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Abstract. Integrated provenance support promises to be a chief advan-
tage of scientific workflow systems over script-based alternatives. While
it is often recognized that information gathered during scientific work-
flow execution can be used automatically to increase fault tolerance (via
checkpointing) and to optimize performance (by reusing intermediate
data products in future runs), it is perhaps more significant that prove-
nance information may also be used by scientists to reproduce results
from earlier runs, to explain unexpected results, and to prepare results
for publication. Current workflow systems offer little or no direct support
for these “scientist-oriented” queries of provenance information. Indeed
the use of advanced execution models in scientific workflows (e.g., pro-
cess networks, which exhibit pipeline parallelism over streaming data)
and failure to record certain fundamental events such as state resets of
processes, can render existing provenance schemas useless for scientific
applications of provenance. We develop a simple provenance model that
is capable of supporting a wide range of scientific use cases even for
complex models of computation such as process networks. Our approach
reduces these use cases to database queries over event logs, and is capa-
ble of reconstructing complete data and invocation dependency graphs
for a workflow run.

1 Introduction

The importance of provenance information in scientific data and workflow man-
agement is widely recognized, as witnessed, e.g., by specialized workshops [4,1],
research projects [17], and surveys [3,20] dedicated to this topic, and by in-
vestigations on foundations of data provenance for queries and transformations
[5,9,23]. However, current scientific workflow systems still offer little or no sup-
port for queries of interest to the end-users of these systems, e.g., researchers in
the life or physical sciences. In this paper, we argue that concrete use cases, ex-
pressed in terms that are meaningful to the scientist, should drive the design of
a provenance system. Moreover, such systems should be designed in terms of the



Fig. 1. A workflow for computing phylogenetic trees from input DNA sequences.

models of computation (MoC) that govern the execution of scientific workflows
to ensure that all pertinent events are recorded in the execution log.

Fig. 1 shows an example workflow for inferring phylogenetic trees approx-
imating the evolutionary relationships between organisms. DNA sequences for
homologous genes from a number of taxa are provided as input to the workflow.
Actor A1 performs an initial alignment of the sequences (e.g., using the program
ClustalW [22]), and actor A2 refines this initial alignment (e.g., using Gblocks
[7]).1 Actor A3 infers a set of phylogenetic trees from the aligned sequences (e.g.,
using DNAPARS [19]), and actor A4 computes the consensus of these trees (e.g.,
using CONSENSE [19]).

For such scientific workflows we would like to: (a) enable scientists to ask “sci-
entific” questions about a workflow run by providing convenient queries against
the run’s execution log; and (b) have the system track the true data dependen-
cies within a run so that answers to such scientific questions may be as accurate
as possible. For example, the system should recognize independent “sub-runs” as
such: The workflow in Fig. 1 may process multiple sets s1, s2, . . . of independent
DNA sequences (e.g., corresponding to distinct genes in the taxa of interest)
within a single workflow run R. In such cases, the system should not infer that
the data products resulting from the different si are interdependent. Rather, the
system should answer accurately questions such as:

– Which phylogenetic trees were used to produce this consensus tree?
– Which DNA sequences does this consensus tree depend on?
– Which of the input DNA sequences were not used to derive any output con-

sensus tree?

In this paper, we develop a provenance model designed to support such user-
oriented queries for pipelined models of computation where tracking data de-
pendencies can be complex. For another example, consider an actor A in an

1 Following Kepler terminology, we call workflow components actors.
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environmental monitoring workflow that computes a running average of temper-
ature for each received measurement data token. Thus, upon each invocation or
firing of A, the actor consumes a temperature token and emits a new running
average token. To calculate the running average over multiple firings, A must
maintain state. For the provenance system this means that every produced data
token must be recorded as dependent not just on those input tokens received
since the last time the actor fired, but on all tokens received since A was ini-
tialized. Conversely, if A is to limit the running averages to readings taken on
a particular day, then A’s state is reset once per day. There are no dependen-
cies between tokens produced after a reset and tokens consumed prior to the
reset. This observation naturally partitions token streams, as well as actor fir-
ings, into semantically meaningful firing rounds.2 Clearly, a provenance system
should be able to observe and record new rounds of firing to avoid reporting
false dependencies.

