple-world scenarios as found
in many scientific domains. There, even if data is stored in state-of-the-art (often
Web accessible) databases, significant domain knowledge is required to articulate
meaningful queries across disciplines (or within different micro-worlds of a single
discipline); further examples are offered in the next section.

Outline

In this chapter, these challenges are illustrated with examples from ongoing col-
laborations with users and providers of scientific data sets, in particular from the
neuroscience domain (see Section 12.2). Then a methodology called model-based
mediation, which extends current database mediator technology by incorporating
knowledge representation (KR) techniques to create explicit representations of do-
main experts’ knowledge that can be used in various ways by mediation engineers
and by the MBM system itself, is presented in Section 12.3. The goal of MBM
could be paraphrased as:

Turning scientists’ questions into executable database queries.

Section 12.4 introduces some of the KR formalisms (e.g., for domain maps
and process maps) and describes their use in MBM. In Section 12.5 the KIND me-
diator prototype and other tools being developed at the San Diego Supercomputer
Center (SDSC) and the University of California at San Diego (UCSD) are presented
primarily in the context of the neuroscience domain. Section 12.6 discusses related
work and concludes the chapter.

1. Such simple mediation scenarios often pose very difficult technical challenges (e.g., query processing
in the presence of limited source capabilities) [1, 2].
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12.2 SCIENTIFIC DATA INTEGRATION ACROSS
MULTIPLE WORLDS: EXAMPLES AND
CHALLENGES FROM THE NEUROSCIENCES

Some of the challenges of scientific data integration in complex multiple-world
scenarios are illustrated using examples that involve different neuroscience worlds.
Such examples occur regularly when trying to federate brain data across multiple
sites, scales, and even species [3] and have led to new research and development
projects aimed at overcoming the current limitations of biomedical data sharing
and mediation [4].

Example 12.2.1 (Two Neuroscience Worlds). Consider two neuro-science labora-
tories, SYNAPSE and NCMIR2, that perform experiments on two different brain
regions. The first laboratory, SYNAPSE, studies dendritic spines of pyramidal cells
in the hippocampus. The primary schema elements are thus the anatomical enti-
ties reconstructed from 3D serial sections. For each entity (e.g., spines, dendrites),
researchers make a number of measurements and study how these measurements
change across age and species under several experimental conditions.

In contrast, the NCMIR laboratory studies a different cell type, the Purkinje
cells of the cerebellum. They inspect the branching patterns from the dendrites of
filled neurons and the localization of various proteins in neuron compartments.
The schema used by this group consists of a number of measurements of the
dendrite branches (e.g., segment diameter) and the amount of different proteins
found in each of these subdivisions. Assume each of the two schemas has a class
C with a location attribute that has the value Pyramidal Cell dendrite and
Purkinje Cell, respectively.

How are the schemas of SYNAPSE and NCMIR related? Evidently, they carry
distinctly different information and do not even enter the purview of the schema
conflicts usually studied in databases [5]. To the scientist, however, they are re-
lated for the following reason: Like pyramidal neurons, Purkinje cells also possess
dendritic spines. Release of calcium in spiny dendrites occurs as a result of neuro-
transmission and causes changes in spine morphology (sizes and shapes obtained
from SYNAPSE). Propagation of calcium signals throughout a neuron depends on
the morphology of the dendrites, the distribution of calcium stored in a neuron,

2. Information about the two laboratories SYNAPSE and NCMIR is respectively available at
http://synapses.bu.edu and http://www-ncmir.ucsd.edu.
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and the distribution of calcium binding proteins, whose subcellular distribution
for Purkinje cells are measured by NCMIR.

Thus, a researcher who wanted to model the effects of neurotransmission in
hippocampal spines would get structural information on hippocampal spines from
SYNAPSE and information about the types of calcium binding proteins found
in spines from NCMIR. Note that neither of the sources contains information
that would allow a mediator system to bridge the semantic gap between them.
Therefore, additional domain knowledge—independent of the observed experi-
mental raw data of each source—is needed to connect the two sources. The domain
expert, here a neuroscientist, it is easy to provide the necessary glue knowledge

Purkinje cells and Pyramidal cells have dendrites that have higher-order branches
that contain spines. Dendritic spines are ion (calcium) regulating components.
Spines have ion binding proteins. Neurotransmission involves ionic activity
(release). Ion-binding proteins control ion activity (propagation) in a cell. Ion-
regulating components of cells affect ionic activity (release).

To capture such domain knowledge and make it available to the system, we
employ two kinds of ontologies, called domain maps and process maps, respec-
tively. The former are aimed at capturing the basic domain terminology, and the
latter are used to model different process contexts. Ontologies, such as the do-
main map in Figure 12.1, are often formalized in logic (in this case statements
in description logic [6]; see Section 12.4.1). Together with additional inference
rules (e.g., capturing transitivity of has), logic axioms like these formally capture
the domain knowledge and allow mediator systems to work with this knowl-
edge (e.g., a concept or class hierarchy can be used to determine whether the
system should retrieve objects of class C′ when the user is looking for instances
of C).

Domain maps not only provide a concept-oriented browsing and data explo-
ration tool for the end user, but—even more importantly—they can be used for
defining and executing integrated view definitions (IVDs) at the mediator. The
previous real-world example illustrates a fundamental difference in the nature
of information integration as studied in most of the database literature and as
is necessary for scientific data management. In the latter, seemingly unconnected
schema can be semantically close when situated in the scientific context, which,
in this case, is the neuroanatomy and neurophysiological setting described previ-
ously. Therefore, this is called mediation across multiple worlds and it is facilitated
using domain maps such as the one shown (see Figure 12.1).

Unknown
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FIGURE

A domain map for SYNAPSE and NCMIR (left) and its formalization in descrip-
tion logic (right). Unlabeled, gray edges ≈ “isa” ≈ “�”.

12.2.1 From Terminology and Static Knowledge
to Process Context

While domain maps are useful to put data into a terminological and thus some-
what static knowledge context, a different knowledge representation has to be
devised when trying to put data into a dynamic or process context. Consider, for
example, groups of neuroscientists who study the science of mammalian memory
and learning. Many of these groups study a phenomena called long-term potentia-
tion (LTP) in nerve cells, in which repeated or sustained input to nerves in specific
brain regions (such as the hippocampus) conditions them in such a manner that
after some time, the neuron produces a large output even with a small amount
of known input. Given this general commonality of purpose, however, individual
scientists study and collect observational data for very different aspects of the
phenomena.

