
1

ECS289F-W05, Topics in Scientific Data Management

A Practical Introduction to Kepler

Guest Lecturer: Ilkay Altintas
altintas@sdsc.edu

San Diego Supercomputer Center, UCSD

ECS289F-W05, Topics in Scientific Data Management

Scientific Workflows
• Goals:

– automate a scientist’s repetitive data management
and analysis tasks

• Typical phases:
– data access, scheduling, generation,

transformation, aggregation, analysis, visualization
– design, test, share, deploy, execute, reuse, …

SWFs

ECS289F-W05, Topics in Scientific Data Management

SWFSWF Systems RequirementsSystems Requirements

USER REQUIREMENTS:
– Design tools-- especially for non-expert users

• Need to look into how scientist’s define their processes
– Ease of use-- fairly simple user interface having more

complex features hidden in the background
– Reusable generic features
– Generic enough to serve to different communities but

specific enough to serve one domain (e.g. geosciences,
molecular biology)

– Extensibility for the expert user-- almost a visual
programming interface

– Registration and publication of data products and
“process products” (=workflows); provenance

ECS289F-W05, Topics in Scientific Data Management

SWFSWF Systems RequirementsSystems Requirements

TECHNICAL REQUIREMENTS:
– Error detection and recovery from failure
– Logging information for each workflow
– Allow data-intensive and compute-intensive tasks

(Maybe at the same time)
– HPC + Data management/integration
– Allow status checks and on the fly updates
– Visualization
– Semantics and metadata based dataset access
– Certification, trust, security…

2

ECS289F-W05, Topics in Scientific Data Management

Kepler based on Ptolemy II

• A set of Java packages for heterogeneous,
concurrent modeling, design and execution.

• Strengths include:
– Precisely defined models of computation and

component interaction
• e.g. Process Networks (PN) – data-flow oriented

– An intuitive GUI that lets rapid workflow composition
– A modular, reusable and extendable object-oriented

environment
– An XML based workflow definition – MoML

• Workflows defined in Ptolemy II MoML XML schema
• Easily exchangeable

ECS289F-W05, Topics in Scientific Data Management

Abstract Syntax of PTII Models

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Abstract syntax choices:

• Hierarchy is tree
structured (like XML).

• A relation mediates
connections.

• Ports can link multiple
relations and relations
can link multiple ports.

• Ports mediate
connections across
levels of the hierarchy
(no statecharts-style
level-crossing links)

• …
Abstract syntax defines the structure of a
model, but says little about what it means.

•Hierarchical Entities, Ports, Connections and Attributes

Adapted from the *.ppt slides by
Edward A. Lee (See References)

ECS289F-W05, Topics in Scientific Data Management

The GUI The GUI ---- VergilVergil

ECS289F-W05, Topics in Scientific Data Management

The rest… outline

• How to get and install Kepler
• Designing a Kepler workflow

– HOW TO best do it?
• Some demos
• Building actors

3

ECS289F-W05, Topics in Scientific Data Management

Installing Kepler
• Kepler website: http://kepler-project.org
• Latest alpha release at:

http://kepler-project.org/Wiki.jsp?page=Downloads
Installers for Windows, MacOSX and Linux

Install and run Kepler’s .exe file in the Kepler directory it was installed.
• Issues:

– Some workflows don’t run on the fly
• Local files dependencies, username/password requirements, broken

• Alternative installation for a more recent version:
– Contact the Kepler cvs admin
– Get a read-only account
– Build it from scratch

• Eclipse instructions at:

http://kepler-project.org/Wiki.jsp?page=UsingEclipseForKeplerDevelopment

• Command line building using Ant
Tutorial: http://kepler-project.org/Wiki.jsp?page=Presentations

ECS289F-W05, Topics in Scientific Data Management

Designing Your Workflows in Kepler
• Write down the problem
• Generate a conceptual design of the workflow

– Data flow: Task1 -> Task2->..->Taskn
– Data requirements: Types of data, I/O for each task

• Look for existing Kepler actors for each task
• If there are related tasks, think how to use them; If not,

design the stub actors
• Design the workflow using existing and stub actors
• Specify parts that can be sub-workflows and create

hierarchies (composite actors)
• Implement the missing actors
• Run tests on the wf for a set of inputs and many times;

– to check if it executes correctly, and if it produces the same results
for the same inputs

• Annotate your workflow and improve usability

ECS289F-W05, Topics in Scientific Data Management

Building Kepler Extensions
FOCUS: How to build actors?