The running average example described above illustrates a general property
of scientific workflows implemented as process networks [12,15,13]: actors need
not produce output tokens derived exclusively from tokens received since the
last output token was produced. That is, actors in process networks do not gen-
erally compute functions on sets of consecutively received inputs. Rather, they
may carry out arbitrarily complex transactions on streams of inputs, including
running averages, filters, sliding windows, and iterative computations.

Capturing these transaction boundaries is essential for accurately recording
scientific workflow provenance. In this paper, we show how this essential infor-
mation can be represented in a simple tabular event log. Our approach is easy
to implement, e.g., in the Kepler scientific workflow system, where token-read
and token-write events can be automatically captured by the workflow frame-
work. Announcing a new round of firing (e.g., by signaling a reset event), on
the other hand, is performed by actors themselves, which “know” when they
are beginning an independent task (such as a “sub-run” si above, or new daily
average temperatures).

The rest of this paper is organized as follows. Section 2 briefly overviews
scientific workflows within Kepler, focussing on pipelined execution models.
Section 3 presents our provenance model, which consists of read, write, and
state reset events. We also describe in Section 3 how to compute data and actor
dependency graphs (e.g., for computing data lineage) from corresponding event
logs. Section 4 describes a set of operations (or views) over the provenance model
for supporting “scientist-oriented” provenance queries. A number of examples are
given, which define parameterized queries for the workflow of Figure 1. Finally,
Section 5 summarizes our contributions and future work.

2 A round is somewhat analogous to a database transaction, specifically in that it
constitutes a logical unit of work.
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2 Preliminaries

2.1 Workflow Graphs, Actors, and Tokens vs. Data Objects

We adopt notions and terminology from Kepler, a scientific workflow system
extending Ptolemy II. Workflows are composed by placing actors on a design
canvas, and “wiring” them together to form the desired workflow graph (Fig. 1).
Actors communicate through their input and output ports. In a workflow graph
W , output ports can be connected to input ports, establishing unidirectional
dataflow channels. Actors communicate through these channels by passing to-
kens.

By default tokens are immutable and “disposable”, i.e., every token t is
written only once [15] and thus lives only between its creation on an output port,
and its consumption at subsequent input ports. Thus, even if an actor passes
on a data object unchanged, a new token-id is created, facilitating tracking of
token dependencies. A separate object-id is used to track object dependencies.
By object(t) we denote the data object represented by the token t. To support
user-oriented queries, we associate with an object o one or more types types(o).

The ports of an actor A are denoted ports(A). We assume that port-ids
are globally unique, i.e., they include a unique actor-occurrence-id and a port-
name which is unique to the actor occurrence. A port is either an input or
output, so ports(A) = in(A) ∪̇out(A). Some input ports pars(A) ⊆ in(A) may be
distinguished as parameters for configuring A’s behavior. The signature ΣW :=
in(W ) → out(W ) of a workflow W is given by a set of distinguished inputs
in(W ) and outputs out(W ). As shown in Figure 1, the distinguished workflow
input and output ports are connected to a subset of the input and output ports
of the workflow’s actors.

2.2 Directors

The model of computation (MoC) of a workflow is not defined by actors, but
specified by a separate component called a director. Thus, Kepler allows work-
flow designers to choose among different MoCs by choosing appropriate directors.
A director specifies and (effectively) mediates all inter-actor communication,
separating workflow scheduling and runtime orchestration (a director’s concern)
from individual actor execution (an actor’s concern). This separation achieves a
form of behavioral polymorphism [14], resulting in more reusable actor compo-
nents. Kepler provides a variety of directors that implement process network
(PN and SDF), discrete event (DE), continuous time (CT), and finite state
transducer (FST) semantics.