Example 12.2.2(Capturing Process Knowledge). Consider a group [7] that studies
the role of a specific protein N-Cadherin in the context of synapse formation
during late-phase long-term potentiation (L-LTP), a subprocess of LTP. The data
collected by the group consists of measurements that illustrate how the amount
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of N-Cadherin and the number of synapses (nerve junctions) both simultaneously
increase in cells during L-LTP. Now consider that a different group [8] studies
a new enzyme called CAMK-IV and its impact on a chemical reaction called
phosphorylation of a protein called CREB. Their data are collected to show how
modulating the amounts of CAMK-IV and other related enzymes affect the amount
of CREB production, and how this, in turn, affects other products in the nucleus of
the neurons. Ideally, the goal of mediating between experimental information from
these two sources would be to produce an integrated view that enables an end-
user scientist to get a deeper understanding of the LTP phenomena. Specifically, the
end user should be able to ask queries (and get answers) that exploit the scientific
interrelationship between these experiments. In this way, the integrated access
provided by a mediator system can lead to new observations and questions, thus
eventually driving new experiments.

At the risk of oversimplification, the first group looks at synapse formation
and is only interested in the fact that some proteins (including N-Cadherin) bring
about the formation of synapses. They do not look at the processes leading to
the production of these proteins. The second group looks at a specific chain of
events leading up to the production of the proteins but does not identify which
proteins are produced. The semantic connection between these two sources can
be constructed in terms of the underlying event structure and the way the two
groups elaborate on different parts of it. Figure 12.2 depicts a simplified view of
the relationship explained previously and shows the cyclic progression of events
leading to synapse formation during LTP: Red edges situate the first source with
respect to the overall process, and blue edges situate the second source. In either
case, the dashed lines show the subsequence of events the sources glossed over,
or abstracted. Thus, the first source does not have any information pertaining to
phosphorylates (CAMK-IV, CREB), and the second source does not have any data
related to forms (protein, synapse). Neither source has any data about the (black)
edge synthesizes (gene, protein).

Domain maps allow data providers to put their source data into a static/
terminological context, and process maps allow them to do the same for a dy-
namic/process context. Together, they capture valuable glue knowledge that resides
at the mediator and facilitates integration of hard-to-correlate sources: in particu-
lar, concept-oriented data discovery (semantic browsing) [9], view definition, and
semantic query optimization [10]. To make model-based mediation effective, it is
also necessary to hook the elements of the source schema to the domain map and
the process map. This process, which we call the contextualization mechanism, is
central to the MBM framework.

Unknown
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A simple process map. Blue and red edges (marked b and r , respectively) depict
processes about which two data sources/research groups have observational data;
dashed edges indicate abstractions (short cuts). No observational data is available
for the edge 6–7; hence, this edge is shown in black.
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12.3 MODEL-BASED MEDIATION

In mediator systems, differences in syntax and data models of sources S1, S2, . . .

are resolved by wrappers that translate the raw data into a common data format,
typically extensible markup language (XML). In most current mediator systems,
all other differences, in particular schema heterogeneities, are then handled by an
appropriate integrated view definition (IVD), which is defined using an XML query
language [11, 12]. This architecture is extended by lifting exported source data
from the level of uninterpreted, semistructured data in XML syntax to the seman-
tically rich level of conceptual models (CMs) with domain knowledge. Then, the
mediator’s views can be defined in terms of CMs (i.e., IVDs are defined in a global-
as-view fashion) and thus make use of a semantically richer model involving class
hierarchies, complex object structure, and properties of relationships (relational
constraints, cardinalities).

12.3.1 Model-Based Mediation: The Protagonists

The underlying methodology and procedures of MBM involve users in different
roles and at different levels:

✦ Data providers are typically domain experts, such as bench scientists who
would like to make their data from experimental studies available to the com-
munity. In MBM, data providers can not only export an XML-queriable ver-
sion of their data, but they can also export domain semantics by lifting the ex-
ported data and schema information from a structural level (e.g., XML DTDs
[Document Type Definitions]) to the level of CMs.3 Allowing data providers
to situate or contextualize (see Section 12.3.5, Example 4) their primary data
themselves has significant benefits. First, data providers know best where their
data fit on the glue maps. Second, even without the IVDs defined by mediation
engineers, data are automatically associated across different sources via their
domain/process map contexts.

✦ View providers specify integrated view definitions (IVDs), that is, they pro-
gram complex views in an expressive, declarative rule language. The IVDs
are defined over the registered complex sources CM(S1), CM(S2), . . . and the
glue knowledge sources in the mediator’s repository. Thus, view providers are

3. The w3c working group XML Schema (http://www.w3.org/XML/Schema) and similar efforts like
RELAX NG (http://www.oasis-open.org/committees/relax-ng/) play an intermediate role between
purely structure-based models (DTDs) and richer semantic models with constraint mechanisms.
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the actual mediation engineers and they bring together (as a team or individ-
ually) expertise in the application domain and in databases and knowledge
representation.

The new fused objects defined by an IVD can be contextualized, based
on the contexts provided by the source conceptual models (see right side of
Figure 12.6). In this way, an integrated, virtual view exported by the mediator
becomes a first-class citizen of the federation; it is considered a conceptual
level source CM(M) itself and can be used just like any original CM-wrapped
source.

✦ End users can start with semantic browsing of CMs, by navigating the domain
and process ontologies in the style of topic maps, in which a user navigates
through a concept space by following certain relationships, going up and down
concept hierarchies and so on. Users may also focus their view by issuing
graph queries over domain or process maps, which return only the subgraphs
of interest. Eventually, the user can access raw data from different sources,
which is (due to contextualization) automatically organized by context [9],
and access derived data resulting from user queries against the mediated views.

12.3.2 Conceptual Models and Registration of Sources
at the Mediator

The following components of the conceptual model CM of a source S can be
distinguished:

CM(S) = OM(S) ∪ ONT(S) ∪ CON(S)

The different logical components and their dependencies are depicted in
Figure 12.3:

✦ OM(S) is the object model of the source S and provides signatures for classes,
associations between classes, and functions. OM(S) structures can be defined
extensionally by facts (EDB), or intensionally via rules (IDB).

✦ ONT(S) is the local ontology of the source S. It defines concepts and their
relationships from the source’s perspective.

✦ ONTG(S) is the ontological grounding of OM(S) in ONT(S), that is, a map-
ping between the object model OM(S) (classes, attributes, associations) and
the concepts and relationships of ONT(S).

✦ CON(S) is the contextualization of the local source ontology relative to a
mediator ontology, ONT(M).
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FIGURE

Model-based mediation: dependencies among logical components.

