
1

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Final Project Assignments
• Schema Matching

– Ji-Yeong Chong
• Biological Pathways & Ontologies

– Russell D’Sa
• FCA – Theory and Practice

– Bill Man, Betty Chan
• Practice of Data Integration (GAV)

– Jenny Wang
• Kepler/Data Analysis (Biodiversity)

– Mike Kofi (Biodiversity)
– Carlos Rueda (visualization focus)

• Kepler/Data-intensive & SRB
– Tim Wong

• Kepler/ROADnet/Geostreams
– Haiyan Yang

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Promoter Identification Workflow (PIW)

Source: Matt Coleman (LLNL)Source: Matt Coleman (LLNL)

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Source: NIH BIRN (Jeffrey Grethe, UCSD)Source: NIH BIRN (Jeffrey Grethe, UCSD)

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

KEPLER/CSP: Contributors, Sponsors, Projects
(or loosely coupled Communicating Sequential Persons ;-)

Ilkay Altintas SDM, Resurgence
Kim Baldridge Resurgence, NMI
Chad Berkley SEEK
Shawn Bowers SEEK
Terence Critchlow SDM
Tobin Fricke ROADNet
Jeffrey Grethe BIRN
Christopher H. Brooks Ptolemy II
Zhengang Cheng SDM
Dan Higgins SEEK
Efrat Jaeger GEON
Matt Jones SEEK
Werner Krebs, EOL
Edward A. Lee Ptolemy II
Kai Lin GEON
Bertram Ludaescher SDM, SEEK, GEON, BIRN, ROADNet
Mark Miller EOL
Steve Mock NMI
Steve Neuendorffer Ptolemy II
Jing Tao SEEK
Mladen Vouk SDM
Xiaowen Xin SDM
Yang Zhao Ptolemy II
Bing Zhu SEEK
•••

Ptolemy IIPtolemy II

www.keplerwww.kepler--project.orgproject.org

2

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

GEON Dataset Generation & Registration
(a co-development in KEPLER)

Xiaowen (SDM)

Edward et al.(Ptolemy)

Yang (Ptolemy)

Efrat
(GEON)

Ilkay
(SDM)

SQL database access (JDBC)
Matt,Chad,
Dan et al.
(SEEK)

% Makefile
$> ant run

% Makefile
$> ant run

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Ptolemy II/KEPLER GUI (Vergil)
“Directors” define the
component interaction
& execution semantics

Large, polymorphic component
(“Actors”) and Directors
libraries (drag & drop)

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Web Services Actors
(WS Harvester)

1
2

3

4

“Minute-made” (MM) WS-based application integration
• Similarly: MM workflow design & sharing w/o implemented components

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Rapid Web Service-based Prototyping
(Here: ROADNet Command & Control Services for LOOKING Kick-Off Mtg)

Source: Ilkay Altintas, SDM, NLADR
ROADNet: Vernon, Orcutt et al

Web services: Tony Fountain et al

Source: Ilkay Altintas, SDM, NLADR
ROADNet: Vernon, Orcutt et al

Web services: Tony Fountain et al

3

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

An An ““earlyearly”” example: example:
Promoter Identification Promoter Identification

SSDBM, AD 2003SSDBM, AD 2003

• Scientist models
application as a
“workflow” of
connected
components
(“actors”)

• If all components
exist, the
workflow can be
automated/
executed

• Different
directors can be
used to pick
appropriate
execution model
(often “pipelined”
execution: PN
director)

PIW Workflow Today

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Enter initial inputs,

Run

and

Display results

“Run Window”

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Custom Visualization

4

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Job Management (here: NIMROD)

• Job management infrastructure in place
• Results database: under development
• Goal: 1000’s of GAMESS jobs (quantum
mechanics)

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Some Recent Actor Additions

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

in KEPLER (w/ editable script)

Source: Dan Higgins, Kepler/SEEKSource: Dan Higgins, Kepler/SEEK B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

in KEPLER (interactive session)

Source: Dan Higgins, Kepler/SEEKSource: Dan Higgins, Kepler/SEEK

5

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Blurring Design (ToDo) and Execution

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Reengineering a Geoscientist’s
Mineral Classification Workflow

Add semantic
types to ports!!

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Scientific “Workflows”: Some Findings

• More dataflow than (business control-/) workflow
– DiscoveryNet, Kepler, SCIRun, Scitegic, Triana, Taverna, …,

• Need for “programming extensions”
– Iterations over lists (foreach); filtering; functional composition; generic

& higher-order operations (zip, map(f), …)
• Need for abstraction and nested workflows
• Need for data transformations (WS1 DT WS2)
• Need for rich user interaction & workflow steering:

– pause / revise / resume
– select & branch; e.g., web browser capability at specific steps as part

of a coordinated SWF
• Need for high-throughput data transfers and CPU cyles:

“(Data-)Grid-enabling”, “streaming”
• Need for persistence of intermediate products and

provenance
B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Scientific “Workflows” vs Business
Workflows

• Scientific “Workflows”
– Dataflow and data transformations
– Data problems: volume, complexity, heterogeneity
– Grid-aspects

• Distributed computation
• Distributed data

– User-interactions/WF steering
– Data, tool, and analysis integration

Dataflow and control-flow are often married!
• Business Workflows (BPEL4WS …)

– Task-orientation: travel reservations; credit approval; BPM; …
– Tasks, documents, etc. undergo modifications (e.g., flight reservation from

reserved to ticketed), but modified WF objects still identifiable throughout
– Complex control flow, complex process composition (danger of control

flow/dataflow “spaghetti”)
Dataflow and control-flow are often divorced!

