

"	ntroductio	on to DL: Syntax a	nd Semantics of ALC
nantics given by	means o	f an interpretation	n $\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}})$:
Constructor	Syntax	Example	Semantics
atomic concept	A	Human	$A^{\mathcal{I}}\subseteq \Delta^{\mathcal{I}}$
atomic role	R	likes	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
For C,D conc	epts and	$oldsymbol{R}$ a role name	
conjunction	$C\sqcap D$	Human	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
disjunction	$C \sqcup D$	Nice ⊔ Rich	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation	$\neg C$	¬ Meat	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
exists restrict.	$\exists R.C$	∃has-child.Human	$\{x\mid \exists y. \langle x,y angle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$
value restrict.	$\forall R.C$	∀has-child.Blond	$\{x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$

Constructor	Syntax	Example	Semantics		
number restriction	$(\geq n R)$	(≥ 7 has-child)	$ \{x\mid \{y.\langle x,y angle\in R^{\mathcal{I}}\} \geq n\} $		
	$(\leq n R)$	$(\leq 1 \text{ has-mother})$	$ \{x\mid \{y.\langle x,y angle\in R^{\mathcal{I}}\} \leq n\} $		
inverse role	R^-	has-child-	$\{\langle x,y \rangle \mid \langle y,x \rangle \in R^{\mathcal{I}}\}$		
trans. role	R^*	has-child*	$(R^{\mathcal{I}})^*$		
concrete domain	$u_1, \ldots, u_n.P$	h-father-age, age. >	$\{x \mid \langle u_1^{\mathcal{I}}, \dots, u_n^{\mathcal{I}} \rangle \in P\}$		
etc.	30.00	100000 1000 -4			
M DI	(DI	'			
Many different DLS	/DL constructor	s have been investigat	ted		

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate \boldsymbol{A} for a concept name \boldsymbol{A}

a binary relation ${f R}$ for a role name ${f R}$ Translate complex concepts C, D as follows:

$$t_x(A) = A(x),$$

$$t_y(A) \, = \, \mathrm{A}(y),$$

$$t_x(C \sqcap D) = t_x(C) \wedge t_x(D),$$

$$t_y(C \sqcap D) = t_y(C) \wedge t_y(D),$$

$$t_x(C \cap D) = t_x(C) \wedge t_x(D),$$

$$t_{i}(C \sqcup D) = t_{i}(C) \lor t_{i}(D)$$

$$t_x(C \sqcup D) \, = \, t_x(C) \vee t_x(D),$$

$$t_y(C \sqcup D) = t_y(C) \vee t_y(D),$$

$$t_x(\exists R.C) \,=\, \exists y. \mathbf{R}(x,y) \wedge t_y(C), \quad t_y(\exists R.C) \,=\, \exists x. \mathbf{R}(y,x) \wedge t_x(C),$$

$$f(\exists P, C) = \exists x P(x, x) \land f(C)$$

$$t_x(\exists R.C) = \exists g.R(x, g) \land t_y(x, g) \Rightarrow B(x, g) \Rightarrow A(x, g) \Rightarrow B(x, g) \Rightarrow A(x, g) \Rightarrow A(x,$$

$$\begin{aligned} t_x(\exists R.C) &= \exists g.R(x,y) \land t_y(C), & t_y(\exists R.C) &= \exists z.R(y,x) \land t_x(C), \\ t_x(\forall R.C) &= \forall y.R(x,y) \Rightarrow t_y(C), & t_y(\forall R.C) &= \forall x.R(y,x) \Rightarrow t_x(C). \end{aligned}$$

A TBox
$$\mathcal{T} = \{C_i \doteq D_i\}$$
 is translated as

$$\Phi_{\mathcal{T}} = \forall x. \bigwedge_{1 \le i \le n} t_x(C_i) \Leftrightarrow t_x(D_i)$$

Source: Description Logics Tutorial, Ian Horrocks and Ulrike Sattler, ECAI-2002, Lyon, France, July 23rd, 2002

Relationship with Other Logical Formalisms: First Order Predicate Logic II

C is consistent iff its translation $t_x(C)$ is satisfiable,

C is consistent w.r.t. ${\mathcal T}$ iff its translation $t_x(C) \wedge \Phi_{\mathcal T}$ is satisfiable,

$$C \sqsubseteq D$$
 iff $t_x(C) \Rightarrow t_x(D)$ is valid

$$C \sqsubseteq_{\mathcal{T}} D$$
 iff $\Phi_t \Rightarrow \forall x. (t_x(C) \Rightarrow t_x(D))$ is valid.

- \sim \mathcal{ALC} is a fragment of FOL with 2 variables (L2), known to be decidable
- $\leadsto \mathcal{ALC}$ with inverse roles and Boolean operators on roles is a fragment of L2
- \sim further adding number restrictions yields a fragment of C2 (L2 with "counting quantifiers"), known to be decidable
- ♦ in contrast to most DLs, adding transitive roles (binary relations/
- transitive closure operator) to L2 leads to undecidability $\ \, \mbox{\large +}\mbox{\large many DLs}$ (like many modal logics) are fragments of the Guarded Fragment
- → most DLs are less complex than L2:
- L2 is NExpTime-complete, most DLs are in ExpTime

Source: Description Logics Tutorial, Ian Horrocks and Ulrike Sattler, ECAI-2002, Lyon, France, July 23rd, 2002