Ingredients:
• Java 1.4.2
• Cygwin for Developers (for Windows users)
• Ant 1.5 or higher

ECS289F-W05, Topics in Scientific Data Management

Adding Actors

• Domain and/or data polymorphic actors
• Use object-oriented inheritance to avoid code

duplication
– 3 base classes: Source, Sink, Transformer

• To use the actors in Vergil
– Add them to one of the actor libraries
– Most libraries are under $PTII/ptolemy/actor/lib
– Libraries are XML files
– In Kepler, this needs to be done through the actor ontology!!!

• The basic structure of an actor:
– See http://www.sdsc.edu/~altintas/KeplerTutorial/ActorStructure.txt

4

ECS289F-W05, Topics in Scientific Data Management

Actor Interfaces: Ports & Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:

ECS289F-W05, Topics in Scientific Data Management

Anatomy of an Actor: Ports

• Used for “message transport”, can be an
input, an output, or both.

• Key class: IOPortIOPort (Can be connected to other
IOPort instances via IORelations.)

• Use TypedIOPort TypedIOPort in order to benefit from the
type system! (Domain specific: DEIOPortDEIOPort)

• Receiver and Sender interfaces depending
on the usage of the port.

• Public members of the actors!!!

ECS289F-W05, Topics in Scientific Data Management

Ports: Introduction to the API

public TypedIOPort portName; //Definition
//Create the port
portName = new TypedIOPort(this, “portName”, true, false);
portName.setMultiport(true); //Can support more than one link
int width = portName.getWidth(); //0 or 1 if single port
//Reading and Writing
portName.send(channelNumber, token);
Token token = portName.get(channelnumber);
//Setting the type of the port
portName.setTypeEquals(BaseType…a type in the type system…);
portName.setTypeAtLeast(…must be a port or parameter…);

ECS289F-W05, Topics in Scientific Data Management

Anatomy of an Actor: Parameters

• Public members of the actors!
• Similar API with ports…

public Parameter parameterName; //Definition
//Creation and setting the initial value: 2-ways
parameterName = new Parameter (this, “parameterName”,

new Token(…token value…));
OR
parameterName = new Parameter (this, “parameterName”);
parameterName.setExpression(…tokenValue…);

5

ECS289F-W05, Topics in Scientific Data Management

Anatomy of an Actor: Constructors

• The major task:
– To create and configure ports and parameters

• super(container, name);
– Carries the NameDuplication and IllegalAction

exceptions from the super class.
• The icon for the actor can be set here.

ECS289F-W05, Topics in Scientific Data Management

Execution of an actor

initialize()

Iterations

wrapUp()

prefire

fire()

postfire()

ECS289F-W05, Topics in Scientific Data Management

Action Methods

•• initialize()initialize(): Initialize the state variables of an
actor.

•• prefireprefire(): Returns a boolean which indicates
if the actor wants to fire.
– Can also be used to perform an operation that

will happen exactly once per iteration.
•• firefire(): The main point of execution.

– For reading inputs, producing outputs, read the
current parameter values.

ECS289F-W05, Topics in Scientific Data Management

Action Methods (cont.)

•• postfirepostfire(): Has two tasks:
– Updating persistent state
– Determining whether the execution of an actor

is complete.
•• wrapUpwrapUp(): For displaying final results.

6

ECS289F-W05, Topics in Scientific Data Management

Things to remember when implementing
a fire() method

• Use the methods of the Token class for
arithmetic whenever possible (to get data
polymorphism)

• If data-polymorphism is not necessary, set the
type to a base type then cast the token to that
type.