2.3 Pipelined Execution

In the process network MoC, the PN director executes each actor as a separate
process (or thread). Channels are used to send and to buffer token streams be-
tween actors. Each actor can decide independently how many tokens to consume
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before writing out a number of output tokens. In this way, workflows that run
using the PN director not only exhibit task parallelism, but also pipeline par-
allelism. For example, during a single workflow run, each actor in Figure 1 can
execute multiple times, and different actors can execute concurrently.

A number of other MoCs can be considered as special cases of the basic
process network model [12,15]. In the synchronous dataflow (SDF) model [13],
actors a priori define fixed token consumption and production rates. This model
allows the SDF director to statically schedule actors, while guaranteeing, e.g.,
that (unlike in the general PN case) deadlocks cannot occur and that buffers
have a fixed size. By DAG (directed acyclic graph) we denote a MoC that is
common in job-centric grid workflows [21,10]: nodes represent jobs, and directed
edges represent execution dependencies between jobs. Thus, a DAG director can
simply execute the jobs in the partial order implied by the job dependency graph.
This can be seen as a limited special case of SDF, with an acyclic workflow graph,
actors having at most one input and one output port, consuming and producing
a single token per workflow run, respectively, and in which each actor is invoked
exactly once (unlike in the more general SDF or PN cases).

3 A Provenance Model for Pipelined Workflows

In this section we describe a provenance model that can handle the process
network (PN) model of computation, and thus specialized versions such as SDF
and DAG as well. To execute a workflow (graph) W, we must “bind” (i.e.,
select) input data i on which W will operate. Often W is also parameterized
using initial parameter settings p. It is customary to record identifiers for W, p,
and i as part of the provenance information. Finally, a MoC M is needed (e.g.,
PN, SDF, DAG) to determine how the workflow is executed.3 Taken together,
the equation

o = M(Wp(i))

denotes a workflow execution in which the output o is obtained by applying a
suitable model of computation M to an appropriately instantiated workflow W.

3.1 Runs, Traces, and Observables

Each MoC M formally defines the notion of legal computations or runs, such
that one can determine whether a particular run R of a workflow W is a legal
representation (w.r.t. M) of an execution o = M(Wp(i)). A workflow trace T is
an approximation of a run R, according to a model of provenance. As recorded
by a provenance model, a trace approximates a run by recording functional
and non-functional observables. For example, an SDF director precomputes a
static workflow schedule (based on actor consumption and production rates),
and using this schedule signals each actor to fire in turn. Thus, actor firings are
3 Some MoCs might also be aware of resources such as cluster (or grid) nodes and

transport protocols, and schedule a distributed workflow accordingly.
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directly observed in SDF. In contrast, the size of a token (or rather the object
it represents) and the timestamp when the token was created are non-functional
observables: according to the MoC, the outcome does not depend on these. Non-
functional observables can be useful to record, e.g., to benchmark actor execution
times or data transfer times between actors, but are not essential for determining
data dependencies.4

3.2 The Read, Write, State-Reset (RWS) Provenance Model

Here we consider a concrete model of provenance, called the RWS model, which
records read, write, and state-reset events for each actor in a workflow run. These
events are stored in a relational event log. This model focuses on only a minimal
set of observables that allow us to answer many science-oriented user questions
(see next section), while ignoring non-functional observables such as timestamps,
although such information can be easily added. Figure 2 is an example of an event
log for a run of the workflow given in Figure 1. During a workflow run, a read
event is added to the event log each time an actor reads a token from a port.
Similarly, a write event is added to the log each time an actor writes a token to
a port. A series of reads followed by writes denotes an actor firing. Note that in
a particular firing Fj , an actor may use data that it read in a previous firing Fi

to generate output (e.g., this is the typical behavior of a running-average actor,
as described in Section 1). In this case, we say the actor maintains state across
firings, and state-reset events denote when the state is “flushed” (reset). The
firings between reset events constitute a firing round.5

As shown in Figure 2, each row in an event log contains: the location Eloc

of the event, which is either a port (for read and write events) or an actor (for
state-reset events); the event type Etyp, which is either ‘r’ for read events, ‘w’
for write events, or ‘s’ for state-reset events; the token identifier Etok that was
read or written at the port (null for state-reset events); and a firing count Efire.

