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Abstract

We present issues arising when trying to formalize disease maps, i.e. ontologies to represent the terminological relationships among

concepts necessary to construct a knowledge-base of neurological disorders. These disease maps are being created in the context of a large-

scale data mediation system being created for the Biomedical Informatics Research Network (BIRN). The BIRN is a multi-university

consortium collaborating to establish a large-scale data and computational grid around neuroimaging data, collected across multiple scales.

Test bed projects within BIRN involve both animal and human studies of Alzheimer’s disease, Parkinson’s disease and schizophrenia.

Incorporating both the static ‘terminological’ relationships and dynamic processes, disease maps are being created to encapsulate a

comprehensive theory of a disease. Terms within the disease map can also be connected to the relevant terms within other ontologies (e.g. the

Unified Medical Language System), in order to allow the disease map management system to derive relationships between a larger set of

terms than what is contained within the disease map itself. In this paper, we use the basic structure of a disease map we are developing for

Parkinson’s disease to illustrate our initial formalization for disease maps.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently there has been a significant increase in the

development and publication of terminological systems

for biology. In addition to general-purpose controlled

vocabularies such as the Unified Medical Language

System (UMLS) (National Library of Medicine, 2003)

and Gene Ontology (Gene Ontology Consortium, 2002),

a large number of more specialized vocabularies are

being created. For example, TaO (TAMBIS Ontology)

(Stevens et al., 1999) is an ontology for protein

properties, motifs and similarities; The Cyc family of

ontologies (EcoCyc (Karp, Riley, Paley, Pellegrini-Toole,

& Krummenacker, 1999), MetaCyc (Karp, Riley, Saier,

Paulsen, & Pellegrini-Toole, 2000), HinCyc (Karp,

Ouzounis, & Paley, 1996)) describe the genes, gene

product function, metabolism and regulation within

specific species such as E. coli and the H. influenza;

whereas the MGED Ontology provides standard terms for

the annotation of microarray experiments. In the domain

of neuroscience, BrainML (Gardner, Xiao, Abato, Knuth,

& Gardner, 2002) is a controlled vocabulary for

describing the standard vocabulary of neurophysiological

experiments. NeuroML represents a standardized

vocabulary to express information about neural

simulations.

Despite this growth, it was observed by (Karp, 2000;

Williams & Andersen, 2003) and others that many of the

publicly available ontologies remain just controlled vocabul-

aries and do not satisfy the primary requirements of being a

formal ontology that can used for purposes like automated

logical interpretation. Hence they cannot be easily integrated

into larger information management systems. Gruber (1993)

defined an ontology as a “formal explicit specification of a

shared conceptualization”,1 where conceptualization refers to

“an abstract model of how people think of things in the world,

usually restricted to a particular subject area” (Guninger &

Lee, 2002).
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For the purposes of this paper, and following Gruber, by

an ontology O we mean a representational vocabulary V

and a set of axioms A, that constrain the interpretation and

the well-formed use of this vocabulary. We first illustrate

the notions of constrained interpretation and well-formed

use through an example

Example 1. Consider a vocabulary V ¼ ðT ;RÞwhere T is a

set of terms denoting concepts, and R is a set of relationship

names. As a simple example, let T ¼ {cell,nerve_-
cell,neuron,axon,purkinje_cell} that rep-

resents the user’s world of neurons, and R ¼ {isa,
part_of}, that represent characteristic the usual subclass

and part-of relationships for this domain. Assume that the

user has represented the relationships among them through

the following binary relations, called facts:

isa(nerve_cell, cell).

isa(neuron, nerve_cell).

part_of(axon, neuron).

isa(purkinje_cell, neuron).

Further, let us assume the ontology O ¼ ðV ;AÞ contains

an axiom A1 stating that isa is a transitive relationship, i.e.

A1 : isaðX;YÞˆ isaðX;ZÞ;isaðZ;YÞ

With this ontology, we can use standard logic programming

semantics2 to conclude the evident fact: isa(neuron, cell),

i.e. the neuron is a cell. We can also add the axiom:

A2 : part_ofðX;YÞˆ isaðY ;ZÞ;part_ofðX; ZÞ:

to conclude part_of (axon, purkinje_cell). This is

because if X is a part of Z and every Y is a Z; then X is a

part of Y as well, as specified by this rule.

Let us assume that as part of a disease map ‘exploration’,

we want to add the following axiom and inspect its

consequence:

A3 : part_ofðY ; ZÞˆ isaðX; ZÞ;part_ofðY ;XÞ:

Will this rule still yield valid conclusions? For instance,

with A1 and A3, we can conclude part_of (axon,

nerve_cell) and part_of (axon, cell). These statements

are of questionable validity—while it is true that an axon is a

part of some nerve cells, it is certainly not a part of all nerve

cells. Similarly, an axon is not a part of all cells. Hence,

unless some other, more constraining axioms (rules) are in

place, the errant inferences cannot be avoided for this newly

added exploratory rule. On the other hand, the disease map

explorer could have added some other similar rule which

leads to plausible (albeit unverified) conclusions. In that

case, she may decide to keep the hypothetical rule and

qualify the conclusions using a ‘may(be)’ operator (cf

Section 3.9).

The example above illustrates that the design of an

ontology is not just the collection or standardization of

a large vocabulary that represents the ‘terminology base’ of a

domain, it is the characterization of useful and interpretable

direct and inferred relationships among the terms in the

vocabulary, geared toward a specific set of tasks.

The goal of this paper is to present issues arising when

attempting to devise a formal model for disease maps, i.e.

ontologies to represent the terminological relationships

among concepts necessary to construct a knowledge-base of

neurological disorders. We use an initial formalism as the

basic foundation to represent the content of disease maps, to

develop computational procedures to search and analyze the

ontology, and to integrate multiple information sources that

contain data about the neurological disorders modeled with

disease maps.

2. Disease maps: scope and desiderata

We introduce the motivation behind building our specific

disease map, the Parkinson’s Disease Map (PDM)

(BIRN-PDM, 2003) through a brief description of the

Biomedical Informatics Research Network (BIRN), a multi-

institution project. The project studies a set of neurological

disorders including Parkinson’s Disease (PD), Alzheimer’s

disease, Schizophrenia, cases of clinical depression that

progress into dementia, and corresponding animal models,

particularly in the mouse. Different institutions specialize

both in the patient and animal populations they observe and

the categories of experimental data they collect. The data

across the participants range from structural and functional

MRI of human patients and animals to diffusion tensor

images to high-resolution microscopy for immunolabeling

and gene-expression, to electron tomography of relevant

ultrastructures. A central goal of the BIRN project (http://

www.nbirn.net) is to assimilate this wide variety of data in

an effort to understand the basic mechanism of the target

diseases. The PDM is incrementally created by a team of

domain scientists and computer scientists as a consolidated,

extensible ontology by combining information from exist-

ing public ontologies and building upon them new

information from relevant research literature. Thus the

roles of disease maps such as PDM are to serve as:

† a central body of knowledge that a researcher in the field

can query, navigate through and analyze. This does not

imply that a disease map will be an all-encompassing

‘world repository’ of such knowledge, but rather will be

part of a group’s own ‘local repository’ that researchers

in a specific project like BIRN would construct and

utilize.

† a ‘glue ontology’ that helps one to perform semantic

(i.e. ontology-based) information integration across the

experimental data collected by the partner institutions

Scope. Ontologies can be considered as closely related

to, or variants of, knowledge bases (Guarino & Giaretta,2 See Section 3.
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1995). Since a disease map itself can be seen as a special

ontology, the question arises how disease maps differ

from ontologies and knowledge bases in general, and

expert systems in particular. A famous example for the

latter is MYCIN (Buchanan & Shortliffe, 1984), which

was performed simple diagnosis and treatment rec-

ommendation for certain infections, based on partial

information from a ‘dynamic questionnaire’ on symptoms

and test results. Our disease map approach is fundamen-

tally different from MYCIN-like expert systems. It

differs, e.g. from MYCIN in its purpose (diagnosis and

treatment suggestions in the case of MYCIN, and

‘knowledge exploration’ in the case of disease maps),

and in its underlying technology (Dempster-Shafer

reasoning with uncertainties in MYCIN vs logic seman-

tics of disease maps). Moreover, MYCIN-style expert

systems and ‘conventional’ ontologies and knowledge

bases are not designed in a way which would make the

encoded knowledge the focus of a ‘knowledge explora-

tion’. In contrast, this is precisely the focus of disease

maps: capturing various aspects of some knowledge

about certain diseases, and then exploring—via graph—

queries or other deductive reasoning—what the given

knowledge entails and how certain modeled aspects

relate to one another.