✦ IVD(M) is the mediator’s integrated view definition and comprises logic view
definitions in terms of the sources’ object models OM(S) and the mediator’s
ontology ONT(M). By posing queries against the mediator’s IVD(M), the user
has the illusion of interacting with a single, semantically integrated source
instead of interacting with independent, unrelated sources.

In the following, the local parts of CM(S) (OM(S), ONT(S), and ONTG(S))
are presented through a running example. For details on the contextualization
CON(S) see Example 4 and the related work on registering scientific data sources
[13].

Example 12.3.1 (Cell-Centered Database [CCDB]). Figure 12.4 shows pieces
of a simplified version of the conceptual model CM(CCDB) of a real-world sci-
entific information source called the Cell-Centered Database [14]. The database
consists of a set of EXPERIMENTS objects. Each experiment collects a number
of cell IMAGES from one or more instruments. For each image, the scientists
mark out cellular STRUCTURES in the image and perform measurements on them
[14]. They also identify a second set of regions, called DEPOSITs, in images that
show the deposition of molecules of proteins or genetic markers. In general, a
region marked as deposit does not necessarily coincide with a region marked as a
structure.
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12.4

FIGURE

Conceptual model for registering the Cell-Centered Database [14].
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Note that OM(CCDB) in Figure 12.4 includes classes that are instantiated
with observed data, that is, the extensional database EDB(CCDB). In addition
to classes, OM(CCDB) stores associations, which are n-ary relationships between
object classes. The association co_localizes_with specifies which pairs of
substances occur together in a specific structure. The object model also contains
functions, such as the domain specific methods that can be invoked by a user as
part of a query. For example, when the mediator or another client calls the function
CCDB.deposit_in_structure(), and supplies the ID of a deposit object, the
function returns a set of structure objects that spatially overlap with the specified
deposit object.

Next, the source’s local ontology, ONT(CCDB) is described. Here, an ontology
ONT(S) consists of a set of concepts and inter-concept relationships,4 possibly aug-
mented with additional inference rules and constraints.5 The ontological ground-
ing ONTG(S) links the object model OM(S) to the source ontology ONT(S). The
source ontology serves a number of different purposes.

Creating a Terminological Frame of Reference

For defining the terminology of a specific scientific information source, the source
declares its own controlled vocabulary through ONT(S). More precisely, ONT(S)
comprises the terms (i.e., concepts) of this vocabulary and the relationships among
them. The concepts and relationships are often represented as nodes and edges of a
directed graph, respectively. Two examples of inter-concept relations are has(co)
and has(pm), which are different kinds of part-whole relationships.6 In Fig-
ure 12.4, items ONT1 and ONT2 show fragments of such a concept graph. Once
a concept graph is created for a source, one may use it to define additional con-
straints on object classes and associations.

Semantics of Relationships

The edges in the concept graph of the source ontology represent inter-concept
relationships. Often these relationships have their own semantics, which must be
specified withinONT(S). ItemONT4 declares two new relationships, tc_has(co)
and tc_has(pm). After registration, the mediator interprets this declaration and
creates the new (possibly materialized) transitive relations on top of the base

4. Most formal approaches (e.g., those based on description logic) consider binary relationships only.

5. For example, ONT4, ONT5 in Figure 12.4 define virtual relations such as transitive closure over
the base relations.
6. By standards of meronyms, there are different kinds of the has relation, including component-
object has(co), portion-mass has(pm), member-collection has(mc), stuff-object has(so), and
place-area has(pa) [15].
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relations has(co) and has(pm) provided by the source S. Similarly, the item
ONT5 is interpreted by the mediator using a higher-order rule for chaining binary
relations:

chain(R1,R2)(X,Y) if R1(X,Z), R2(Z,Y)

With this, ONT5 creates a new relationship has_co_pm(X,Y) provided that there
is a Z such that tc_has(co)(X,Z), and tc_has(pm)(Z,Y).

Ontological Grounding of OM(S)

A local domain constraint specifies additional properties of the given extensional
database and thereby establishes an ontological grounding ONTG(S) between the
local ontology ONT(S) and the object model OM(S) (see Figure 12.3). Items OG1–
OG2 in Figure 12.4 refine the domains of the attributes EXPERIMENT.cell_type
and STRUCTURE.name from the original type declaration (STRING). The refine-
ment constrains them to take values from those nodes of the concept graph that
are descendants of the concept cerebellum through the has(co) relationship.

This constraint illustrates an important role of the local ontology in a concep-
tually lifted source. By constraining the domain of an attribute to be concept name,
C, the corresponding object instance o is semantically about C. In addition, this
also implies that o is about any ancestor concept, C', of C where ancestor is de-
fined via has(co) edges only. Similarly, if a specific instance, STRUCTURE.name,
has the value spine process, it is also about dendrite (ONT2 in Figure 12.4).

In addition to linking attributes to concept names, a constraint may also in-
volve inter-concept relationships. Assume projects_to(cell, brain_
region) is a relationship in the source ontology ONT(CCDB). A constraint may
assert that for all instances e of class EXPERIMENT, projects_to(e.cell_
type, 'globus_pallidus') holds (OG3). The constraint thus refines the
original relationship projects_to to suit the specific semantics of OM(CCDB).
Such constraint-defined correspondences between OM(S) and ONT(S) are used
in the contextualization process [13].

Intensional Definitions

In the CM wrapper of a source, S, we can define virtual classes and associations
that can be exported to the mediator as first-class, queriable items by means of
an intensional database IDB(S). For example, we can create a new virtual classAu: s/b

“Intensional”? called DENATURED_PROTEIN in IDB(CCDB) via the rule:

DENATURED_PROTEIN(ProtName) if DEPOSIT(ID, ProtName,

protein, dark, _, _),deposit_in_structure(ID) �= ∅

Unknown

Unknown
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Thus, an instance of a DENATURED_PROTEIN is created when a dark protein
deposit is recorded in an instance of DEPOSIT and there is some structure in
which this deposit is found. As a general principle of creating a CM wrapper,
such a definition will be supplemented by additional constraints to connect it
to the local ontology. For example, assume that ONT(CCDB) already contains a
concept called process. Item ONT3 defines denaturation as a specialization
of process. The constraint OG4 completes the semantic specification about the
new DENATURED_PROTEIN object.

Contextual References

It is a common practice for scientific data sources to tag object instances with
attributes from a public standard and to use controlled vocabularies for the values
of some of these attributes. For example, the source can specify that the domain
of the DEPOSIT.id field can be accessed through an internal method, which,
given a protein name, gets its id from a specific database. For example, we can
use get_expasy_protein_id to retrieve this information from the Swiss-Prot
database on the Web. How the source enforces this integrity constraint is internal
to the source and not part of its conceptual export schema.