• Cannot assume that there is be data available at
all the input ports (for domain-polymorphism)

• Do not update the persistent state in fire() (use
postfire())

ECS289F-W05, Topics in Scientific Data Management

Implementing Polymorphism

• Class: PortParameterFunction

• A PortParameterFunction object will be returned as a
function of two objects.

• Set the type of the output equal to the type of this object.
• Type system will compute the type of the

PortParameterFunction object and use it as the type of the
output when necessary.

ECS289F-W05, Topics in Scientific Data Management

The manager

• Controls the overall execution of a model.
• Interacts only with the “top-level composite actor”
• startRun() -> run() -> execute()
• ExecutionListener interface provides the manager with info

on the events generated during execution.

Ptolemy design doc... show how Ptolemy II handles mixing
models of computations hierarchically.

ECS289F-W05, Topics in Scientific Data Management

Exceptions

• A uniform mechanism for reporting errors
• Base class: KernelException
• Exception chaining re-implemented since Java versions <

1.4 doesn’t support it.
– The detail message includes the detail message from the cause

argument.
– A protected _setCause() method is implemented, but not the public

initCause() method that JDK1.4 has.
• Non-severe exceptions: IllegalActionException,

NameDuplicationException, NameDuplicationException.
• Severe-exceptions: KernelRuntimeException,

InvalidStateException, InternalErrorException.

7

ECS289F-W05, Topics in Scientific Data Management

Actor-Oriented Design

Reference: PtolemyII
Design Document-1, Chapter 1

ECS289F-W05, Topics in Scientific Data Management

Focus on Actor-Oriented Design

Adapted from the *.ppt slides by
Edward A. Lee (See References)

Object orientation:
class name

data

methods

call return

What flows through
an object is

sequential control

Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows through
an object is

streams of data

ECS289F-W05, Topics in Scientific Data Management

Layered Software Architecture

Ptolemy II packages
have carefully
constructed
dependencies and
interfaces

PN

CSP

CT

DE FSM

SD
F

Kernel

Data

Actor Math

Graph

Adapted from the *.ppt slides by
Edward A. Lee (See References) ECS289F-W05, Topics in Scientific Data Management

Ptolemy II Architecture

• Core packages (actor, data, kernel, math, util)
– The data model(--abstract syntax) of the models
– Abstract semantics

• User Interface (UI) packages
– MoML and visual interface support

• Library packages
– Domain polymorphic actors

• Domain packages
– Implementations of different models of computation

8

ECS289F-W05, Topics in Scientific Data Management

Overview of the Key Classes

ECS289F-W05, Topics in Scientific Data Management

Models of Computation

• Semantic interpretations of the abstract syntax
Different models <=> Different semantics <=> Different execution

Are actors active? passive? reactive?
Are communications timed? synchronized? buffered?

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

process {
…
read();
…

}

process {
…
write();
…

}

channel
port port

receiver

One Class of Semantic Models: Producer / Consumer

Adapted from the *.ppt slides by
Edward A. Lee (See References)

ECS289F-W05, Topics in Scientific Data Management

Director

• Governs the execution of a composite entity.
– Scheduling, dispatching threads, generate code, etc.

• A composite entity is called opaque if it doesn’t have a local
director.
– An opaque composite entity inherits the director of its container as

its executive director.

ECS289F-W05, Topics in Scientific Data Management

MoML

• Modeling Markup Language
• A primary persistent XML file format for

Ptolemy II.

– ptolemy filename.xml
– ptexecute filename.xml
– vergil filename.xml
– moml configuration.xml filename.xml

9

ECS289F-W05, Topics in Scientific Data Management

An Example MoML File

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="test" class="ptolemy.actor.TypedCompositeActor">
<property name="director"
class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<entity name="ramp" class="ptolemy.actor.lib.Ramp"/>
<entity name="plot" class="ptolemy.actor.lib.gui.SequencePlotter"/>
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="ramp.output" relation="r"/>
<link port="plot.input" relation="r"/>
</entity>

SDF domain

Top-level entity

Reference: PtolemyII
Design Document-1, Chapter 6 ECS289F-W05, Topics in Scientific Data Management

Type System