Because actor port identifiers are unique across a workflow, and tokens are
written once, the port and token identifiers recorded for each read and write
event enable the reconstruction of the flow of data through the workflow run.
However, these events alone are not sufficient to reconstruct data dependencies.
We use the state-reset events (as described above) along with the firing count
for this purpose. In particular, the firing count is incremented independently for
each actor whenever (1) an actor switches from writing tokens to reading tokens,
denoting a new firing of the actor, and (2) whenever a state-reset event occurs.

4 In existing systems, such timestamps are often the only information available and
thus are also used to second-guess other properties such as token and object depen-
dencies.

5 We use a single state-reset event as opposed to separate events for marking the start
and end of a transaction.
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Eloc Etyp Etok Efire

p0 w t1 1
...
p0 w t18 1
A1 s – 1
p1 r t1 1
...
p1 r t7 1
p2 w t19 1
A1 s – 2
p1 r t8 2
...
p1 r t16 2
p2 w t20 2

Eloc Etyp Etok Efire

A1 s – 3
p1 r t17 3
p1 r t18 3
p2 w t21 3
A1 s – 4
A2 s – 1
p3 r t19 1
p4 w t22 1
A2 s – 2
p3 r t20 2
p4 w t23 2
A2 s – 3
p3 r t21 3

Eloc Etyp Etok Efire

A2 s – 4
A3 s – 1
p5 r t22 1
p6 w t24 1
p6 w t25 1
p6 w t26 1
A3 s – 2
p5 r t23 2
p6 w t27 2
p6 w t28 2
A3 s – 3
A4 s – 1
p7 r t24 1

Eloc Etyp Etok Efire

p7 r t25 1
p7 r t26 1
p8 w t29 1
A4 s – 2
p7 r t27 2
p7 r t28 2
p8 w t30 2
A4 s – 3
p9 r t29 1
p9 r t30 1

Fig. 2. The event log for a run of the example workflow in Fig. 1.

3.3 Complex Workflow Transactions

In the example event log of Figure 2, state-reset events denote “sub-runs”, i.e.,
independent actor firings operating on sets of associated data. Note that for the
particular event log shown, state reset events occur exactly at read/write tran-
sitions (i.e., after write events immediately followed by read events).6 However,
for more complex workflows and actors, read/write transitions alone will not
determine state-reset events, and more complex event patterns will be required
to accurately describe data dependencies. Figure 3 gives four cases in which
read/write transitions do not imply actor transaction boundaries, thus requiring
more complex uses of state-reset events.

Figure 3(a) shows an actor A1 that computes a sequence of running tempera-
ture averages (tan) from a series of input temperature readings (tm), along with
a corresponding event log for an example run. Each average reading is dependent
on all temperature readings received since the most recent state-reset of the ac-
tor (e.g., at midnight each night). In the example event log, token ta24 depends
on tokens t1–t24, while ta25 is dependent only on t25. Note that assuming that
an implicit state-reset follows each write event would be incorrect, because this
would imply that each temperature average depended only on the latest tem-
perature reading received, rather than all temperature readings received so far
during a particular round of firings.