12.3.3 Interplay between Mediator and Sources

To address the source registration issue, which components of an existing n-source
federation that can be seen, or accessed, by the new, n+1st source need to be spec-
ified. A federation at the mediator consists of: (1) currently registered conceptual
models CM(S) of each participating source S, (2) one or more global ontologies
ONT(M) residing at the mediator that have been used in the federation, and (3)
integrated views IVD(M) defined in a global-as-view (GAV) fashion.

Typical mediator ontologies ONT(M) are public, meaning they serve as
domain-specific expert knowledge and thus can be used to glue conceptual models
from multiple sources. Examples of such ontologies are the Unified Medical Lan-
guage System (UMLS) from the National Library of Medicine7 and the Biological
Process Ontology from the Gene Ontology Consortium.8 In the presence of multi-
ple ontologies, articulations, (mappings between different source ontologies [16])

7. The Unified Medical Language System (UMLS) available at http://www.nlm.nih.gov/research/umls/
is, strictly speaking, a metathesaurus, or a semi-formal ontology with a limited set of pre-defined
relationships such as broader-term/narrower-term.
8. See http://www.geneontology.org/process.ontology for information about the Biological Process
from the Gene Ontology Consortium.

Unknown
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FIGURE

A domain map (DM) after situating new concepts MyNeuron and MyDendrite
(dark).

can be used to register with the mediator information about inter-source relation-
ships. Note that a source, S, usually cannot see all of the previously discussed
components (1–3) when defining its conceptual model: Although S sees the medi-
ator’s ontologies, ONT(M), and thus can define its own conceptual model, CM(S),
relative to the mediator’s ontology in a local-as-view (LAV) fashion, it cannot di-
rectly employ another source’s conceptual model, CM(S'), nor can it query the
mediator’s integrated view, IVD(M), which is defined global-as-view (GAV) on
top of the sources. The former is no restriction because S' can register CM(S'),
in particular ONT(S'), with the mediator, at which point S can indirectly refer to
registered concepts of S' via ONT(M). The latter guarantees that query processing
in this setting does not involve recursion through the Web (i.e., between a source
S and the mediator M). The dependency graph in Figure 12.3 is acyclic.9

Example 12.3.2 (Contextualization: Local-as-View). Consider the domain
map in Figure 12.5. Lighter-colored nodes correspond to concepts that the me-
diator understands and a source can see. Now assume a source, S, wants to reg-
ister information about specific neurons and their dendrites, but the mediator
ontology (domain map) does not have dedicated names for those specific kinds
of neurons and dendrites. In MBM this problem is solved by contextualizing

9. At the cost of loss of efficiency, the restriction no recursion through the Web could be lifted.
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the new local source concepts as views on the mediator’s global concepts: In
Figure 12.5, the darker-colored source concepts are hooked to the mediator’s
domain map, thereby defining their meaning relative to the mediator’s concepts.
This is achieved by sending the following first-order axioms (here in description
logic syntax) to the mediator:

MyDendrite ≡ Dendrite � ∃exp.Dopamine_R
MyNeuron � Medium_Spiny_Neuron

� ∃proj.Globus_pallidus_external
� ∀has.MyDendrite

Thus instances of MyDendrite are exactly those dendrites that express Dopa-
mine R(eceptor), and MyNeuron objects are medium spiny neurons projecting
to Globus Pallidus External and only have MyDendrites. Assuming properties
are inherited along the transitive closure of isa, it follows that MyNeuron, like
any Medium_Spiny_Neuron projects to certain structures (OR in Figure 12.5).
With the newly registered knowledge, it follows that MyNeuron definitely projects
to Globus Pallidus External. To specify that it only projects to the latter, a non-
monotonic inheritance (e.g., using F-logic (FL) with well-founded semantics) can
be employed.

Note that the intuitive graphical contextualization depicted in Figure 12.5
is not unique; logically equivalent domain maps may have different graphical
representations.10 For domain maps that can be completely axiomatized using a
description logic, a reasoning system such as Fast Classification of Terminologies
(FaCT) [17] can be employed to compute the deductive closure and, in particular,
to derive a unique concept hierarchy and check consistency of a domain map.

12.4 KNOWLEDGE REPRESENTATION FOR
MODEL-BASED MEDIATION

This section takes a closer look at the principal mechanisms for specifying glue
knowledge: ontologies in the form of domain maps (DMs) and process maps
(PMs).

10.This is similar to the fact that the same query can have many different syntactic representations. In
general, equivalence of first-order (or SQL) queries is not decidable.



Lacroix Lacroix-12 May 7, 2003 14:57

352
12 A Model-Based Mediator System for Scientific Data Management

12.4.1 Domain Maps

As is standard for ontologies, DMs name and specify relevant concepts by describ-
ing the characteristic relationships among them [18]. In this way, DMs provide the
basic domain semantics needed to glue data across different sources in multiple-
world scenarios. DMs can be depicted more intuitively in the form of labeled,
directed graphs. In contrast to many other graph-based notations, however, DMs
have a solid formal semantics via a translation to logic rules. The graph form of
DMs is defined as follows.

Definition 12.1 Domain Maps

Let C be a set of symbols called concepts and R a set of roles. A DM is a directed,
labeled graph with nodes C. A concept C ∈ C can be understood as denoting a
class of objects sharing a set of common properties. To understand how a concept
C is defined relative to other concepts, we have to inspect its outgoing edges. c ∈ C
denotes that c is an instance of concept C.11 Edges are distinguished in DMs as
follows:

1. C
isa→ D (short: C → D) defines that every C isa D, that is, c ∈ C implies

c ∈ D.
The subconcept/subclass relation is very common in DMs, thus the isa label
is usually omitted and the shorthand notation C → D is used instead.

2. C
ex:r→ D defines that for every c ∈ C, there exists some r -related d ∈ D.

Here, r ∈ R is a role, or, a binary relation r (c, d) between instances of C and
D.

3. C
all:r→ D defines that for every c ∈ C and all x that are r -related to c (i.e., for

which r (c, x) holds), x ∈ D holds.

4. C
r→ D defines that if c ∈ C and d ∈ D, then they are r -related, that is, r (c, d)

holds.

5. AND→i {D1, . . . , Dn} indicates that an AND-node with n outgoing edges to
D1, . . . , Dn, respectively, defines an anonymous concept, the intersection of
concepts D1, . . . , Dn.

