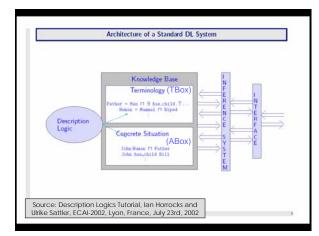

Description Logic(s)

- Formerly known as "terminological logic(s)"
- Idea: logic language for
 - defining concepts in terms of other concepts
 - interrelating concepts
- → constraining the meaning of concepts
- DL definition of "Happy Father"
 - (Example from Ian Horrocks, Ulrike Sattler)



Roots

- "Structured Inheritance Networks" [Brachman 1977]
- KL-ONE [Brachman, Schmolze 1985]
- Core ideas:

er, ECS289F-W05, Topics in Scientific Data Mar

- Building blocks: atomic concepts (unary predicates), atomic roles (binary predicates), individuals (constants)
- Constructors for building complex concepts and roles from simpler ones
- Automated inference for concept subsumption and instance classification (is-a/is-instance-of are *not* explicitly given by the user, but inferred from concept definitions/instance properties)

Knowledge Base (DL-Style)

- Terminological Knowledge (TBox)
 - Concept **Definition** (naming of concepts):

Spiny_Neuron \equiv Neuron $\sqcap \exists$ has.Spine

- Axiom (constraining of concepts):

Neuron $\sqsubseteq \exists has.Compartment$

- => a mediators "glue knowledge source"
- Assertional Knowledge (ABox) about Individuals
- n27_img118 : Neuron
- => the concrete instances/individuals of the concepts/classes that your sources export

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Example TBox						
1. P	Atomic concepts = {P,F,W, M1,}					
2. F	Base concepts = {P,F}					
3. W \equiv P \sqcap F	Defined concepts = {W, M1, M2,}					
4. $M1 \equiv P \sqcap \neg W$	Roles = $\{h1, h2\}$					
5. $M2 \equiv W \sqcap \exists h1.P$						
6. $F2 \equiv M1 \sqcap \exists h1.P$	Concept Definition $A \equiv C$					
7. $P2 \equiv (F2 \sqcup M2)$	Axiom $\Box \sqsubseteq D$					
8. $G \equiv M2 \sqcap \exists h1.P2$	where A atomic concept,					
9. W2 \equiv W $\sqcap \exists h2.M1$	C, D complex concept expressions					
10. $M3 \equiv M2 \sqcap \forall h1. \neg W$						
B. Ludawscher, ECS280F-W05, Topica in Scientific Data Management						

Example TBox				
1. $P \equiv Person$ 2. $F \equiv Female$	• Base concepts = {Person, Female} occur on the RHS only			
3. W \equiv P \sqcap F	Defined concepts = {P, F, W,}			
4. $M1 \equiv P \sqcap \neg W$ 5. $M2 \equiv W \sqcap \exists hasC, P$	 occur on the LHS (& maybe RHS)Base interpretation <i>J</i>: interpret base			
6. $F2 \equiv M1 \sqcap \exists hasC.P$	• Extension <i>I</i> of <i>J</i> : on same domain as <i>J</i>			
7. $P2 \equiv (F2 \sqcup M2)$ 8. $G \equiv M2 \sqcap \exists hasC.P2$	and agrees (on base) with J			
9. $W2 \equiv W \sqcap \exists hasH.M1$ 10. $M3 \equiv M2 \sqcap \forall hasC.\neg W$	• TBox <i>T</i> is definitorial if every base interpretation has exactly one extension that is a <i>model</i> of <i>T</i>			

Problem / Exercise

1. $P \equiv Person$

- $2. \ \mathsf{F} \equiv \mathsf{Female}$
- 3. W \equiv P \sqcap F
- 4. $M1 \equiv P \sqcap \neg W$
- 5. $M2 \equiv W \sqcap \exists hasC.P$
- 6. $F2 \equiv M1 \sqcap \exists hasC.P$
- 7. P2 \equiv (F2 \sqcup M2)
- 8. $\mathsf{G} \equiv \mathsf{M2} \sqcap \exists \mathit{hasC}.\mathsf{P2}$
- 9. W2 \equiv W $\sqcap \exists hasH.M1$
- 10. $M3 \equiv M2 \sqcap \forall hasC. \neg W$

Let the interpretation *I*(Person(x)) be "x is a person".
Similarly, *I*(Female(x)) = "x is female".

• Question: What do W, M1, etc. mean?

- _____

Back to Reasoning with the Family ...

Man	=	Person □ ¬Woman
Mother	=	Woman □ ∃hasChild.Person
Father	=	Man □ ∃hasChild.Person
Parent	10	Father 🗆 Mother
Grandmother	=	Mother □ ∃hasChild.Parent
MotherWithManyChildren	=	Mother □ ≥ 3 hasChild
MotherWithoutDaughter		Mother □ ∀hasChild.¬Woman
Wife	=	Woman □ ∃hasHusband.Man

- concept *definition:* MyConcept = *DL*-formula
- concept *inclusion:* MyConcept ⊆ *DL*-formula
- finite set of definitions is a *terminology* or *TBox* if for every atomic concept *A* there is at most one axiom whose lhs is *A*

Definitorial Terminologies

- In a Tbox T we distinguish: primitive concepts (occurring only on rhs) and defined concepts (occurring on lhs)
- T is definitorial if every interpretation of primitive concepts yields exactly one model of T (and thus for the defined concepts)
 meaning of defined concepts is fixed once the primitive concepts are
- ➔ meaning of defined concepts is fixed once the primitive concepts are interpreted !
- A directly uses B in T if B appears in the rhs of the definition of A
- A uses B is the transitive closure of 'directly uses'
- T is cyclic if A uses A for some A; else acyclic

One can show: If T is acyclic then T is definitorial

What about this one?

 $\mathsf{Human}' ~\equiv~ \mathsf{Animal} \sqcap \forall \mathsf{hasParent}.\mathsf{Human}'$

Ludaescher, ECS289F-W05, Topics in Scientific Data Managemer

er, ECS289F-W05, Topics in Scientific Data Manag

Expansion of Terminologies

- For acyclic *T* we can "unfold" concept definitions until every defined concepts is specified in terms of primitive concepts only
- \rightarrow the *expansion* of a TBox T

 Example: 	Woman	- 10	Person Female
	Man	-	Person □ ¬(Person □ Female)
	Mother	-	(Person 🗆 Female) 🗂 BhasChild, Person
	Father	21	(Person □ ¬(Person □ Female)) □ ∃hasChild.Person
	Parent	11	$((Person \sqcap \neg (Person \sqcap Female)) \sqcap \exists hasChild.Person) \sqcup ((Person \sqcap Female) \sqcap \exists hasChild.Person)$
	Grandmother	-	((Person □ Female) □ ∃hasChild,Person) □ ∃hasChild,(((Person □ ¬(Person □ Female)) □ □ ∃hasChild,Person) □ ((Person □ Female) □ ∃hasChild,Person))
MotherW	ithManyChildren	-	$((Person \cap Female) \cap \exists hasChild.Person) \cap \geq 3 hasChild$
Mother	VithoutDaughter	1	((Person □ Female) □ ∃hasChild.Person) □ thasChild.(¬(Person □ Female))
	Wife	-	(Person □ Female) □ ∃hasHusband.(Person □ ¬(Person □ Female))