Also note that disease maps are aimed at capturing

certain aspects of processes (e.g. biochemical processes

in the human body). However, this does not mean that

the actual dynamic/concurrent behavior is meant to be

simulated or fully captured by disease maps. Rather,

disease maps model only a high-level abstraction of

certain dynamic aspects of processes. If a detailed

process model is required, then, in principle, the specific

simulation or process model at hand may be ‘plugged

into’ a disease map, albeit not as an integral part of the

reasoning process, but as an illustration of a specific

behavior of a modeled process.

2.1. Content of a disease map

In the following we present some design criteria we have

identified while developing the Parkison’s Disease

Map PDM.

Multiple perspectives. A disease and its animal models

are complex phenomena and different scientists view them

from different perspectives. The clinician’s set of terms and

relations identifying the character of the disease is distinct

from a physiologist’s viewpoint. In the following example,

we illustrate this distinction.

Example 2. Consider the term resting tremor. From a

clinical viewpoint one can make the statements:

isa(tremor, movement_disorder).

isa(resting_tremor, tremor).

occurs_in(resting_tremor, posture(resting)).

clinically_associated(resting_tremor, parkinsons_disease).

From a physiological viewpoint, one can say:

isa(oscillation(oscType), process).

causes( oscillation, neural_firing(neuron)).

isa(tremor, oscillation(abnormal)).

causes(neuron_of_ventral_intermediate_nucleus)

(neural_firing(abnormal), resting_tremor).

Here, we use slightly different versions for the causes

relation, one which just pairs cause and effect, and one

which additionally describes the context in which the

causality holds: causes(Cause, Effect) and causes(Con-

text)(Cause, Effect). Notice in our notation that also a

concept like posture can be parameterized by the term

resting, and that a term like oscillation can be

parameterized by an oscillation type (here any subtype

of oscType).

In general, a statement of the form rð�xÞðpð�yÞ; qð�zÞÞ with

�x; �y and �z (possibly empty) parameter vectors can be

visualized as

pð�yÞ!
rð�xÞ

qð�zÞ

which can be read as ‘pð�yÞ is rð�xÞ-related to qð�zÞ’. The

relation parameters �x can be used to describe the context in

which the statement holds, or to denote a refinement of the

relation r:

As an ontology, the disease map needs to preserve the

separate threads along which a term can be perceived, and

yet provide a means to correlate them. To satisfy the first

requirement we need to distinguish the ‘clinical block’ from

the ‘physiological block’ by a syntactic procedure, effec-

tively ‘tagging’ all facts and rules in a block with the unique

name of the block within which they occur.

To satisfy the second, we need to provide the mechanism

to derive statements like the (abnormal) firing of neurons in

the ventral intermediate nucleus maybe (but not necessarily

is) associated with PD.

The example illustrates that unlike many ontologies

that model only inter-object relationships, a disease map

needs to model both interprocess relationships, as well as

object-process relationships that may be relevant for a

disease. Specifically, it needs to handle terms like

neuron_firing, a nominalization of the process fire-

s(neuron), where both forms will appear as valid terms

in the ontology.

An important consequence of the multiple viewpoints

is that semantically, the same lexical term can belong to

different roles (e.g. resting_tremor is a symptom

and it is also a process), very similar to the notion of

‘word senses’ used in dictionaries. The disease map thus

needs to have role specifiers to syntactically determine

which role is meant when a term is used in a fact, rule,

or query.

Very often, the same relationship name used in the

ontology may have distinct properties depending on
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the types of the terms they relate. For example, if a and b are

events, then part_ofða; bÞ implies that the temporal

duration of a is fully contained within the temporal interval

of b: On the other hand, if they are anatomical structures

then the spatial extent of a is fully contained within the

spatial extent of b: The formalism of disease maps models

this by making certain predicates polymorphic, i.e. different

versions of a predicate are implied by the types of its

arguments.

Note that the results of applying inference rules of a

disease map cannot be considered valid under all circum-

stances, but instead should be interpreted as ‘default logic

conclusions’ (Reiter, 1980), which can be invalidated or

refined by the addition of new facts (see (Brewka & Dix,

2003) for a comprehsenive treatment of such nonmonotic

behavior).

For example, let us assume we model causes a

transitive, antisymmetric, irreflexive relationship. However,

the transitivity of causes be interpreted cautiously. Let us

say we have the facts:

causes(process1, process2).

causes(process2, process3).

…
causes(process9, process10).

Can we infer causes(process1, process3)? Can we also

infer causes(process1, process10)? While the real answer

always depends on the specific situation, quite often, the first

answer will be affirmative but the second would be negative.

This example illustrates two important problems in many

ontologies including the UMLS. First, an intuitive relation-

ship like causes has no obvious or well-specified semantics,

and should possibly be broken down into a number of

concrete relationships like may_cause and necessar-
ily_causes that do have well-defined semantics. Second,

the transitivity property of these relations may not hold

beyond a certain length of the transitivity chain, requiring

additional semantic specification of the relation.

Multiple granularities. A disease map must incorporate

models of disease processes at various levels of detail so that

the individual scientist can extend the map with information

from his own experimental domain. This needs the formal

framework to define extension mechanisms by elaborating

on existing concepts, relationships, or some combination

thereof, as well as an abstraction mechanism to reduce

details if necessary.

Example 3. Consider the observation that the enzyme

monoamine oxidase B (‘MAOB’) is an enzyme that

catalyzes oxidation of dopamine in the substantia nigra

pars compacta (Snpc).

isa(‘MAOB’, enzyme).

p0: isa(oxidation(dopamine), process).

occurs in(oxidation(dopamine), ‘Snpc’).

p1: catalyzes(‘MAOB’, oxidation(dopamine)).

Another researcher, trying to understand this process,

comes up with the following detailed instantiation (Beal,

2001): Neurotoxin ‘MPTP’ is converted to ‘MPPþ’ by

‘MAOB’. The active form ‘MPPþ’ is picked up by the

dopamine transporter, and released inside the neuron,

where it accumulates in mitochondria. This leads to

complex I (an antioxidant) inhibition, which leads to free

radical generation.

This can be expressed as follows:

isa(‘MPTP’, neurotoxin).

isa(‘MPPþ‘, neurotoxin(active)).

isa(complex_I, antioxidant).

p2: isa(conversion(‘MPTP’, ‘MPPþ‘),
process).

p3:catalyzes(‘MAOB’,conversion(‘MPTP’, ‘MPPþ‘)).

p4: transports(dopamine_transporter, ‘MPPþ‘, insi-

de(neuron)).

p5: accumulates(‘MPPþ‘, inside(mitochondria)).

p6: contained-in(complex_I,mitochondria).

p7: inhibits(p5, complex_I).

Here, we use named statements of the form pi : A, where

A is a logic atom, and pi its unique identifier. The use of an

identifier pi as an argument in a fact (such as p5’s use in p7)

creates a new concept, the nominalization of the stated fact.

For example, p7 can now be read as: accumulation ( ¼ the

nominalized form of ‘accumulates’ in p5) of MPPþ inside of

mitochondria inhibits complex_I.

In this description, we did not explicitly represent that

process p6 would lead to free radical generation because the

system infers this from the fact that p6 inhibits complex_I
and corresponding rules which specify inheritance through

the isa The processes p2–p7 are one possible mechanism

to realize processes p0–p1. The task of the formal model of

a disease map is to make explicit this elaboration

relationship between processes.