6. OR→i {D1, . . . , Dn}, indicates that an OR-node with n outgoing edges to
D1, . . . , Dn, respectively, defines an anonymous concept, the union of con-
cepts D1, . . . , Dn.

11.Thus, C and D can be viewed as unary predicates.

Unknown
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7. C
=→ Ddefines that C is equivalent to D, meaning every C isa Dand vice versa.

We could have denoted this also as C↔D. However, the directed edge keeps
the distinction between C (the definiendum) and its definition D (definiens).

Note that D can be an atomic or a defined concept. When unique, AND nodes
are omitted and outgoing arcs directly attached to the concept being defined. In
Figure 12.5, unlabeled, grey edges and edges labeled proj (projects-to) correspond
to isa edges and ex:proj edges, respectively.

Reified Roles as Concepts

In DMs, as in description logics, the concepts are being defined, whereas the roles
are only a means to that end. To capture the semantics of roles, or define their
properties in terms of each other, they need to be defined in terms of concepts
themselves. In logic, this “quoting mechanism” is known as reification.

Example 12.4.1 (Roles as Concepts). Consider a DM involving the roles reg-
ulates, activates, and inhibits, and assume that in the given domain, activates
(C, D) and inhibits (C, D) are special cases of regulates (C, D). Instead of in-
troducing a special notation for sub-roles12 and then defining the mechanics of
how roles can be related to one another, roles are turned into first-class citizens
by making them concepts using an operator, make-concept (mc). The modeling
capabilities of DMs can be applied to roles and, for example, simply state that
mc(activates)

isa→mc(regulates).

By modeling roles as concepts, more domain semantics can be formalized,
leading to better knowledge engineering. In particular, during query processing,
such formalized knowledge can be automatically employed by the system: Given
a DM (formalized as logic rules), an MBM query or view definition involving
activates and regulates knows that the former is a subconcept of the latter. If
during query processing a goal regulates('cAMP',Protein) is evaluated,
the logic rules corresponding to the DM knowledge allow the system to deduce
that any result for activates('cAMP',Protein) is also an answer for reg-
ulates('cAMP',Protein). This is correct because a substitutability principle
holds, which allows the system to replace a concept, D, with any of its subconcepts,
C, that is, for which C

isa→ D holds.

12.RDF(S) has such a notion called subproperty; see http://www.w3.org/TR/rdf-schema/.

Unknown
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Generating the Role Hierarchy

When making a role into a concept, the isa hierarchy13 on concepts induces an isa
hierarchy on roles.

Domain Maps as Logic Rules

Domain maps borrow from description logics [19] the notions of concept and
roles. Indeed, while some of the previously mentioned constructs of DMs have
equivalent formalizations in description logic [20], the fact that we need additional
mechanisms such as roles as concepts and recursive and parameterized roles and
concepts, and the fact that we want executable DMs during query processing,
requires a translation into a more general logic framework.

In the following, we formalize DMs in a minimal subset of FL [21]. The
semantics of DMs could be formalized in other languages, in particular in other
deductive database languages. The use of FL is convenient because a small subset
of it already matches nicely the minimal requirements established for a MBM
system [20]. Moreover, implementations of FL are readily available [22, 23] and
have been used by the authors in different mediator prototypes before [24, 25, 26].

In FL, c : C and C :: D denote class membership (c ∈ C) and subclassing
(C ⊆ D), respectively. Thus, there are logic rules of the form head if body that
express the FL semantics of “:” and “::”. Say that “::” is a reflexive, transitive,
and antisymmetric14 relation.

Definition 12.2 Compilation of Domain Maps

The mapping � : DM → FL of domain maps to F-logic is defined as follows:

1. �(C) := {C : concept}, for all atomic concepts C ∈ C
2. �(r ) := {r : role}, for all roles r ∈ R
3. �(C

isa→ D) := {C :: �D} ∪ �(D)

4. �(C
ex:r→ D) :=

(a) {r (c, _d), _d : �D if c : C, _d = skolD(c)} ∪ �(D)

(b) {F alse if c : C, ¬(r (c, _d), _d : �D))} ∪ �(D)

5. �(C
all:r→ D) :=

(a) {d : �D if c : C, r (c, d)} ∪ �(D)

(b) {F alse if c : C, r (c, d), ¬d : �(D)} ∪ �(D)

13.Strictly speaking, the isa does not have to be a hierarchy but can be any directed acyclic graph.

14.Because concepts are implemented as FL classes, this avoids terminological cycles.
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6. �(C
r→ D) := {r (c, d) if c : C, d : �(D)} ∪ �(D)

7. �(AND→i {D1, . . . , Dn}) := {d : skolAND if d : �(D1), . . . , d :
�(Dn)} ∪ �(D1) ∪ · · · ∪ �(Dn)

8. �(OR→i {D1, . . . , Dn}) := {d : skolOR if d : �(D1) ∨ . . . ∨ d :
�(Dn)} ∪ �(D1) ∪ · · · ∪ �(Dn)

9. �(C
=→ D) := {C :: �(D), �(D) :: C if �(D)} ∪ �(D)

Remarks

Here, �(D) is defined similar to �(D), but it returns for a compound con-
cept description D, a new auxiliary symbol �(D) representing the compound.
For atomic D, we simply have �(D) = �(D). The symbols skolX produce new
Skolem function symbols every time they are used in the translation �: For
example, in 4(a), we invent a symbolic representation for the existentially quan-
tified variable _d. Note that c, d, _d are logic variables, while C,D,Di ,False are
constants.15 The different variants (a) and (b) in the translations of DMs corre-
spond to different intended uses: in 4(a), we create an anonymous object for the
∃-quantified variable, in 5(a), we type coerce all C.r objects into instances of D.
In contrast, the (b) translations only check whether the constraints induced by
the DM edges are indeed satisfied and signal an inconsistency (False) if they are
not.

Example 12.4.2 Roles as Concepts Continued. Consider a DM stating that
NProt

isa→ Protein, NProt regulates some Gene, and cfos
isa→ Gene.16

The role regulates is conceptualized by asserting mc(regulates). When making
its hidden arguments visible, mc(regulates (C,D)) really denotes a family of
regulates concepts. The isa hierarchy on regulates concepts is derived from
the isa hierarchy of its arguments. For example:

mc(regulates(NProt,cfos))
isa→ mc(regulates(NProt, Gene))

isa→ mc(regulates(Protein, Gene))

Deriving the Role Hierarchy

Previously the unary operator, mc, which turns role literals into concepts was
introduced. It is implemented in FL as a subclass of the (meta-)class concept by
asserting mc::concept and adding further rules for deriving the role hierarchy

15.This is reversed from the usual convention used in the rest of the chapter to match our DM notation.