Figure 3(b) illustrates the necessity of recording state-reset events for a fil-
tering actor. In this example, a series of protein structures are input to actor A2,
and only those structures meeting a minimum resolution requirement are output
(though carried by new tokens). All other input protein structures are discarded
by the actor. Thus, in the example event log, of the first six structures received

6 Note that state-reset events are still necessary in this example to mark the beginning
and end of the actor firing/round.
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Compute running daily 
average temperature 

p1 p2

Predict protein 2° structure 
using sliding window

p11 p12

Filter PDB files 
by resolution
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Iteratively search for most 
parsimonious phylogenetic trees 

...  t
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  t

8
  t

7
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6
 ta

5
 ta

4 
...

... r
12

  r
11 

 r
10 ss

5
  ss

4
  ss

3 
...

...  s
9
  s

8
  s

7 fs
6
  fs

3
  fs

1  
...

...  cm
3
  cm

2
tr

3 
 tr

2
 

se
2

p5

p6

p9
p10

p7 p8

(a)

(c)

(b)

(d)

A1

A5

A2

A3 A4

A1   s   -     1

p1   r   t1    1

p2   w   ta1   1

p1   r   t2    2

p2   w   ta2   2

...

p1   r   t24   24

p2   w   ta24  24

A1   s   -     25

p1   r   t25   25

p2   w   ta25  25

...

A2   s   -     1

p3   r   s1    1

p4   w   fs1   1

A2   s   -     2

p3   r   s2    2

A2   s   -     3

p3   r   s3    3

p4   w   fs3   3

A2   s   -     4

p3   r   s4    4

A2   s   -     5

...

A3   s   -     1

p5   r   cm1   1

p6   r   se1   1

p7   w   tr1   1

p7   w   tr2   1

p7   w   tr3   1

A3   s   -     2

p5   r   cm1   2

p6   r   se2   2

p7   w   tr4   2

p7   w   tr5   2

A3   s   -     3

p7   r   cm2   3

...

A5   s   -     1

p11  r   r1    1

p11  r   r2    1

...

p11  r   r5    1

p12  w   ss1   1

A5   s   -     2

p11  r   r2    2

p11  r   r3    2

...

p11  r   r6    2

p12  w   ss2   2

A12  s   -     3

p11  r   r3    3

p11  r   r4    3

...

Fig. 3. Four distinct types of actors requiring complex state-reset event behavior.

by A2, only three are output. Because the state-reset events are recorded, how-
ever, it is clear, e.g., that output token fs3 depends only on input token s3, and
not on s2, even though no write event separates the read events for s2 and s3.

Figure 3(c) illustrates the more general case where an actor reuses only some
of the data received during a previous firing. In this example, the tree inference
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actor A3 requires a random number seed to initiate a search for maximally
parsimonious phylogenetic trees. Since any particular firing of the actor is not
guaranteed to find all of the most parsimonious trees, the actor must be fired
iteratively for a particular matrix of phylogenetically informative characters,
using a distinct seed on each iteration. Actor A4 collects the trees inferred by A3

and provides the seeds needed by A3 until a sufficient number of trees have been
inferred. The RWS model allows each tree inferred in this way to be associated
not only with the character matrix from which it was derived, but also with the
particular random number seed used by A3 to discover the tree. The sample event
log illustrates how this works. Actor A3 raises an ‘s’ event prior to receiving each
seed, and on receiving that seed declares that it re-reads the character matrix
used previously along with the new seed. Thus, it is clear that while trees tr1–tr5
all depend on character matrix cm1, only tr4 and tr5 were derived using seed se2.