Animal models. An animal model is a model system

where a natural or transgenic animal, exhibits some

symptoms and/or pathological manifestations of a disease.

Thus an animal model is a separate disease map by itself,

parameterized by species characteristics and the properties

that are related to the disease process. Consequently, there

are terminological differences among disease maps of

different species—for example, the terms b-synuclein and

g-synuclein should not appear in a Drosophila model of PD,

but should in the mouse and human disease maps. The need

to compare animal models impose on the disease map

formalism the need to specify an extended form of what

Peter Karp (Karp, 2000) calls functional equivalence across

objects and processes of the animal model disease and the

actual human disease. The anatomical structure of one

animal should be mapped to the homologous structures in its

counterparts (Bota & Arbib, 2001), the enzymes and the

processes they participate in would need to be mapped as

accurately as possible. Often this mapping is not obvious.
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For example, it will be anatomically incorrect to map the

retina of a drosophila to the substantia nigra pars compacta

of a human. However, it might be appropriate to state:

model_of (neurotransmission)(X(droso-
phila),Y(human)) ˆ

isa(X, dopaminergic_neuron(drosophila)),

isa(Y, dopaminergic_neuron(human)).

That is, with respect to neurotransmission, dopamin-

ergic neurons of the Drosophila are models of those of

humans.

However, when this rule is applied to the disease maps,

one should constrain its interpretation such that the

system does not automatically make the deduction:

model_of(X)(retina(drosophila), ‘Snpc’
(human)),

where X is anything other than neurotransmitter. Thus the

formalism of the disease map needs to limit the propagation

of inferences from mapping axioms.

Hypotheses and evidences. A primary utility of a disease

map is to give its user the ability to place a hypothesis

(derived from the literature, or conjectured by the user) in

the map and explore how this hypothesis may compare with

respect to other known or hypothesized facts or rules. This

presents a number of requirements for the disease map

formalism:

† It must be able to isolate hypotheses from known facts

and rules, but at the same time, allow them to be used

together to test for ramifications.

† Multiple hypotheses might contain or derive contra-

dictory content. The formalism should harbor and detect

these contradictions in a controlled manner, without

becoming inconsistent itself.

† A hypothesis may have links to object instances in a

database, such that the instance serves as the evidence of

the hypothesis. Aside from comparing and testing

hypotheses, querying the evidence of user-specified

hypotheses is an important way to access experimental

data connected to a disease map.

2.2. Accessing the disease map

In this section we explore the operational aspects of

disease maps, highlighting different ways in which they can

be used.

Specialization. The fundamental backbone of the ontol-

ogy describing a disease map will be a general-purpose set

of properties that characterize the genesis, activity,

symptoms, treatment and the outcome of a disease. From

this backbone, one should be able to construct the model for

any disease either incrementally or differentially.

Incremental specialization. In the incremental method, a

disease (e.g. PD) is described by specializing different

aspects of the disease by adding facts and rules. For

example, the fact that diseases under the familial form of PD

have a genetic risk factor can be added by the following:

falseˆ isa(D, disease), inheritable(D),

: ’H (etiology(heredity)(D,H),

isa(H, hereditary_factor)).

inheritable(D2) ˆ isa(D1, disease), inherit-
able(D1), isa(D2, D1),

: exception(inheritability)(D2).

inheritable(familial_parkinsons_disease).
isa(inheritance(recessive), hereditary
_factor).

isa(juvenile_parkinsons_disease, famil-
ial_parkinsons_disease).

etiology(heredity)(juvenile_parkinsons_
disease, inheritance(recessive)).

The first rule is an integrity constraint and declares

that for every inheritable disease there is a hereditary

factor such that it is the etiology (of the hereditary kind)

of the disease. If this were not the case, then a

contradiction (false) would be derived by this rule.

We treat terms like hereditary_factor as class

names for which further subclasses can be derived. Of

course, for a non-hereditary disease like idiopathic PD,

there should be no hereditary_factor-this is

ensured by the inheritable(Disease) predicate

in the rule. The second rule states that if a disease is

inheritable, then all subcategories of the disease are also

inheritable, unless it is an exceptional disease with

respect to inheritability. This illustrates the need for

employing a default reasoning scheme in the formalism.

This mechanism would then conclude from the next two

statements that juvenile Parkinson’s disease is inheritable.

From the last statement, it should conclude that recessive

inheritance is a hereditary factor for juvenile Parkinson’s

disease. We show in Section 3 that in ontologies such as

the disease map, the process of specialization has

interesting semantic properties.

Differential specialization. Often a disease map can be

specialized by specifying the differences between a known

disease and a new, to-be-defined disease. For example,

Multiple Systems Atrophy differs from PD in several ways,

two of which are: its onset age can be 30 (as opposed to 65

for PD) and it progresses much more rapidly. It also shows

substantial loss in the density of the neurons that are

postsynaptic to dopaminergic neurons, a phenomenon

absent in PD. This can be stated as:

like(msa: multiple_systems_atrophy, pd:
parkinsons_disease).

unlike(msa, pd, activity(onset_age)
(multiple_systems_atrophy, Age), Age. 30).

associated_with(msa, loss(density(dopami-
nergic_neuron(postsynaptic))))).
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Recall that throughout the paper we follow the

convention to read the first argument of an atom as the

‘subject’, and the predicate symbol as the (possibly

parameterized) predicate of the logical sentence. Therefore,

Multiple Systems Atrophy, unlike Parkinson’s disease

has and onset_age activity with an Age value

greater than 30 (while the default onset age for PD (defined

elsewhere) is greater than 60). Further note that here we use

‘:’ to define a synonym.

The second statement, about the loss of density, is not

given as an exception via the unlike because it does not

‘replace’ any fact from the facts about PD. Instead the

differentiating property is given as a separate positive

statement. However regardless of the manner of specializ-

ation, the internal representation of the disease properties

should be identical.

Finally, a form of specialization can be used to derive

new nodes. Suppose, the disease map has the facts:

isa(dopaminergic_neuron, neuron).

part_of(axon, neuron).

Using rules A1 and A2 from Section 1, we can derive the

fact part_of(axon, dopaminergic_neuron). The

usual interpretation of this is that every dopaminergic

neuron has an axon. However, in this case, we want the

system to construct an object, called the axon of a

dopaminergic neuron, which is distinguished from all

other axons, because we might want to define properties

that pertain to only these axons. Suppose, we adopt the

convention that these ‘system-invented’ objects (also called

derived nodes) will be named: of(axon,dopaminer-
gic_neuron). We could write an ‘object generating’

rule:

isa(of(D,C1),D) ˆ

isa(C1,C), part_of(D,C), : exception-(C1).

asserting, in our example, that of(axon,dopami-
nergic_neuron) is an axon.

Path finding. Our neuroscience users have identified path

finding to be a very important class of queries that help them

find interesting correlations among concepts, processes and

their properties. A path search can be ordered or unordered.

An ordered path search is given as a path expression over

concepts and relationship names; the path expression can

contain wild-cards and predicates to be satisfied by the

nodes and edges of the path, but the expression constrains

the order of the specified path elements. An unordered path

search specifies the properties of the nodes and edges to be

included and excluded from the path, and possibly on the

number of occurrences of each type of node and edge, but

not on their order. The utility of a path search can be

illustrated by a researcher who wants to know of all paths

that go from the term a-synuclein through the term

protein_aggregate(_Protein) to the term cell_death, but

not through the term Lewy_body. These paths, if present,

would give the researcher a sense of all theories assembled

in a disease map where cell death occurs due to protein

aggregates that are not part of Lewy bodies. Note that the

unspecified parameter in the term protein_aggregate(_Pro-

tein) refers to any protein that might form an aggregate.