16.Here, NProt stands for nuclear protein.
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from the concept hierarchy, which are given as set of mc-declarations such as
r(C, D) : mc by the user:

r(C,D): mc, r(C',D'): mc, r(C,D)::r(C',D')

if (r(C,D): mc ∨ r(C',D'): mc),C:: C', D:: D' (up/down)

r(C,D): mc, r(C',D'): mc, r(C,D):: r(C',D')

if (r(C,D'): mc ∨ r(C',D): mc), C:: C', D::D' (mixed)

Observe that with these rules, the desired result is obtained in Example 6.

Recursive Concepts

Consider the part of relationship has_a and its interaction with isa. For example,Au: Is this
sentence ok
as is?

MyNeuron isa Medium_Spiny_Neuron, which in turn has_a Neostriatum
therefore MyNeuron has_a Neostriatum holds (see Figure 12.5). In the general

case, this gives rise to a recursive rule if C
isa→ D and D

has_a→ E then C
has_a→ E.

Similarly, one can define that isa and has_a are independently transitive and that
isa is anti-symmetric. For such recursive definitions, an intuitive graph notation
can be devised (e.g., using a dashed edge for the concept being defined to its
recursive definition, see Ludäscher et al. [27] p.601). In a declarative, rule-based
query language like FL, an executable specification is:

has_a(X,Z) if X::Y, has_a(Y,Z).

Note that X,Y,Z are concept variables. Such FL rules can also be used at the
mediator to handle inductive definitions, such as ONT4 in Figure 12.4, in particular,
when the source does not have the capability to evaluate recursive definitions.

Parameterized Roles and Concepts

Part of relationships such as has_a come in different flavors, F (e.g., F ∈
{ member/collection, portion/mass, phase/activity, . . .}) and transitivity does not
necessarily carry over across flavors [15].17 This is most naturally modeled by a pa-
rameterized role, has_a(F), which is transitive within each flavor, F , but which
may interact in other ways across flavors. Definition 12.2 shows how domain maps
can be formalized as logic rules via a mapping �. This mapping can be extended
for parameterized roles and concepts: For example, assume the parameterized
role has_a(F) should hold between concepts C and D only for some flavors, F ,

17.For example, orchestra has a musician and musician has a arm, but not orchestra has a arm.
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satisfying a condition ϕ(F ). We can extend � and compile such a parameterized
DM edge into FL as follows:

�(C
has_a(F)‖ϕ(F)−→ D) = {has_a(F)c,d if c: C,d:�(D),ϕ(F)} ∪ �(D)

Note that a parameterized role such as has_a(F) has a first-order semantics in
FL despite its higher-order syntax [28].

12.4.2 Process Maps

PMs provide abstractions of process knowledge, that is, temporal and/or causal
relationships between events that can be used for situating and linking data across
different sources. Like DMs, PMs are directed, labeled graphs, albeit with a very
different semantics: Nodes are used to model states and edges correspond to state
transitions, which are labeled with a process name describing the transition. In
this way, data providers (e.g., bench scientists) can not only hook their raw data
to the (given or refined) DMs but also to processes witnessed in their experimental
studies databases (see Figure 12.2 and Figure 12.8).

Initial Process Semantics PM0

Intuitively, an edge of the form eπ = s
{ϕ}π{ψ}−→ s ′ of a PM means that the process π

leads from state s to s ′; ϕ is a necessary precondition that must hold in s for π to
happen, and ψ is a postcondition, which holds in s ′ as a result of π . P M0 denotes
the set of all initial process semantics.

We call the edge eπ of a PM a process occurrence of π in PM. Thus, a process
occurrence specifies where in a PM a process occurs, and which pre- and postcon-
ditions, ϕ and ψ , this occurrence satisfies. In addition to the semantics implied by
the occurrence of eπ in PM, a process π can have an initial semantics associated
with the process name, π .

To allow for parameterization of processes, edge labels where process names
are first-order atoms (of the form π = π(T1, . . . , Tn) where each term Ti is a logic
variable or constant) are considered. For example, consider π =opens(Channel)
as describing the opening process of an ion channel. Its initial semantics are defined
by the expression:

{¬open(Channel)} opens(Channel) {open(Channel)}

meaning that any transition along a process occurrence of π = opens(Channel)
in a PM must be from a state where open(Channel) was false. In the successor
state, however, (after π has happened), open(Channel) is true.

Unknown
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From Process Maps to Domain Maps

The first-order predicates occurring in ϕ and ψ are called open(Channel), fluents,
because their truth is state dependent. It is required that the set of fluent predicate
symbols, F , is disjointed from the set, P, of process names and the sets of concept
and role names C and R, respectively. In contrast, the constant parameters used
in process occurrences, such as Channel are allowed to be concepts from C.

For example, a DM may have that NMDA_receptor
isa→ Calcium_channel

isa→channel in which case the process knowledge about the opening of channels
and the static knowledge from a DM are directly linked through the common
concept Channel.

Similarly, just as roles are first-class citizens by reifying them into concepts, the
same can be done for processes, by specifying additional semantics of processes
using domain maps.

Example 12.4.3 (Processes as Concepts). Consider the binds_to(X,Y) process
with the initial semantics.

{¬bound(X,Y)} binds_to(X,Y) {bound(X,Y)}

Now consider a DM in which we have reified processes as concepts as follows:

dimerizes(X)
isa‖X=Y−→ binds_to(X,Y)

It is easy to see that this (parameterized) DM edge, when translated into FL, allows
the system to conclude in the combined knowledge base (DM ∪ PM0) that

{¬bound(X,X)}dimerizes(X) {bound(X,X)}.

Process Elaboration and Abstraction

The edge, eπ , of a process occurrence can be seen as an abstraction of a real process.
In addition to its initial semantics, PM0, and the semantics induced by its concrete
occurrence in a specific PM, this abstraction can be elaborated by replacing the eπ

with a (sub-)process map elab(eπ), whose initial and final states are s and s ′. The
newly created nodes and edges of the elaboration, elab(eπ), are annotated with
the same unique elaboration identifier eID. The eID includes at least a reference
to eπ , indicating the edge being elaborated, and the author (data provider) of the
elaboration.

The converse of elaboration, abstraction, takes a connected subgraph, �(S, s0,
s f , E), with nodes S, edges E, and distinguished nodes s0, s f ∈ S (initial and final

Unknown
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state), and abstracts � into a single edge eπ = abstract(�(S,s0,sf,E)).
The abstracted edges E of � are marked with a unique abstraction identifier aID,
which includes a reference to the new abstraction edge, eπ , and the author of the
abstraction.