6

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Focus on Actor-Oriented Design

• Object
orientation: class name

data

methods

call return

What flows
through an object

is sequential
control

• Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows
through an object
is streams of data

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Object-Oriented vs.
Actor-Oriented Interface Definitions

Actor Oriented

AO interface definition says “Give me
text and I’ll give you speech”

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

Object Oriented

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Domains: Semantics for Component
Interaction

• CI – Push/pull component interaction
• CSP – concurrent threads with rendezvous
• CT – continuous-time modeling
• DE – discrete-event systems
• DDE – distributed discrete events
• FSM – finite state machines
• DT – discrete time (cycle driven)
• Giotto – synchronous periodic
• GR – 2-D and 3-D graphics
• PN – process networks
• SDF – synchronous dataflow
• SR – synchronous/reactive
• TM – timed multitasking

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

For (coarse grained)
Scientific Workflows!

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Polymorphic Actors: Components Working
Across Data Types and Domains

• Actor Data Polymorphism:
– Add numbers (int, float, double, Complex)
– Add strings (concatenation)
– Add complex types (arrays, records, matrices)
– Add user-defined types

• Actor Behavioral Polymorphism:
– In dataflow, add when all connected inputs have data
– In a time-triggered model, add when the clock ticks
– In discrete-event, add when any connected input has data, and add

in zero time
– In process networks, execute an infinite loop in a thread that

blocks when reading empty inputs
– In CSP, execute an infinite loop that performs rendezvous on input

or output
– In push/pull, ports are push or pull (declared or inferred) and

behave accordingly
– In real-time CORBA*, priorities are associated with ports and a

dispatcher determines when to add
*hey, Ptolemy has been out for long!

By not choosing
among these
when defining the
component, we
get a huge
increment in
component re-
usability. But how
do we ensure that
the component
will work in all
these
circumstances?

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/

7

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Directors and Combining Different
Component Interaction Semantics

Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

KEPLER & ROADNet: Real-Time Scientific
Workflows (Tobin Fricke et al.)

Laser Strainmeter Channels in;
Scientific Workflow;
Earth-tide signal out

Straightforward Example:

Target Directions:
•Complex Processing Results
•Cross-disciplinary signals analysis
•Geophysical Stream Algebras

Architecture:
Seismic Waveforms

Images other
types of data

ORBserverReal-time
Packet Buffer

Near-real-time
database

Scientific Workflow

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

A Scientific Workflow Problem: Solved
• Solution based on

declarative, functional
dataflow process network
(= also a data streaming

model!)

• Higher-order constructs:
map(f)
⇒ no control-flow spaghetti
⇒ data-intensive apps
⇒ free concurrent execution
⇒ free type checking
⇒ automatic support to go from

piw(GeneId) to
PIW :=map(piw) over [GeneId]

map(f)-style
iterators

Powerful type
checking

Generic, declarative
“programming”

constructs

Generic data
transformation actors

Forward-only, abstractable sub-
workflow piw(GeneId)

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Optimization by Declarative Rewriting I
• PIW as a declarative,

referentially transparent
functional process
⇒ optimization via functional

rewriting possible
e.g. map(f o g) = map(f) o map(g)

• Technical report &PIW specification
in Haskell

map(f o g)
instead of

map(f) o map(g)

Combination of
map and zip

http://kbis.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdfhttp://kbis.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf

8

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Optimizing II: Streams & Pipelines

• Clean functional semantics facilitates algebraic workflow (program) transformations
(Bird-Meertens); e.g. mapS f • mapS g mapS (f • g)

Source: Real-Time Signal
Processing: Dataflow, Visual, and
Functional Programming, Hideki

John Reekie, University of
Technology, Sydney

Source: Real-Time Signal
Processing: Dataflow, Visual, and
Functional Programming, Hideki

John Reekie, University of
Technology, Sydney

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Traffic info for a list of highways: Uses
iterate (higher-order “map”) actor to access
highway info web service repeatedly, sending
out one email per highway.

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

An (oversimplified) Model of the Grid
• Hosts: {h1, h2, h3, …}
• Data@Hosts: d1@{hi}, d2@{hj}, …
• Functions@Hosts: f1@{hi}, f2@{hj}, …

• Given: data/workflow:
• … as a functional plan: […; Y := f(X); Z := g(Y); …]
• … as a logic plan: […; f(X,Y)∧g(Y,Z); …]

• Find Host Assignment: di hi , fj hj
– for all di , fj … s.t. […; d3@h3 := f@h2(d1@h1), …] is a valid plan

f g
X Y Z

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Shipping and Handling Algebra (SHA)

f@A

x@b y@c

f@A

x@b y@c

f@A

x@b y@c

f@A

x@b y@c

plan Y@C = F@A of X@B =

1. [X@B to A, Y@A := F@A(X@A), Y@A to C]

2. [F@A => B, Y@B := F@B(X@B), Y@B to C]

3. [X@B to C, F@A => C, Y@C := F@C(X@C)]

Logical view

Physical view: SHA Plans

(1)

(3)

(2)