Neighborhood finding. Neighborhood finding has been

identified as another important operation with a disease

map. If we treat the disease map as a graph over concepts

(nodes) and relations (edges), neighborhood finding

corresponds to a subgraph search where the properties of

only some nodes, edges or paths are specified. A typical

use is from a scientist who has created a tnetatis hypothesis

in the form of a small set of concepts and relationships, and

wants to situate it in a larger disease map. The

neighborhood finding task would take a specified set of

terms and relationships and locate all neighborhoods where

they can fit. Once a desirable neighborhood is located, the

user might want to further tune the results, for example, by

adding to it the k-neighborhood of a node in the previous

result.

Model matching. Comparison of one fragment of a

disease map with another corresponds to the task of

subgraph matching (homomorphism), and is the central

requirement of evaluating animal models with human

disease models. There are several different ways a user

might want to perform a subgraph match. In many cases,

producing the node and edge intersection between the

two graphs, as well as their difference graph would

suffice. In other cases, a numerical matching score is

desired. Either way, the comparison needs to cover both

the explicit and the derived relations (edges) of the

disease map.

Semantic mediation. Semantic mediation refers to a

class of information integration problems where two

database schemas from different data sources are integrated

by using a third, auxiliary body of knowledge (e.g. in the

forms of facts and rules) provided by a domain expert. The

presence of the auxiliary knowledge is essential, because

without this additional glue, the schemas do not overlap

enough to allow the definition of any integrated view over

them. In this context, the role of the disease map is to act as

a body of glue knowledge (Gupta, Ludäscher, & Martone,

2000; Ludäscher, Gupta, & Martone, 2001; Ludäscher,

Gupta, & Martone, 2003) that ties together experimental

data from the different participants of a federation. In the

case of BIRN, the disease model helps to integrate

information from researchers dealing with the human and

animal forms of Parkinson’s disease. A query on such an

integrated view could be: Which animal model shows a

rate and distribution of neuron degeneration most similar

to the patient population P, where P can be specified by

conditions on patient age, gender, medical history and

treatment received.

In Section 3, we propose an initial formalization of

disease maps using logic programs and illustrate how
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the resulting formalism can accomplish the various

desiderata described above.

3. Towards a formal model of disease maps

It is common practice to model and visualize ontologies

as labeled directed graphs. For example, the labeled edge

C !
r

D states that the concepts C and D are r-related. In

particular, a labeled tree in which the only label r is ‘ isa’

describes a simple concept (or class) hierarchy.

As is the case for most ontologies, binary relationships of

a disease map can be understood as labeled edges between

nodes representing concepts. Such a graph representation

facilitates the visualization of disease maps via graph layout

programs, and allows the user to issue powerful graph

queries to explore the graph structure and the relationships

between concepts (e.g. one can compute reachability under

regular path expressions, find shortest paths, minimal

spanning trees, etc.). In this way, ontologies in general,

and disease maps in particular not only serve as sources of

‘terminological glue knowledge’ in scientific data inte-

gration systems, but become study objects in their own

right.

However, in order to capture scientific knowledge using

disease maps, a pure graph-oriented model of disease maps

is not sufficient, as it does not address the following crucial

issues:

† What does an individual edge C !
r

D really mean? For

example, can C and D be understood as classes of

objects? If so, what does this edge say about the

relationship r between instances c [ C and d [ D? Is

every r-related object o of c in D; or does the edge just

state that there is some such r-related o in D? A logic

formalization of disease maps can resolve this ambiguity:

e.g. the former meaning is specified using the description

logic formula C h ;rD;, while the latter is specified by

C h ’rD:

† Given a set of edges, what is their combined meaning?

For example, does C !
r

D!
r

E also imply that C !
r

E?

The answer is yes for r ¼ isa and (in general) no for

r ¼ inhibits: A logic formalization allows us to

specify what facts are or are not implied by certain ‘edge

configurations’.

3.1. Disease maps as logic programs

We use a formalization of disease maps as logic

programs for the following reasons: Logic programs are a

standard, well-understood formalism for knowledge rep-

resentation and reasoning (Baral, 2003; Brewka & Dix,

2003). Logic rules provide a concise, declarative specifica-

tion mechanism for defining the semantics of ‘edge

interactions’ in disease maps. The meaning of the some-

times quite intricate interactions among different logic rules

and axioms is unambigously given by the declarative logic

programming semantics of the rule set. All common

relational integrity constraints and arbitrary application-

specific semantic constraints can be expressed as logic

programs. Finally, logic programs are executable specifica-

tions and complex queries over these specifications can be

evaluated by deductive database engines such as the XSB

system (Sagonas, Swift, & Warren, 1994).

The syntax of logic programs is defined as follows: A

logic program is a set of logic rules of the form H ˆ B;

where the head H is a logic atom, and where the body B is a

conjunction of literals. If B is empty, then we say H is a fact.

A literal is an atom A or its negation : A. An atom (short for:

atomic formula) is an expression of the form rðt1;…; tnÞ;

where r is an n-ary relation symbol and the ti are terms. The

set of terms is constructed in the usual way, based on a set of

constants, variables, and function symbols. In particular, if

t1;…; tk are terms and f is a k-ary function symbol, then

f ðt1;…; tkÞ is a term. When writing concrete logic rules,

variable names are capitalized, e.g. X;Y ;…, while all other

symbols (i.e. constants, function symbols, and relation

symbols) are lower-case.

The semantics of a logic program is given using the

notion of a model of the program. Due to lack of space, we

only provide the basic intuition; see, e.g. (Brewka & Dix,

2003) or (Abiteboul, Hull, & Vianu, 1995) for details (using

logic programming and database perspectives, respect-

ively). A logic interpretation assigns a meaning to the

syntactic constructs of the language, e.g. by mapping

constants and terms to domain elements, function symbols

to functions, and relation symbols to relations. For the

purpose of answering queries, one considers only Herbrand

interpretations which interpret the underlying domain

syntactically or symbolically. In particular, the Herbrand

universe consists of all ground terms that can be constructed

from constants and function symbols. Relations are then

interpreted over this universe of terms. A (Herbrand) model

of a logic program is a (Herbrand) interpretation that

satisfies all facts and rules of a program.

Intended, declarative semantics. The question arises:

Which model(s) of a program are the ‘right’ and intended

ones. The logic programming community has extensively

studied and solved this problem (Dix, 2003). For positive

logic programs P (i.e. not involving any negated subgoal)

the intended semantics is given by the unique minimal

model of P: The minimal model can be obtained as the

intersection of all Herbrand models or, equivalently, as the

least fixpoint when ‘firing’ the rules simultaneously, starting

from the facts. For programs with negation, there are two

main accepted semantics, the well-founded semantics (Van

Gelder, Ross, & Schlipf, 1991), and the stable model

semantics (Gelfond & Lifschitz, 1988). Under the first

semantics every logic program has a unique well-founded

model which assigns a third truth-value ’ (undefined) to

atoms which cannot be decided to be either true or false

because (i) its truth-value depends negatively on itself, and
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(ii) there is no well-founded reasoning process using only

the facts and rules of the program that would establish a

unique truth-value. In contrast, the stable model semantics

‘guesses’ models and considers them stable if they

reproduce themselves under a certain natural transformation

(Gelfond & Lifschitz, 1988).

For example, for the logic program P with the two rules

a_liesˆ : b_lies and b_liesˆ : a_lies, the

well-founded semantics assigns the truth-value ’ (unde-

fined) to both atoms since it cannot be established whether a

or b lies. P has two stable models though: in one a is a liar

and b speaking the truth, while in the other model the roles

of a and b are reversed.

Therefore, for disease maps, we adopt as our canonical

semantics the less controversial well-founded semantics.

Well-founded models can be computed efficiently (e.g.

using the XSB deductive database (Sagonas et al., 1994))

due to their PTIME data complexity on function free

programs. Moreover, every stable model coincides with the

well-founded model on the true and false atoms and only

interprets the undefined atoms as either true or false

(according to a ‘stable guess’, i.e. one which does not

contradict itself).