Finally, Figure 3(d) illustrates the requirements for recording the provenance
of an actor operating on a sliding window of data. Actor A5 predicts the sec-
ondary structure of a protein, residue by residue, based on the types of residues
(i.e., amino acids) within a contiguous segment of the protein chain. In this case
the RWS model allows the actor to raise an ‘s’ event after writing each output
token. The actor then re-reads all tokens except the first token in the current
window, along with the next token available on the input, before computing its
next output.7

3.4 Dependency Graphs

Using the RWS model, we are able to infer from the event log the token de-
pendency graph. That is, for each token t, we can know which parent tokens
{t1, . . . , tk} directly contributed to the production of t (as the result of an actor
firing). As an example, in the upper left of Fig. 4, {t1, . . . , t7} are parent tokens
of t19. Conversely, t22 is the parent of t24, t25, t26. The following Datalog program
illustrates how the token dependency graph can be computed from the event log.
The event relation corresponds to the event log and the actor relation contains
a mapping from ports to their corresponding actors.

depends-on(T1, T2) :- event(P1, w, T1, C1), event(P2, r, T2, C2),
actor(P1, A), actor(P2, A), reset(A,Cb, Ce),
Cb ≤ C2 ≤ C1 < Ce.

reset(A,Cb, Ce) :- event(A, s, , Cb), event(A, s, , Ce), Cb < Ce,
¬ reset-between(A,Cb, Ce).

reset-between(A,Cb, Ce) :- event( , , , Cb), event( , , , Ce),
event(A, s, X,C), Cb < C < Ce.

We say that T1 depends on T2 whenever depends-on(T1, T2) is true.
In addition to the token dependency graph, we are also able to infer the object

dependency graph using the RWS model. Object dependencies describe user data
7 The RWS model could be optimized for cases where actors forget only a small fraction

of previously read tokens during each firing by introducing an explicit ‘forget’ event.
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lineage, and are crucial for our “user-oriented” queries. For example, the middle
column of Fig. 4 shows the object dependencies for the workflow run of Fig. 1.
Note that the object dependency graph differs slightly from the token depen-
dency graph. Object dependency graphs can be computed from corresponding
token dependency graphs and token-object mappings.

t1
t2
t3
t4
t5
t6
t7

t19

t22

t24

t26

t25
t29

t9
t10
t11
t12
t13
t14
t15

t20

t23

t27

t28

t30

t8

t16

t17
t18

t21

seq1
seq2
seq3
seq4
seq5
seq6
seq7

align1

align4

tree1

tree3

tree2 tree6

seq9
seq10
seq11
seq12
seq13
seq14
seq15

align2
tree4

tree5

tree7

seq8

seq16

seq17
seq18

align3

A1 A2 A3 A4

A1 A2 A3 A4

A1 A2

1 1 1 1

2 2 2 2

3 3

Token dependency graph Object dependency graph Invocation dependency graph

Fig. 4. Token, object, and actor invocation graphs for our example phylogenetics
workflow. Dependencies are shown from left to right. Note that all but one of
the token-object mappings can be inferred from the graph structures; tokens t20
and t23 both map to the object align2.

Finally, actor-invocation dependency graphs can also be inferred directly from
event logs in the RWS model. In particular, this graph can be built from state-
reset events in the event log such that an actor invocation Aj

2 depends on another
actor invocation Ai

1 whenever Aj
2 reads a token that is written by Ai

1. Note that
here, “invocation” refers to a firing round. It should be clear that all of the
information stored in the event table is required to reconstruct these token,
object, and invocation dependency graphs for a workflow trace. In particular,
if state-reset events are not taken into account, each token written by an actor
will (incorrectly) appear to depend on all previous tokens read during prior
firing rounds of the actor: e.g., in the absence of state-reset events, t21 would be
connected to tokens t1 to t18 in the token dependency graph of Fig. 4.

4 Querying Workflow Traces

A wide range of scientifically relevant questions can be answered using the prove-
nance model described above. To make access to event logs more convenient, we
introduce the following primitive operations, which can be implemented, e.g., as
relational selections over the event log. The writer(t) and reader(t) operations

10



return the ports that a token t was written to and read from, respectively (a
token is written to a port exactly once, but can be read multiple times). The
token-parents(t) and token-children(t) operations return the set of direct token
dependencies for a token t, while token-ancestors(t) and token-descendents(t) are
their transitive closures. The siblings(t) operation returns the tokens with the
same direct dependencies as t; e.g., because actor A3 can infer multiple trees
from an alignment, given one of these trees, siblings returns the other trees com-
puted from the same alignment. The origin(o) and death(o) operations return
the first and last tokens in the trace that refer to the object o; e.g., the origin
and death operations can be used to determine that the alignment object align2

originated with token t20 (written by actor A1) and terminated with token t23
(written by actor A2).

