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Syntax of First-Order Logic (FO)
• Logical symbols:

– ∧, ∨, ¬, →,  ↔,  ( ), ∀ (“for all”), ∃ (“exists”), ...

• Non-logical symbols: A FO signature Σ consists of
– constant symbols: a,b,c, ...
– function symbols: f, g, ...
– predicate (relation) symbols: p,q,r, ....
function and predicate symbols have an associated arity;
– we can write, e.g., p/3, f/2 to denote the ternary predicate p and the 

function f with two arguments

• First-order variables Vars: x, y, ...
• Formation rules for terms TermΣ :

– constants and variables are terms
– if t1,...tk are terms and f is a k-ary function symbol then f(t1,...,tk) is a 

term
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Syntax of First-Order Logic (FO)
• Formation rules for formulas FmlΣ :

– if t1,...tk are terms and p/k is a predicate symbol (of arity k) 
then p(t1,...tk ) is an atomic formula AtΣ (short: atom)

• all variable occurrences in p(t1,...tk ) are free

– if F,G are formulas and x is a variable, then the following 
are formulas:

– F∧G,  F ∨ G,  ¬ F,  F→G ,  F↔G,   ( F ), 
– ∀x: F (“for all x: F(x,...) is true”)
– ∃x: F (“there exists x such that F(x,...) is true”)
– the occurrences of a variable x within the scope of a 

quantifier are called bound occurrences.
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Examples
∀x malePerson(x) → person(x). 
malePerson(bill).
child(marriage(bill,hillary),chelsea).

Variable: x
Constants (0-ary function symbols): bill/0, hillary/0, 

chelsea/0
Function symbols:  marriage/2
Predicate symbols: malePerson/1, person/1, child/2
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Semantics of Predicate Logic
• Let D be a non-empty domain (a.k.a. universe of 

discourse). A structure is a pair I = (D,I), with an 
interpretation I that maps ...
– each constant symbols c to an element I(c)∈ D
– each predicate symbol p/k to a k-ary relation I(p) ⊆ Dk,
– each function symbol f/k to a k-ary function I(f): Dk→D

• Let I be a structure, β : Vars → D a variable assignment. A 
valuation valI,β maps TermΣ to D and FmlΣ to {true, false}
– valI,β (x) = β (x)      ; for  x ∈ Vars
– valI,β (f(t1,...,tk)) = I(f)( valI,β (t1),..., valI,β (tk) ); for f(t1,...,tk) ∈ TermΣ

– valI,β (p(t1,...,tk)) = I(p)( valI,β (t1),..., valI,β (tk) ); for p(t1,...,tk) ∈ AtΣ
– valI,β (F ∧ G) = valI,β (F) and  valI,β (G) ; for F,G ∈FmlΣ
– .... for FmlΣ over  ∨, ¬, →,  ↔,  ( ), ∀,∃ in the obvious way
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Example
Formula F = ∀x malePerson(x) → person(x). 
Domain D = {b, h, c, d, e}
Let’s pick an interpretation I: 

I(bill) = b, I(hillary) = h, I(chelsea) = c
I(person) = {b, h, c}
I(malePerson) = {b}

Under this I, the formula F evaluates to true.
• If we choose I’ like I but I’ (malePerson) = {b,d}, 

then F evaluates to false
• Thus, I is a model of F, while I’ is not:

– I |=  F        I’ |=/=  F 
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FO Semantics (cont’d)
• F entails G (G is a logical consequence of F) if every 

model of F is also a model of G:      F  |=  G
• F is consistent or satisfiable if it has at least one model
• F is valid or a tautology if every interpretation of F is a 

model 

Proof Theory: 
Let F,G, ... be FO sentences (no free variables). 
Then the following are equivalent:
1. F1, ..., Fk |= G
2. F1 ∧ ... ∧ Fk → G is valid 
3. F1 ∧ ... ∧ Fk ∧ ¬ G is unsatisfiable (inconsistent)
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Proof Theory
• A calculus is formal proof system to establish 

– F1, ..., Fk |= G

• via formal (syntactic) derivations
– F1, ..., Fk |– ... |– G, where the “|–” denotes allowed proof steps

• Examples: 
– Hilbert Calculus, Gentzen Calculus, Tableaux Calculus, Natural 

Deduction, Resolution, ...