3.2. Edge semantics

A large number of facts in a disease map are binary

relations, i.e., sets of tuples of the form rðC;DÞ. If C and D

are classes, we can distinguish two kinds of edges:

† C !
r

D (the default edge type) which stands for the

description logic axiom C h ’r:D (every c [ C has

some rðcÞ [ D). We formalize this using the logic rule3

† false ˆ classðCÞ ^ classðDÞ ^ instance
ðC0;CÞ^ : ’D0:rðC0;D0Þ^instanceðD0;DÞ

Such a rule with the distinguished predicate false the

head is called a denial. Denials are a convenient way to

express integrity constraints by specifying what must not

happen-here: there must not exist a c0 [ C such that there is

no d0 [ D to which c0 is r-related. If false be inferred

under the well-founded semantics (or in a stable model),

then an inconsistency has been detected.

C !
;r

D which stands for the description logic axiom C h

;rD (all r-related d of any c [ C are in D). This integrity

constraint is captured as follows:

false ˆ classðCÞ ^ classðDÞ ^ instance
ðC0;CÞ ^ rðC0;D0Þ ^ : instanceðD0;DÞ:

The rules states that there can be no co [ C such that

rðc0; d0Þ and do � D.

Note that both axioms for the two different edge types

apply only to concepts which have been declared to

be classes, since only classes have instances (also known

as the members of the class). The distinguished predicate

instanceðX;CÞ holds if X is an instance of class C:

Separation of class and instance level. If we want to

disallow disease maps that blur the distinction between the

schema level and the instance level, we can require that no

class can be an instance of another class:

falseˆ classðCÞ,classðDÞ;instanceðC;DÞ:

Clearly, C can still be a subclass of D; i.e. classðCÞ;,

classðDÞ; and isaðC;DÞ can be true.

3.3. Parameterized concepts and relations

Often it is convenient to parameterize concepts or

relationships. For example in the above examples for

specifying semantic integrity constraints as denials, it is

desirable not only to signal an inconsistency, but to provide

an explanation for the inconsistency by ‘witness terms’. For

example, we can reformulate the above class-instance

separation constraint as follows:

false(cisðC;DÞ) ˆ

classðCÞ;classðDÞ;instanceðC;DÞ.

Now if false(cis(c,d)) is derived under the

canonical semantics, we know that the class-instance

separation constraint has been violated for c and d.

Apart from the distinguished relation symbol false,

any other relation can be parameterized as well. For

example, the edge

disease !
etiologyðpathologyÞ

aberrationðcellÞ:

involves a parameterized relation etiology(patho
logy) and is represented using the fact etiology
(pathology)(disease, aberration(cell)).

In aberration(cell), aberration is a convention-

al first-order logic function symbol mapping a concept

name c (here: cell) to the concept ‘the aberration of c’.

In contrast, etiology occurs at the position of a

relation symbol which in conventional first-order logic

cannot be parameterized. However, in real applications it

is desirable to be able to handle different ‘flavors’ of a

relation either uniformly across all flavors or differently

depending on the specific flavor. A standard example is

the part_of which, in a finer modeling, can be

parameterized as part_ofðFÞ to include flavors F

such as member/collection, portion/mass, phase/activity,

etc. (Artale, Franconi, Guarino, & Pazzi, 1996).

Here, we may query the system which flavors etiol-
ogy has (e.g. pathology, agent, vector, host,

etc.) and then define either overarching rules for multiple

flavors or distinct ones for individual flavors.

3 For conciseness and readability, we allow first-order rule bodies such as

: ’D0 : rðC0;D0Þ ^ instanceðD0;DÞ. It is well-known how they can be

translated into several standard logic rules.
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3.4. Closure operations

A common semantic constraint for certain relations is to

perform various kinds of ‘deductive closure’ operations. For

example, a standard requirement for the isa hierarchy is

that it should be transitive and antisymmetric. This can be

formalized as follows:

isaðC;DÞˆ b_isaðC;DÞ:

isaðC;DÞˆ isaðC;C0Þ;isaðC0
;DÞ:

falseðon_isa_cycleðC;DÞÞˆisaðC;DÞ;isaðD;CÞ;C

–D:

The system can then derive all transitive edges using the

first two rules, starting from a (typically much smaller) base

relations b_isa ‘initial’ isa facts. The last rule allows the

system to detect inconsistencies in the concept hierarchy

and reports all pairs of concepts ðC;DÞ which are involved

in a (disallowed) concept cycle.

Similarly, the following rule closes all flavors of

part_of transitively within each flavor F, but not across

flavors (a variant of this rule can be used to achieve the latter):

part_ofðFÞðX;YÞˆ

part_ofðFÞðX;ZÞ;part_ofðFÞðZ; YÞ:

Relation variables and hilog features. In addition to

parameterized relations symbols, we allow variables at the

position of relation symbols. For example, we can specify a

generic transitive closure rule for any relation R as follows:

tcðRÞðX;YÞˆ RðX; YÞ:

tcðRÞðX;YÞˆ RðX; ZÞ;tcðRÞðZ;YÞ:

While relation variables such as R and parameterized

relations such as tcðRÞ correspond to a restricted second-

order syntax, they have a standard first-order semantics via a

simple transformation. For example RðX;YÞ is mapped to a

conventional first-order atom applyðR;X;YÞ. This encod-

ing is used, e.g. in Hilog (Chen, Kifer, & Warren, 1993) and

F-logic (Kifer, Lausen, & Wu, 1995), and is implemented in

the XSB system.

3.5. Inheritance

An import use of the isa relation is property

inheritance: a subclass inherits all properties of its super-

class. This is specified as follows:

LðC;XÞˆ isaðC;DÞ;LðD;XÞ:

A similar rule can be used to inherit properties across the

instance level. Note that multiple inheritance, i.e. a situation

where C is a subclass of both D and E can lead to problems:

what if the properties inherited along D and E contradict each

other? There are several approaches to deal with this problem:

e.g. if D itself is a subclass of E; then typically the more

specific information from D is inherited, while E is ignored. If

D and E are incomparable, then one can inhibit inheritance

altogether, or specify some ad-hoc overriding policy.

3.6. Default inheritance

It is sometimes convenient to describe a new concept,

such as a new disease, relative to another, similar one. This

can be achieved by providing facts of the form likeðX0;XÞ,

stating that X0 should by default inherit all properties of X;

and the following rule:

LðX0
;YÞ-ˆ LðX;YÞ;likeðX0

;XÞ;: exceptionðLÞðX0
;XÞ:

Now every property described by an edge X!
L

Y is inherited

from X to X0 unless a fact exceptionðLÞðX0;XÞ states

otherwise. This rule is nonmonotonic, since a larger set of

exceptions results in a smaller set of inherited properties.

Exceptions can be stated directly as facts or indirectly

using rules. We call this way of handling inheritance default

inheritance, since property inheritance is not automatic

through the isa relation, but based on direct or indirect

conditions expressed through exception facts.

Additional properties of X0 (versus X) do not need special

handling, but are simply stated as new facts for X0:

3.7. Semantic typing of functions and relations

Traditionally, first-order logic and logic programs are

untyped. This means that we can apply any function symbol

to any term, and instantiate any argument of a relation with

any term as well. However, in order to detect certain errors

as soon as possible, it is desirable to employ a type system,

e.g. similar to the ones used in the functional programming

languages Haskell and ML.

We obtain a semantic type system, by declaring for each

relation and for each function, the types of each argument. A

powerful polymorphic type system is obtained by allowing

type declarations with type variables. Finally, the type

hierarchy is obtained by extending a given subtyping

relation ‘a’ from the base types to complex types. The

resulting type system helps to structure the domain and

documents this structure, and—most importantly—it allows

detection of certain specification errors in facts and rules of

disease maps at compile-time, before evaluating the rules.