Definition 12.3 Process Maps

A PM �(S, s0, s f , E) is a connected, directed graph with nodes, S, labeled edges,
E, and initial and final states s0, s f ∈ S. The edges eπ of E are of the form

s
{ϕ}π{ψ}→ s'(eπ)

where the process name π is a first-order atom and ϕ and ψ are first-order formulas,
called the precondition and postcondition of eπ , respectively.

Given an edge e = sa
...→ sb of a process map �(S, s0, s f , E), the elaboration,

elab(e), of e is a process map �′(S′, sa , sb, E′) such that (1) the initial and final
states are sa , sb, (2) S′ ∩ S = {sa , sb}, and (3) all e′ ∈ E′ are linked to e via a
common, unique identifier eid(e′, e).

A connected subgraph of a PM with distinguished initial and final state is called
a subprocess map (sub-PM). Given a PM �(S, s0, s f , E), the abstraction of a sub-
PM �′(S′, sa , sb, E′) of �, denoted abstract (�′), is a new edge eπ ′ = sa

...→ sb,
where (i) eπ ′ /∈ E, and (ii) all e′ ∈ E′ are linked to eπ ′ via a common, unique
identifier aid(e′, eπ ′ ).

Marking edges with elaboration and abstraction identifiers guarantees one-
to-one mappings between an edge and its elaboration and similarly, between a
sub-PM and its abstraction. In this way, data providers can “double-click” on an
edge, eπ , and elaborate the processes into a PM, �, to provide more precise links
to their data. Conversely, they may collapse a sub-PM, �, into a single edge, eπ , if
the data does not provide information at the detailed level of � and hence is more
adequately hooked to the overall process, eπ .

Process Maps as Logic Rules

Similarly to DMs, we can translate PMs into a logic representation �(PM). The
difference is that for DMs, our formalization in description logic or F-logic yields a
first-order logic semantics, whose unique minimal model, M(DM), interprets con-
cepts and roles as unary and binary predicates over a set of individuals. The model,
M, implies that data objects, which are linked as concept instances to a DM, have
the properties defined by the domain map (e.g., the neurons in the images linked to
MyNeuron in Example 12.3.2 project to Globus_Pallidus_External). In contrast,
the logic representation of a PM specifies only some process properties via pre- and
postconditions in the PM and the PM’s graph structure. We omit the details of the
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semantics, due to lack of space. The basic idea is that the graph structure of PMs
(with its embedded hierarchy of elaborations and abstractions) is formalized via
a nested Kripke structure in which the nodes of PM (states) have associated first-
order models and in which labeled process edges specify a temporal accessibility
relation between states.18 In particular, a process elaboration of an edge, eπ , adds
to the initial semantics, PM0, and the semantics of the pre- and postconditions of
the concrete occurrence of eπ in PM, an elaboration semantics (i.e., a sequence of
intermediate states with first-order constraints along the paths of the elaboration).

12.5 MODEL-BASED MEDIATOR SYSTEM AND
TOOLS

At the core of the MBM framework is the KIND mediator system. Other impor-
tant components are the Spatial Markup and Rendering Tool (SMART) Atlas for
annotating, displaying, and relating data with brain atlases, the CCDB, defined
in Example 12.3.1 as the primary source of experimental data, and the Knowl-
edge Map Explorer (Know-ME) tool for concept-based navigation of source and
mediated views. For a description of Know-ME, see Qian et al. [29]; the other
components are described in the following text.

12.5.1 The KIND Mediator Prototype

The architecture of the KIND mediator system is depicted on top in Figure 12.6.
At the bottom, a snapshot of the prototype execution is shown: After the user
issues a query against the integrated view, the system situates the results on a
domain map, in this case ANATOM (simple ontology of brain anatomy). By clicking
on the orange diamonds, the user can retrieve the actual result objects, grouped
by concept (foreground).

In the first prototype [9, 30] the F-logic implementation FLORA [31] was used
as the only query processing and deduction engine. As part of a large, collaborative
project [4] the prototype is being re-implemented as a modular, distributed medi-
ator system that includes several additional components, including the following:

✦ Logic plan generator: Given a user query, Q, and an integrated view definition
IVD, Q◦ IVD is translated into a plan generator program PG(Q◦ IVD) that,
when executed, produces an initial logic query plan for Q ◦ IVD. Here “◦”
denotes query composition.

18. See Lausen et al., Section 6 [27] for a formalization of hierarchical processes using nested Kripke
structures.
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12.6

FIGURE

Top: Architecture of the KIND model-based mediator. Bottom: Snapshot of the
prototype. Background left shows a mediator shell for issuing ad hoc queries
against CM(M); background right shows a generated subgraph having the re-
quested result data shown in their anatomical context. Clicking on (diamond)
result node retrieves the actual result data (see foreground center).
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✦ Query rewriter: This module takes a logic query plan and rewrites it into
an executable, distributed plan based on the capabilities of a source (e.g.,
conjunctive queries with binding patterns or complete SQL).

✦ Execution plan compiler: For final execution, the rewritten plan is compiled
into a logic program whose run-time execution sends the corresponding sub-
queries to wrapped sources, retrieves results, and post-processes them (e.g.,
joins, group-bys, and unions across sources) before sending them to the user.

✦ SQL plan generator: For relational sources (those having SQL query capa-
bilities), this wrapper module translates a logic query plan into an equivalent
SQL statement, similar to Draxler’s tool [32].

A preliminary version of this new system has been recently demonstrated [13]
and includes all of the modules previously listed. Plan generation and rewriting is
implemented using logic programming technology [33]. The SQL plan generator
has been implemented in Java. It is planned that the final system will include
specialized inference engines such as FLORA and XSB [34] for handling deductive
and object-oriented database capabilities, and FaCT [17] for reasoning tasks over
domain maps that are formalized in description logics.

12.5.2 The Cell-Centered Database and SMART Atlas:
Retrieval and Navigation Through Multi-Scale
Data

The CCDB mentioned earlier, in Example 12.3.1, houses different types of high-
resolution, 3D light and electron microscopic reconstructions of cells and sub-
cellular structures produced at the National Center for Microscopy and Imaging
Research19 [14]. It contains structural and protein distribution information de-
rived from confocal, multiphoton, and electron microscopy, including correlated
microscopy. Many of the data sets are derived from electron tomography, a pow-
erful technique for deriving 3D information from electron microscopic specimens.
Electron tomography is similar in concept to medical imaging techniques like com-
puterized axial tomography (CAT) scans and magnetic resonance imaging (MRI)
in that it derives a 3D volume from a series of 2D projections through a structure.
In this case, the structures are contained in sections prepared for electron mi-
croscopy, which are tilted through a limited angular range. Examples of datasets
in the CCDB are shown on the left of Figure 12.7.