The following examples illustrate how the provenance operations can be com-
bined to answer concrete questions of interest to a scientist using the workflow in
Figure 1. For each high-level question below, we define a corresponding parame-
terized query using set-comprehension syntax8, along with the actual results for
the event log given in Figure 2. Below, we use W to denote the workflow graph
(in Figure 1) and T for the corresponding trace.

• What DNA sequences were input to the workflow? This is one of
the first questions a scientist might ask about the workflow run. Given an object
type $c, the paramaterized query

q1($c) := {o | t ∈ tokens(T ) ∧ writer(t) ∈ in(W) ∧ object(t) = o ∧ $c ∈ types(o)},

returns the set of objects of type $c that were input to the workflow run. For our
example trace, q1(Sequence) returns the objects seq1 to seq18. The expression
t ∈ tokens(T ) selects a token from the trace, the expression writer(t) ∈ in(W)
checks that the token was written by an input port of the workflow W, the
expression object(t) = o obtains the object associated with t, and the expression
$c ∈ types(o) verifies that o has $c as a type.

• What phylogenetic trees were output by the workflow? This is
another basic question that a scientist might initially ask after a run. Given the
query

q2($c) := {o | t ∈ tokens(T ) ∧ reader(t) ∈ out(W) ∧ object(t) = o ∧ $c ∈ types(o)},

the expression q2(Tree) returns the objects tree6 and tree7.

• What phylogenetic trees (intermediate or final) were created by
the workflow? This question requests both intermediate as well as final data
products of a run. Given the query

q3($c) := {o | t ∈ tokens(T ) ∧ writer(t) 6∈ in(W) ∧ object(t) = o ∧ $c ∈ types(o)},

8 Queries could also be defined in Datalog or in query languages for graphs or
semistructured data.
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the expression q3(Tree) returns all tree objects of Figure 4. Note that the ex-
pression writer(t) 6∈ in(W ) ensures that the returned trees were not given as
input to the workflow.

• What actor created this phylogenetic tree? The following query
returns the actors that first wrote the given object $o:

q4($o) := {a | t ∈ origin($o) ∧ actor(writer(t)) = a}.

The query returns A3 for tree1 to tree5, and A4 for tree6 and tree7. This question is
of particular interest for workflows that employ multiple approaches for inferring
phylogenetic trees.

• Which phylogenetic trees were directly used to compute this con-
sensus tree? This question (i.e., what is this tree the “consensus” of?) asks
for the intermediate data products supplied to the actor producing a particular
workflow output. Given the query

q5($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-parents(t) ∧ object(t) = o′∧
$c ∈ types(o′)},

the expression q5(Tree, tree6) returns tree1 to tree3; and q5(Tree, tree7) returns
tree4 to tree5.

• What sequences input to the workflow does this consensus tree
depend on? This question illustrates how a workflow output can be related to
the particular workflow inputs from which it was derived. Given the query

q6($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ writer(t′) ∈ in(W)∧
object(t′) = o′ ∧ $c ∈ types(o′)},

the expression q6(Sequence, tree6) returns seq1 to seq7, and the expression
q6(Sequence, tree7) returns seq8 to seq16.