In the disease map, an example of semantic types can be

found in the relation cellular_structure a
anatomical_structure. The arguments of predicates

often have a semantic signature—for example,

anatomical_part_of(thing, anatomical_
structure).
codes_for(gene, protein, species).
codes_for(gene, peptide, species).
occurs_in(stuff, anatomical_structure).
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Here stuff, as opposed to thing, refers to non-discrete

entities like ‘fat deposit’. There can also be a a
relationship between two predicates. For example,

related_to(process, disease) is used when no

further information is available, whereas, causes(pro-
cess, disease) is a stronger relationship, and is

subsumed by related_to.

3.8. Reasoning as argumentation

Well-founded and stable semantics can be used to

resolve disputes via so-called argumentation frameworks

(Bondarenko, Dung, Kowalski, & Toni, 1997; Dung, 1995).

A variant of this can be used, for example, to perform a sort

of hypothetical reasoning: Assume for modeling the

regulatory behavior of genes controlling the pathogenesis

of protein aggregates, that a relation inhibits(Inhi-
biter,Inhibitee) is given, together with a set of

genes that are active in a certain scenario like Lewy body

formation. We may wish to state that a substance is active if

it is not inhibited, and that it is inhibited, if there is an active

inhibiter:

activeðXÞˆ : inhibitedðXÞ:
inhibitedðXÞˆ inhibitsðY ;XÞ;activeðYÞ.

While this logic program is not stratified (the predicate

inhibited depends negatively on itself), it still has a unique

well-founded model that can be used to identify which of

the ‘arguing’ inhibits statements ultimately ‘win’. At

present, we are trying to use this formalism to model the

behavior of fibril formation during the production of Lewy

bodies. In some ‘drawn positions’, the stable models of the

program (if they exist) may provide additional insight. For

example, if a and b mutually inhibit themselves, then there

are two stable models, one in which a is active, and one in

which b is active. We expect this model to simulate the

reasoning for two contrasting hypotheses—one in which the

Lewy body is the primary cause for cell-death, and another

in which they are the protectors against the process of cell

death.

A general argumentation framework (Dung, 1995)

comprises an argument generation unit AGU and an

argument processing unit APU. The former can be given

simply by a binary relation attacks(X,Y), stating that

argument X attacks argument Y. The APU is then the simple

yet very powerful logic program

defeated(Y)ˆ attacks(X,Y), acceptable(X).
acceptable(X)ˆ : defeated(X).

The first rule states that an argument Y is defeated if it is

attacked by an argument X which is acceptable. The second

rule states that an argument is acceptable if it is not defeated.

The truth values assigned by the well-founded semantics to

such an argumentation framework correspond to a cautious

reasoning process, in which an alternating sequence of

underestimates and overestimates ultimately converges to

three sets of definitely acceptable, definitely defeated, and

non-determinable arguments.

3.9. Homomorphisms

As described in Section 3.8, animal models can be

thought of as a ‘parallel world’, from which certain

knowledge may be transferrable to the human. In order to

formalize the correspondences, we can use rules such as the

following:

may ðLðFÞÞðX0
; Y 0Þˆ LðX;YÞ;model_ofðFÞðX;X0Þ;

model_ofðFÞðY ;Y 0Þ:

This rule states that if there are model pairs ðX;X0Þ and

ðY ;Y 0Þ under the same flavor F (such as neurotrans-
mission), and LðX;YÞ holds in one model (typically the

animal model), then there may be a homomorphic statement

LðX0;Y 0Þ (typically in the human model). Here, we use an

operator may to indicate that this is not a definite inference,

but derived from a ‘parallel model’.

The above rule could be modified in several ways. For

example, we may want to allow this rule to apply for

compatible flavors F1 and F2 instead of a single flavor F

only. For this compatibility may be defined, e.g. as

isaðF1;F2Þ_ isaðF2;F1Þ.

Another variant is to derive potential facts of the form

may ð…ÞðX0; Y 0Þ only if the correspondences through

model_ofð…ÞðX;X0Þ facts are established in a certain

defined neighborhood of X and Y and not just locally at a

single point LðX;YÞ:

4. Towards a disease map for Parkinson’s disease

In this section we describe the basic structure of the

disease map we are developing for Parkinson’s disease and

some of the related ailments. The map is created as a logic

program divided into a number of sections.

Meta model. This section catalogs the basic object,

process and relationships used through the rest of the disease

map. The entire meta model is based upon a few primitive

class-level concepts—object, organism, process,

and event that get specialized in the course of the model.

These primitives have minimal structure and semantics—an

object has a name, an organism has a name that comes from

the animal kingdom taxonomy, a process has a name, and

optionally a time-interval, and an event has a name, a

process in which it occurs and optionally, a time-of-

occurrence. An anatomical_structure specializes

the meta-class object by adding a parameter for the

organism class it belongs to. Thus,

anatomical_structureðorganismÞ !
isa

object:
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We instantiate an anatomical_structure,

the value substantia_nigra for humans as

substantia_nigra !
instance

anatomical_structureðhumanÞ:

This implicitly makes the substantia_nigra
inherit the organism as human. Specialization becomes a

little more complex in case of the basal_ganglia, a

group of nuclei that are given a single name. This is

declared in multiple steps:

neuron !
isa

nerve_cell:

nucleus !
isa

anatomical_structureðorganismÞ:

basal_ganglia !
isa

anatomical_structureðhumanÞ:

subcortical_nucleus !
isa

set_of

ðneuronlself:location ¼ outsideðneocortexÞÞ:

caudate_nucleus !
isa

subcortical_nucleus:

basal_ganglia !
instance

caudate_nucleus:

Here the condition self.location ¼ outside
(neocortex) is a restriction predicate that limits the

possible locations of the members of the group being

declared.

Process specialization occurs similarly - in a simplistic

approach, let us say aberration, injury, degener-
ation and malfunction all specialize process. We

can use them to define pathological_process as a

specialization of process through a union rule by

introducing a parameter to associate the process through

with an aberration, injury of anatomical structure, or a

malfunction of physiological system, or the aberration of a

gene:

pathological_processðYÞðXÞˆ

processðXÞ;aberrationðanatomical_

structureÞðYÞ:

pathological_processðYÞðXÞˆ

processðXÞ;injuryðanatomical_structureÞðYÞ:

pathological_processðYÞðXÞˆ

processðXÞ;degenerationðanatomical_

structureÞðYÞ:

pathological_processðYÞðXÞˆ

processðXÞ;malfunctionðphysiological_

systemÞðYÞ:

pathological_processðYÞðXÞˆ

processðXÞ;aberrationðgeneticÞðYÞ:

Disease definition. In this section, a disease is defined

as a pathological process that has the following properties:

one or more flavors of etiology, an epidemiology,

a vector, one or more hereditary risk factors, one or more

symptoms, one or more pathological hallmarks, an activity

pattern, one or more treatments. Some of these properties are

complex. For example, the activity pattern consists of onset,

progress and outcome, where onset may have a number of

attributes like age, onset_cause, and progress in a

sequence of phases, each of which has a sequence of

landmark_events. Of course, a specific disease may

not have a need for all of these attributes. So when we

specialize disease to define parkinsons_disease,

we might assert:

isaðparkinsons_disease;diseaseÞ:

falseðnot_applicableðpd_spcÞÞˆ

etiologyðpathologyÞðD;aberrationðSÞÞ;

isaðD;parkinsons_diseaseÞ;

anatomical_structureðSÞ;anatomical_part

ðS;spinal_cordÞ:

meaning that for Parkinson’s disease (or any of its subtypes

D), no fact about the aberration of any anatomical subpart of

the spinal cord is relevant. Note that the parameterization

not_applicable(pd_spc)offalse characterizes the

nature of error. In addition to not_applicable, we use

not_known,not_recorded,not_present as other

forms of null values.

The disease definition section also contains the symptoms

that are clinically associated with Parkinson’s and related

diseases, and other diseases like acute polio and syphilis that

have been identified as risk factors for Parkinson’s disease.

Diseases with clinically similar presentations (like Pick’s

disease) are also recorded. Many of our relationship names

are borrowed from semantic relationship names of the

UMLS. However, we have imposed additional constraints to

ensure consistency of their properties within the disease

maps. For example, the relationship is_clinically_-
similar is not transitive.