• First-order logic is “semi-decidable”:
– the set of valid sentences is recursively enumerable, but not recursive 

(decidable) 

• Some inference engines:
– http://www.semanticweb.org/inference.html



B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

(Semantic) Tableaux Rules

• A branch is closed if it contains complementary
formulas

• A tableaux is closed if every branch is closed

t arbitrary
c new

•• ((αα) rule for F = ) rule for F = A A ∧∧ BB
•• ((ββ) rule for F = ) rule for F = A A ∨∨ B B 
•• ((γγ) rule for ) rule for F = F = ∀∀x: A(X,...)x: A(X,...)

– substitute a ∀-variable X with an 
arbitrary term t

•• ((δδ) rules for F = ) rules for F = ∃∃x: A(X,...) x: A(X,...) 
– substitute a ∃-variable X with a new

constant c
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FO Tableaux Calculus
Theorem (Soundness, Completeness of Tableaux 

calculus):
Let A1,..., Ak and Th be first-order logic sentences.

(Recall: a sentence is a closed formula, i.e., has no free variables) 

Then the following are equivalent:
1. A1, ..., Ak |=  Th
2. A1 ∧ ... ∧ Ak ¬ Th is unsatisfiable (inconsistent)
3. There is a closed tableaux for {A1, ..., Ak , ¬ Th}
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Example
Given:

– (A1) for all x: M(x) P(x)
– (A2) for all x: P(x) exists y: c(x,y) and H(y)

Show: 
– (Th) For all x: M(x) exists y: c(x,y) and H(y)

Proof by contradiction:
– Show that (A1) /\ (A2) /\ not (Th) is unsatisfiable
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Back to Ontologies: What is a 
Conceptualization?

• Conceptualization [Genesereth, Nilsson]: 
– universe of discourse (domain) D = {a,b,c,d,e}
– relations = {on/2, above/2, clear/1, table/1}

• Compare (A) and (B): 
– world_A: {on(a,b), on(b,c), on(d,e),  table(c), table(e)}
– world_B: {on(a,b), on(c,d), on(d,e), table(b), table(e)}
– two different conceptualizations? 
– or rather two different states of the same conceptualization?

(A)(A) (B)(B)
Meaning is NOT

captured by
extensional relations 
i.e. a single state of

affairs
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Intensional Structures
• Meaning is not in a single state of affairs (extensional 

relations) but can be captured by intensional relations
• An n-ary intensional relation R over domain D is a 

function
R :    W Powerset(Dn)

– W set of possible worlds {w1, w2, w3,  ...} (a possible world 
is one state of affairs, or a situation) 

– Powerset(Dn) = set of all subsets of Dn (= D x ... x D)  
– So for each w∈ W we have R(w) = a subset of Dn, i.e., with 

each world we associate the interpretation of R in that 
world 
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Example
• Syntax: signature (vocabulary) Σ = 

– constant symbols: {a,b}
– relation symbols: {on/2, table/1}

• Semantics: domain D = {“a_block”, “b_block”} 
Structure I = (D,I) with some interpretation I:
– I(a) = “a_block”,   I(b) = “b_block”
– I(on) = {(I(a),I(b)), (I(b),I(c)), (I(d),I(e))} = 

{(“a_block”,”b_block”), ...}
– I(table) = {c, e} 
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How can we capture (some of!) the 
meaning of “on-ness”? 

• Many things can be said about “on-ness” (physics of gravity, pressure 
and deformation, etc.)

• What is common among all possible states of on/2 over a certain 
domain D?

• That is, if we look at all possible worlds W, and the values that 
I(on)(w) can take, what is common among all those states?

• What is always true (in all possible worlds) about on/2  is (part of) the 
meaning of on/2. 

(∀x: ¬ on(x,x))     ; in all possible worlds: x is not on x
(∀x,y: ¬ (on(x,y) ∧ on(y,x))) ; in all possible worlds: no x is on y while y is 
on x

– Good enough? what about on(a,b), on(b,c), on(c,a) ? 
– Even worse: What if someone sees “on” and understands/interprets it as 

“below”?
we only capture some aspects using the above ontological theory