19.http://www.ncmir.ucsd.edu



Lacroix Lacroix-12 May 7, 2003 14:57

12.5 Model-Based Mediator System and Tools
363

12.7

FIGURE

Left: Examples of tomographic data sets in the CCDB. A and B show a selectively
stained spiny dendrite from a Purkinje cell. A is a projection of the volume recon-
struction (dendrite appears as white against dark background). B is the segmented
dendrite. C and D show a tomographic reconstruction of the node of Ranvier. C
is a single computed slice through the volume. D is a surface reconstruction of the
various components comprising the node. Scale bar in B = 1µm; in C = 0.5µm.
Right: Registration of a data set with the Smart Atlas. The user draws a polygon
representing the location of a data set, in this case a filled Purkinje neuron. The
user specifies the database containing this data, then enters an annotation and se-
lects a concept from the UMLS or some other ontology. The concept ID is stored
in the database.

A screenshot of the Smart Atlas tool is shown on the right of Figure 12.7. It
is based on a geographic mapping tool [35] and allows users to define polygons
on a series of 2D vector images and annotate them with names, relationships,
and concept IDs from an ontology such as UMLS. This tool provides another
kind of glue map (in addition to domain and process maps). First, a brain atlas
such as that by Paxinos and Watson [36] is translated into a spatial format, such
as Scalable Vector Graphics (SVG). The user then marks up the atlas using the
SMART ATLAS tool (e.g., with concept names from UMLS). Once the atlas has been
(partially) marked up, it can be queried from the same browser: Clicking on any
point in the atlas will return the stereotaxic coordinates; clicking on a brain region
will return the name of that region, along with any synonyms, and highlight all
planes containing that structure. The Smart Atlas can now be used to register a
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FIGURE

Process maps with elaborations and abstractions.

researcher’s data to a specific spatial location. This also links the registered data
automatically to the UMLS ontology by virtue of the earlier semantic markup
of spatial objects. To register source data, the user draws an arbitrary polygon
representing the approximate data location on one of the atlas planes (Figure 12.7,
right). The user is then presented with a form that can be used to add annotations
or provide additional links to concepts of an ontology. Although the UMLS is
used in the examples shown here, the user will eventually be able to use multiple
ontologies, including those of their own creation, for semantically indexing data.
Tools are also being developed to define new terms and relationships in existing
ontologies. Another component of the system has been demonstrated and shows
how spatial and conceptual information can be used together in a mediator system
[37]; see also Martone et al.’s chapter in Neuroscience Databases [38] for further
details on the use of the SMART Atlas.

12.6 RELATED WORK AND CONCLUSION

12.6.1 Related Work

Significant progress has been made in the general area of data mediation in recent
years, and several prototype mediator architectures have been designed by projects
like TSIMMIS [39], SIMS [40], Information Manifold [41], Garlic [42], and MIX
[43]. While these approaches focus mostly on structural and schema aspects, the
problem of semantic mediation has also been addressed: In the DIKE system [44],
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the focus is on automatic extraction of mappings between semantically analogous
elements from different schemas. A global schema is defined in terms of a con-
ceptual model (SDR network), in which the nodes represent concepts and the (di-
rected) edge labels represent their semantic distances, and a score called semantic
relevance measures the number of instances of the target node that are also in-
stances of the source node. The correspondence between objects is defined in
terms of synonymies, homonymies, and sub-source similarities, defined by finding
maximal matching between the two graphs.

ODB-Tools [45] is a system developed on top of the MOMIS [46] system
for modeling and reasoning about the common knowledge between two to-be-
integrated schemas. They present the object-oriented language, ODLI3 , derived
from a description logic (OCDL). The language allows a user to create complex
objects with finite nesting of values, union and intersection types, integrity con-
straints, and quantified paths. These constructs are used to define a class in one
schema as a generalization, aggregation, or equivalent with respect to another;
subsumption of a class by another can be inferred. An integrated schema is ob-
tained by clustering schema elements that are close to one another in terms of an
affinity metric.

Calvanese et al. [47] perform semantic information integration using an LAV
approach by expressing the conceptual schema by a description logic language
called DLR and subsequently defining non-recursive Datalog views to express
source data elements in terms of the conceptual model. The language DLR rep-
resents concepts, C, relations, R, and a set of assertions of the form C1 ⊂ C2

or R1 ⊂ R2, where R1, R2 are DLR relations with the same arity. Mediation is
accomplished by defining reconciliation correspondences, or specifications that a
query rewriter uses to match a conceptual-level term to data in different sources.

Recently Peim et al. [48] have proposed an extension to the well-known
TAMBIS system [49]. Their approach is similar to ours [18, 50] in that a logic-
based ontology (in their case the ALCQI description logic) interfaces with an
object-wrapped source. While we use F-logic [28] as the internal knowledge rep-
resentation and query language, their work focuses on how a query on the ontology
is transformed to monoid comprehensions for semantic query optimization.

12.6.2 Summary: Model-Based Mediation
and Reason-Able Meta-Data

MBM was presented as a methodology that supports information integration of
scientific data across complex, multiple-world scenarios as found in the neuro-
science domain. In this framework, object-oriented models and conceptual mod-
els (CM), domain maps (DM), and process maps (PM) all provide means to
capture more domain semantics and thus can act as glue knowledge sources to link

Unknown
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hard-to-correlate sources. Mechanisms to contextualize source data formally were
presented. The graph structures thus constructed have been shown to be useful for
navigating across related concepts and querying local data during navigation [29].

Logic formalizations of DMs and PMs can be seen as “reason-able” or “ex-
ecutable” “meta-data” (see a paper by Horrocks [51]): Unlike conventional, de-
scriptive meta-data, which are primarily used for data discovery, formal ontologies,
such as DMs and PMs, can support much more versatile computational tasks in
a mediator system, as illustrated in this chapter. For example, different and ap-
parently unrelated data objects can be associated and retrieved together or even
fused by the mediator’s integrated view definition (IVD), because IVDs can be
defined as deductive rules over DMs and PMs (Figure 12.3). In this way, in model-
based mediation (MBM), logic rules play the role of executable or computational
meta-data for scientific data integration. The latter is a challenging application
and benchmark for combined database and knowledge representation techniques.
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