Anatomical structures. This section of the disease map

captures the anatomical structures relevant for Parkinson’s

disease. It uses and references the concept identifiers from the

UMLS. This allows the disease map management system

(which functions as a mediator) to connect to a local copy of

the UMLS, and derive relationships between two terms based

both on the relationships specified by the disease map as well

as the UMLS. For example, although the term ‘cerebral

peduncle’ does not exist in the disease map, the UMLS

provides the relationship anatomical_part_of(mid-
brain, substantia_nigra). The subcellular struc-

tures of the disease map make similar references to the

‘Cellular Component’ fragment of the Gene Ontology.

Some concepts need bidirectional implications. Consider

the statements in Fig. 1, which state that if a cell contains
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an abnormal filament, it contains a filamentous inclusion,

conversely, if something is a filamentous inclusion, it must

contain an abnormal filament. This is a part of the disease

map that would allow us derive, for example, that neurons in

the substantia nigra pars compacta of a Parkinson’s disease

patient have filamentous inclusions.

Managing correspondence problems. Often when

employing multiple sources, say UMLS and Gene Ontol-

ogy, we come across terms such as mitochondria that

are referenced by both. We use different identifiers,

corresponding to the different occurrences, e.g. UMLS.mi-
tochondria and GO.mitochondria, respectively. In

this way, name clashes can be avoided by fully qualifying

names with the source which specifies them. This resolution

of name clashes has to be distinguished from the more

general ‘correspondence problem’ across concept hierar-

chies or ontologies coming from different sources. For

example, according to UMLS, the substantia nigra is

a part_of the midbrain. However, according to (Swan-

son, 1998), substantia nigra is part_of mid-
brain-hindbrain and the term midbrain is not a

distinct concept. Typically, whenever such a correspon-

dence mismatch occurs, some spatial relationship such as

contains, covers, overlaps, etc. Discovering the

actual spatial correspondence relations is outside of the

scope of disease maps. (Bota, 2001) uses a spatial inference

technique to derive such atlas correspondance relations

from different parcellations. In the current development of

our disease map, we have not modeled such relationships.

One way in which we may use such information in the

future is by stating these spatial relations as logic

statements. Description logics (Baader, Calvanese,

McGuinness, Nardi, & Patel-Schneider, 2003) have been

used to reason about concept interrelations and correspon-

dences, e.g. to establish whether one concept subsumes or

overlaps with another. See (Rector, 2003) for a similar

approach to nomenclature management in medical

informatics.

Protein aggregation. The protein aggregation section

defines the relationships between the concepts regarding

the localization and content of the protein aggregates like

Lewy bodies. For example the fact that high concentrations

of the ubiquitin protein is found in the bound state is

represented as:

concentrationðhighÞðboundðproteinðubiquitinÞÞ;

lewy_bodyðearly_onset_parkinsons_diseaseÞÞ:

Note that protein(ubiquitin) is distinguished

from ubiquitin which is semantically typed as a gene.

In order to express the fact that for the human version of

late onset Parkinson’s disease, a Lewy body expressing

mutant a-synuclein may have either the a53t or the a30p

mutant but not both, we use the following integrity

constraints:

falseˆ contains(human)

(lewy_body(late_onset_parkinsons_

disease),

protein_aggregate(protein(a53t))),

contains(human)

(lewy_body(late_onset_parkinsons_

disease),

protein_aggregate(protein(a30p))).

falseˆ : contains(human)

(lewy_body(late_onset_parkinsons_

disease),

protein_aggregate(protein(a53t))),

: contains(human)

(lewy_body(late_onset_parkinsons_-

disease),

protein_aggregate(protein(a30p))).

The first rule eliminates the case in which both proteins

are present in the lewy body, whereas the second eliminates

the case that neither one is.

The protein aggregation section also contains relation-

ships that pertain to the genes found in Lewy bodies.

Consider the statements:

has form(aggregate(protein(alpha_synu-

clein)))

(protein(alpha_synuclein), beta_plea-

ted_sheet).

ligase(denaturation)( protein(parkin),

protein(ubiquitin(‘E3’))).
Fig. 1. A fragment of the Parkinson’s disease map describing filamentous

inclusions, a parent category of Lewy body.
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The first states that sort protein aggregates, a-

synuclein are found in the form b-pleated sheets,

and the second states that the protein of the parkin
gene acts as a ligase for the E3 form of the protein

of ubiquitin, tagging them for the process of

denaturation.

Cellular environment. This section records the terms and

relationships related to the neurons participating in or

affected by the disease process. This contains information

such as the dopaminergic neurons of the substantia nigra

pars compacta express protein(dopamine_tran-
sporter). The role of the dopamine transporter protein

as described earlier (Section 2.1) in the paper also appears in

this section.

Cell death. Finally, the cell death section

contains the process description related to the common,

agreed-upon knowledge and hypothesized models of cell

death as they relate to Parkinson’s disease. Two

important aspects of the formalism are used in this

section. First, for cell death, the inherent temporal

semantics of concept names denoting processes become

important. For example, cell death in Parkinson’s disease

is not acute - the time-course of cell death for PD is

progressive, exhibiting a gradual transition between the

onset of a cell injury, the development of the

degeneration while the cell still performs its function,

the slow withering of the cellular compartments, finally

leading to its death. Pathologically, cell death has been

related to Lewy bodies (Kahle, Haass, Kretzschmar, &

Neumann, 2002). At a very coarse level one can make

statements like:

isa(protofibril(X),

protein_aggregate(X)) ˆ

protein(X).

p1: isa(formation(protofibril

(alpha_synuclein)), process).

p2: isa(formation(fibril

(alpha_synuclein)), process).

p3: isa(formation(lewy_body),

process).

has_phases(dopaminergic_neuron)(cell_

death, [p1 ! p2 ! p3]).

occurs_in(cell_function(normal))

( p1, dopaminergic_neuron).

Here, the second argument in the phase_of relation,

denotes an ordered sequence of phases, which could be

elaborated into finer processes.

Secondly, this illustrates the treatment of hypotheses,

which are modeled as simple facts or rules, that are

specially labeled. For example, a statement like “Jones’

hypothesis is protofibrils of a-synuclein are toxic to

dopaminergic neurons (Goedert, 2001), but Lewy bodies

protect them” can be written as:

hypothesis(‘Jones’)(is_toxic

(protofibril(alpha_synuclein),

dopaminergic_neuron)).

hypothesis(‘Jones’)(protects

(lewy_body,dopaminergic_neuron)).

If Smith’s hypothesis is ‘Lewy bodies cause degener-

ation of dopaminergic neurons’, it can be similarly

stated:

hypothesis(‘Smith’)(causes

(lewy_body,degeneration

(dopaminergic_neuron))).

To make these two statements ‘oppose’ each other, we

need to tell the system that the facts protects(X,Y) and

causes(X, degeneration(Y)) attack each other

(see Section 3.8):

attacks(protects(X,Y), causes

(X, degeneration(Y))).

attacks(causes(X, degeneration

(Y)), protects(X,Y)).

This can be made to produce two stable models of cell

death depending on whether the toxicity of the protofibril or

the Lewy body fibrils is assumed.

5. Querying the disease map

In Section 2.2, we outlined a number of different tasks

we need to perform with a disease map. They can be

categorized into three primary groups—extensional

queries that perform a path or graph search, intensional

queries that require logical derivation to perform a

search, and defining integrated views, which might need

a combination of the above. The query language that

enables us to perform these operations is currently only

partially specified, and its full treatment is beyond the

scope of this paper. Therefore we outline the basic

structure of the query language as we envision it, and

present examples of queries for analysis of and mediation

with disease maps.

