Assignment 2 – Ontologies / Description Logic

Due: Monday, February 7th (in class, after class)

Problem 1. (10+4+3 Points)

Consider the following ((oversimplified!)	description l	logic ontolog	v (TBox):
0011010101 0110 10110 (11110	(0,0101111	, croscrip cross.		, (= = = : :) .

- i. Organism ≡ Animal ⊔ Plant
- ii. Person ⊑ Animal
- iii. Grass ⊑ Plant
- iv. Cow \sqsubseteq Animal \sqcap \forall eats.Grass
- v. Carnivore \equiv Organism $\sqcap \forall$ eats. Animal
- vi. Rancher \equiv Person $\sqcap \forall$ eats.Cow $\sqcap \exists$ owns.Ranch
- a) Translate the above description logic (DL) axioms into first-order predicate logic (FO) formulas. Hint: To translate the concept expressions on the left-hand-side and right-hand-side of the above axioms, use the translations t_x and t_y given in class. To translate an equivalence $C \equiv D$ or a concept inclusion $C \sqsubseteq D$, compute t_x for the lhs and rhs, respectively, and use
 - $\forall x \ (t_x(C) \leftrightarrow t_x(D))$ for the equivalence or
 - $\forall x (t_x(C) \rightarrow t_x(D))$ for the implication.
- b) When unfolding a concept expressions say E, we can replace a concept C (occurring in E) by an equivalent concept D, i.e., for which $C \equiv D$ holds. If $C \sqsubseteq D$ holds, we can also replace C by D but need to remember that the resulting expression E' is no longer equivalent to E.
- "Unfold" the expression $E = Person \sqcap \forall eats.Cow \sqcap \exists owns.Ranch (equivalent to Ranchers in the above ontology) until it contains only base concepts. Note that the resulting expression <math>E'$ might not be equivalent to E (e.g., if one replaces Grass by Plant in a conjunction, then a possibly larger result is obtained).
- c) In the above ontology, what is the relation between Rancher and Carnivore? For example, is every Rancher a Carnivore? How about the other way round? Explain.

Problem 2 (1+2+3 Points).

- a) What is the difference between a TBox and an ABox, i.e., what kind of information is stored in either one?
- b) What is the difference between evaluating a query and reasoning with a query (or with two queries)? Which problem is harder in general?
- c) What is the relation between evaluating a formula (*val* mapping on the slides) in logic and running a query? Say what corresponds to what (e.g., A in logic corresponds to X in databases, B in logic corresponds to Y in databases, etc.)