• Which input sequences were not used to derive any output con-
sensus trees? Here we are interested in whether there are any workflow inputs
without corresponding workflow outputs. Such inputs may be considered the
workflow equivalent of “phantom lineages” [23]. Given an input type $cin and
output type $cout, the query

q7($cin, $cout) := {o | t ∈ tokens(T ) ∧ writer(t) ∈ in(W) ∧ object(t) = o∧
$cin ∈ types(o) ∧ {t′ | t′ ∈ token-descendents(t)∧
reader(t′) ∈ out(W) ∧ cout ∈ types(object(t′))} = ∅},

returns the objects input to the workflow that do not produce any workflow
outputs; e.g., the expression q7(Sequence,Tree) returns the sequences seq17

and seq18. The query first finds workflow input tokens t that refer to objects of
type $cin, and then checks (via a subquery) to make sure that t has no output
tokens with objects of the type $cout.

• What was the sequence alignment used in the process of inferring
this tree? This question requests the key intermediate data object used in
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producing a workflow result. A researcher may wish to examine the alignment
to assess the reliability of the results, or reuse the alignment in another workflow.
Given the query

q8($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ object(t′) = o′∧
$c ∈ types(o′) ∧ {t′′ | t′′ ∈ token-descendents(t′)∧
$c ∈ types(object(t′))} = ∅},

the expression q8(Alignment, tree6) returns the sequence alignment align4, and
q8(Alignment, tree7) returns the sequence alignment align2. The subquery above
ensures that the object o′ is the alignment directly used to infer the tree.

• What actors were involved in creating this tree? This question may
be used, e.g., when writing the methods section of a publication to cite the
employed methods and implementations. Given the query

q9($o) := {a | t ∈ origin($o) ∧ actor(writer(t)) = a} ∪
{a | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ actor(writer(t′)) = a},

the expression q9(tree6) returns actors A1 to A4.

• Which actors did not produce any output for input derived from
this input sequence? This question provides an explanation for the phantom
lineages revealed by q7 above:the query

q10($o) := {a | t ∈ origin(o) ∧ t′ ∈ token-descendents(t) ∧ token-children(t′) = ∅
∧ actor(reader(t′)) = a},

The expressions q10(seq17) and q10(seq17) both return actor A2, indicating that
this actor did not forward a refined sequence alignment of these two sequences to
actor A3. This result is reasonable since no informative phylogenetic trees may
be inferred from only two taxa.

5 Conclusion

Tracking provenance is an important aspect of scientific workflow systems. In this
paper, we have focused primarily on the problem of tracking data lineage within
scientific workflow runs, for the purpose of providing an accurate provenance
record for answering “scientific” (i.e., user-oriented) provenance queries.

The problem of data lineage has been widely studied in the database com-
munity [5,8,2,23]. However, the primary focus has been on transformations of
data items expressed as database queries. As noted in [11], current provenance
approaches for workflow systems (e.g., [24,25,18]) record various kinds of meta-
data related to provenance. Despite these developments, however, little support
exists in current systems to allow end-users to query provenance information in
scientifically meaningful ways, in particular when advanced workflow execution
models go beyond simple DAGs (as in process networks).
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We have shown that a simple provenance model, based on read, write, and
state-reset events, is expressive enough to capture many relevant science-oriented
provenance use cases. These use cases become queries against suitable views on
top of the event log. Our approach also marks the beginnings of a use-case
and computation-model driven approach to provenance schema design. Using
our framework, it is now meaningful to ask whether a provenance schema can
handle specific use cases, since the latter become queries over the former.

As future work we intend to extend our approach to support a wider array
of operations, e.g., so-called “smart re-runs” (a workflow system requirement
in [16])9 and crash recovery, and to extend our current Prolog-based prototype
to provide direct support (including query user interfaces) for our provenance
model within Kepler. We are also developing methods to optimize our ap-
proach to reduce the size of event logs for actors whose behaviors are similar
to sliding window operators (e.g., by introducing a “forget” event), and to sup-
port subworkflows within Kepler (i.e., composite actors), e.g., by inferring in
a bottom-up fashion the appropriate state-reset events for the composite actor
via the state-reset events of subsumed actors and the corresponding workflow
graph.
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