Elements of the query language. As mentioned in Section

3.1, a disease map can be considered to be an edge-labeled

graph with parameterized nodes and edges. The logic rules

are producers of derived edges, and occasionally derived

nodes. The basic form of the query is to give the system a

graph pattern and request it to find all occurrences (called

witness graphs) of the pattern in the map. Consider the

query ‘Find all diseases that have dementia as a symptom

and Lewy bodies as a pathological feature’. As a query, this

would be expressed as:
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In this query, we are looking for a graph, the union of

paths $Path1 and $Path2 such that there are three

nodes $N1, $N2 and $N3 satisfying the specified

conditions. In line (2), $N1 is bound to nodes whose

value is disease or a subconcept thereof. Note that although

‘isa’ can be construed to be transitive, unless we use the

explicit form tc(isa) for the transitive closure of isa,

the system just uses the direct isa. Line (5) of the query

shows the system-defined connect(Path, Node,
Node) function, where the Path variable binds to the

set of paths that the two nodes are connected by. Line (6)

illustrates the edgeIn-Path(Edge, Path) predicate,

where the first argument is an edge expression that refers to

an edge with the label ‘symptom’—one end of it is our

desired graph node ‘dementia’ and the other end is

unspecified. Note that {label} denotes an edge label. Line

(7) shows a similar construct pathInPath(Path1,
Path2) for a sub-path expression, where the fragment

{etiology(pathology)}0..$N3 refers to an edge

label etiology(pathology) followed by any number

of nodes or edges leading to the node $N3 which is a Lewy

body (4).

Next, consider the query ‘Which animal models share

common features between Parkinson’s disease (PD),

Alzheimer’s disease (AD) and Lou Gehrig’s disea-

se(LGD)?’ Under the simplifying assumptions that the

terms in the animal models match exactly the corresponding

terms in the human disease models, this query finds the

graphs corresponding to PD, AD and LGD, and intersects

them to create a new graph IG that represents the common

features of all three diseases (lines (1–13) in Fig. 2. Then it

reports all animal models that have a non-empty intersection

with IG (lines (14–16) in Fig. 2).

The reachability graph is computed in lines (2), (6) and

(10) because it projects out the part of the graph that might

be relevant to each disease. As noted by (Jagadish et al.,

2002), our queries on databases of graphs (and trees) need to

return both the witness graphs (the parts that matched the

query conditions) as well as a covering subgraph (e.g. a

minimal spanning tree that includes the nodes and edges of

the witness graphs) surrounding the witness graphs. Also

noteworthy is the observation that in practice, this rigid

graph intersection would be impractical because the graph

structure of the animal models would very likely be different

from the human case. We are currently investigating the

query language properties to specify imperfect graph

matches.

Deductive queries. To pose a query that involves a

deductive computation, we use a rules module, which is

evaluated by a deductive database engine. For example, to

query for all descendants of neurons using the transitive

closure tc(isa) of the isa we would pose the following

query:

select * from parkinsons_disease_map M ;

rules Rð1Þ where M :node ¼ $N1 and R:tc

ðisaÞð$N1:value;‘disease’Þ:

Integrated view definition. Consider two groups of

researchers—one who works on a mouse model of PD,

and the other who works on protein localization with high-

resolution light and electron microscopy images. Let us

Fig. 2. Animal model queries.

select graph_unionð$Path1; $Path2Þ from parkinsons_disease_map M ð1Þ

where M :node ¼ $N1 and isað$N1:value; ’disease’Þ and ð2Þ

M :node ¼ $N2 and $N2:value ¼ ‘dementia’ and ð3Þ

M :node ¼ $N3 and $N3:value ¼ ‘lewybody’ and ð4Þ

connectsð$Path1; $N1; $N2Þ and connectsð$Path2; $N1; $N3Þ and ð5Þ

edgeInPathð{symptom}:$N2; $Path1Þ and ð6Þ

pathInPathð{etiologyðpathologyÞ}::$N3; $Path2Þ: ð7Þ
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assume the first group has a table with the following schema

in their database:

process_evidenceðtransgenic_id;

model_type; process_name; image_location;

observed_structures; evidence_detailsÞ:

The second group has a table:

protein_localizationðsubject_id; protein

_name; model_type; image_location;

observed_structures; relative_

concentrationÞ:

From these two relations one wants to ask the query:

‘Find the localization of protein X in all brain regions where

evidence of process P has been found in some animal model

of PD’. This is an example of semantic mediation using a

disease map. To formulate such a query, we need to

construct a join-view over the two schemata, and pose the

query against this view. However, in reality, protein_-
localization.observed_structures and
process_evidence.observed_structures need

to be semantically joined, i.e. if one has a record with the

term ‘midbrain’ and the other has a record with the term

‘substantia nigra pars compacta’, then these

records are joinable because ‘substantia nigra pars
compacta’ is an anatomical subpart of ‘midbrain’ and

a query looking for processes in the midbrain would be

satisfied by a record containing ‘substantia nigra
pars compacta’. Similarly, if the query has specified P

as ‘cell death’ but the database record has an observed

process called ‘reduction(diameter(of(axon,-
dopaminergic_neuron)))’ (see Section 2.2), they

should be joinable because reduction(diameter(-
of(axon,dopaminergic_neuron))) is a phase of

neurodegeneration(of(axon,dopaminergic
_neuron)). Additionally, if the observed_struc-
ture is ‘substantia nigra pars compacta’, then

the observed process should be treated as a phase of the

‘cell death’ process. However, for this domain knowl-

edge to work, it has to become part of the integrated view

definition. Since the formal disease map records or derives

relationships such as anatomical substructures and process

phases, the integrated view is defined over the heads of

chosen rules from the disease map.

6. Discussion and conclusions

We have studied the problem of constructing disease

maps in the context of the BIRN project, built around the

study of human diseases. As projects like BIRN assemble

data repositories that encompass multiple techniques,

scales, diseases and species, we face the opportunities and

problems of bringing together multiple types of information

relevant to the understanding of disease, regardless of how,

where and why the data were originally acquired. Using the

data mediation framework under development, researchers

will be able to issue queries across species, diseases and

animal models to try to develop new insights into common

processes and features that span conditions. It is this

challenge that motivates the creation of data mediation

architectures and formal approaches to disease maps as

described here. However, disease maps and other ontologies

are useful not only in the context of database construction

and mediation, but serve as an important source of

information and study object in their own right. By

navigation and exploration of disease maps, the scientist

can investigate relationships between concepts and develop

testable hypotheses.

Ideally, disease maps are dynamic representations of

evolving knowledge on a given disease and thus will be

continually extended and modified. This gives rise to the

important problem of how to manage change in ontologies.

The problem of reconciling different evolving versions over

time is similarly difficult as the problem of articulating

correspondences across different contemporary ontologies.

We have not addressed these issues in this paper. Initially,

we are providing minimalistic version management, in

which evolving statements are tagged with a version

identifier to which descriptive meta-data about the version

and change is linked.

We are also currently developing the necessary tools and

protocols for researchers to register their experimental

observations in the context of the disease maps. Registering

data to the disease map is somewhat analogous to publishing

a paper in a scientific journal. When researchers currently

publish their results, they typically write an introduction,

which provides a general overview of a field and a rationale

for performing an experiment, followed by methods, results

and finally a discussion of how their findings relate to the

current understanding of the problem. We view the process

of registering an experimental observation with the disease

map to encompass the same steps. The researcher will first

isolate the portion of the map that provides the context for a

particular set of experiments. The methods and the

experimental results will be deposited in a database. Finally,

the researcher will map their results onto existing hypoth-

eses about a disease, indicating where they support or fail to

support existing knowledge. If the specific hypothesis does

not exist in the disease map, then the researcher will be

asked to extend the map with the appropriate concepts and

relations. One important method by which researchers can

weight their views of a particular theory or hypothesis is

through the addition of data that either supports or refutes

various portions of a disease map.

Disease maps represent one of the key challenges facing

the biological community: the need to express complex

biological concepts in a logically sound, machine-proces-

sable form. Although the technical difficulties are many, we

believe that our disease map formalization provides
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a promising approach to interrogate complex findings for

understanding biological systems on a grand scale.
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