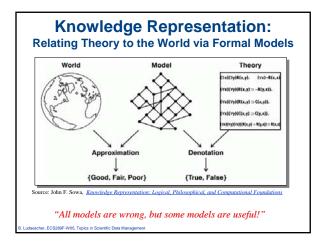
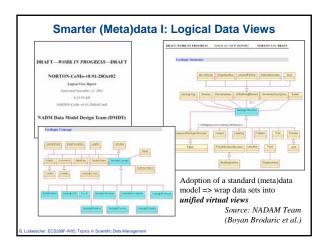
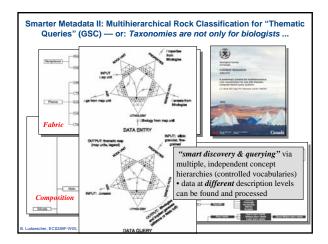

Remarks on Assignment 1


- Typo:
- Example should be: parent(C,P) \leftarrow child(P,C).
- Whenever not obvious, give a plain English definition against which your Datalog rules can be compared (e.g., 1st cousins, uncles, aunts only instead of broader definitions)
- Hint/question for same_generation(X,Y):
- Can a person be in multiple different generations?
 If yes, what answer do you expect in such a case and what does the "system" answer then?
- Those who want to try out their rules (careful w/ the recursive ones!), use e.g. SWI-Prolog
 - http://www.swi-prolog.org/

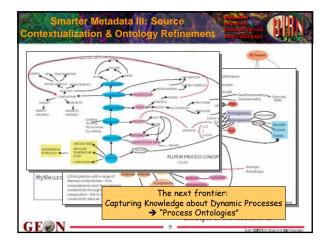
er, ECS289F-W05, Topics in Scientific Data Mana


Ontology Cheat Sheet (1/2)

- What is an ontology? An ontology usually ...
 - specifies a theory (a set of logic models) by ...
 - defining and relating ...
 - concepts representing features of a domain of interest
- Also overloaded (sloppy) for:
 - Controlled vocabularies
 - Database schema (relational, XML Schema/DTD, ...)
 - Conceptual schema (ER, UML, ...)
 - Thesauri (synonyms, broader term/narrower term)
 - Taxonomies (classifications)
 - Informal/semi-formal knowledge representations
 - "Concept spaces", "concept maps"
 Labeled graphs / semantic networks (RDF)
 - Formal ontologies, e.g., in [Description] Logic (OWL) "formalization of a specification"
 - ightarrow constrains possible interpretation of terms


Ontology Cheat Sheet (2/2)

- What are ontologies used for?
 - Conceptual models of a domain or application, (communication means, system design, ...)
 - Classification of ...
 - · concepts (taxonomy) and
 - data/object instances through classes
 - Analysis of ontologies e.g.
 - Graph queries (reachability, path queries, ...)
 - Reasoning (concept subsumption, consistency checking, ...)
 - Targets for semantic data registration
 - Conceptual indexes and views for
 - · searching,
 - · browsing,
 - · querying, and
 - integration of registered data


er, ECS289F-W05, Topics in Scientific Data Ma

1st Attempt: Ontologies in CS

- An ontology is ...
 - an explicit specification of a conceptualization [Gruber93]
 - a shared understanding of some domain of interest [Uschold, Gruninger96]
- Some aspects and parameters:
 - a formal specification (reasoning and "execution")
 - ... of a conceptualization of a domain (community)
 - ... of some part of world that is of interest (application)
- Provides:
 - A common vocabulary of terms

er, ECS289F-W05, Topics in Scientific Data Man

- Some specification of the meaning of the terms (semantics)
- A shared "understanding" for people and machines

Ontology as a philosophical discipline

- Ontology as a *philosophical discipline*, which deals with the nature and the organization of reality:
 - Ontology as such is usually contrasted with *Epistemology*, which deals with the nature and sources of our knowledge [a.k.a. Theory of Knowledge]. Aristotle defined Ontology as the science of being as such: unlike the special sciences, each of which investigates a class of beings and their determinations, Ontology regards all the species of being *qua* being and the attributes which belong to it *qua* being" (Aristotle, *Metaphysics*, IV, 1).
- In this sense Ontology tries to answer to the question: What is being? What exists? (the nature of being, not an enumeration of "stuff" around us...)

Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Some different uses of the word "Ontology" [Guarino'95]

- 1. Ontology as a philosophical discipline
- 2. Ontology as a an informal conceptual system
- 3. Ontology as a formal semantic account
- 4. Ontology as a specification of a "conceptualization"
- 5. Ontology as a representation of a conceptual system
- via a logical theory
- 5.1 characterized by specific formal properties
- 5.2 characterized only by its specific purposes
- 6. Ontology as the vocabulary used by a logical theory
- 7. Ontology as a (meta-level) specification of a logical theory

http://ontology.ip.rm.cnr.it/Papers/KBKS95.pdf

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Ontologies vs Knowledge Bases

- An ontology is a particular KB, describing facts assumed to be always true by a community of users:
 - in virtue of the agreed-upon meaning of the vocabulary used (analytical knowledge):
 - black => not white
 - ... whose truth does not descend from the meaning of the vocabulary used (non-analytical, common knowledge)
 Rome is the capital of Italy
- An arbitrary KB may describe facts which are contingently true, and relevant to a particular epistemic state:
 - Mr Smith's pathology is either cirrhosis or diabetes

Formal Ontology [Guarino'96]

Theory of formal distinctions

er, ECS289F-W05, Topics in Scientific Data Man

- among things
- among relations
- Basic tools
 - Theory of parthood (Mereology)
 - What counts as a part of a given entity? What properties does the part relation have? Are the different kinds of parts?
 - part_of(X,Y) is often modeled as a *partial order*, i.e.
 part of(X,X) (reflexivity)
 - part_o((X,X) (relexivity) - part_of(X,Y) \land part_of(Y,X) \Rightarrow X = Y (antisymmetry)
 - part_of(X,Y) ∧ part_of(Y,Z) → part_of(X,Z) (transitivity)
 - Let's say has_a(X,Y) ← part_of(Y,X)
 - What's wrong with this:
 - has_a(orchestra, musician)
 - has_a(musician, arm)
 - Therefore (transitivity) has_a(orchestra, arm)
 - 289F-W05, Topics in Scientific Data Mana

Formal Ontology [Guarino'96]

- Theory of formal distinctions
 - among things
 - among relations
- Basic tools
 - ...
- Theory of integrity
- What counts as a *whole*? In which sense are its parts *connected*?
 Theory of *identity*
 - How can an entity change while keeping its identity? What are its essential properties? Under which conditions does an entity loose its identity? Does a change of "point of view" change the identity conditions?
- Theory of dependence

er, ECS289F-W05, Topics in Scientific Data N

· Can a given entity exist alone, or does it depend on other entities?

Why develop an ontology?

- To make domain assumptions explicit
 - Easier to change domain assumptions
 - Easier to understand, update, and integrate legacy data
 - → data integration

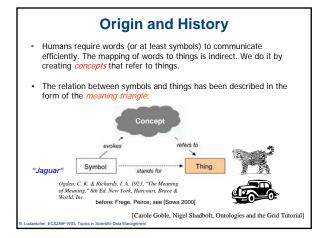
, ECS289F-W05, Topics in Sci

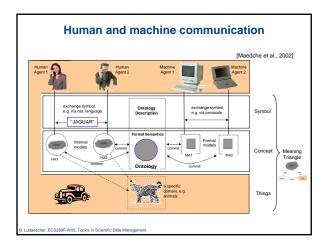
- To separate domain knowledge from operational knowledge
 - Re-use domain and operational knowledge separately
- A community reference for applications
- To share a consistent understanding of what information means.

[Source: Carole Goble, Nigel Shadbolt, Ontologies and the Grid Tutorial]

What is being shared?

Metadata


- Data describing the content and meaning of resources and services.
- But everyone must speak the same language...


Terminologies

- Shared and common vocabularies
- For search engines, agents, curators, authors and users
- But everyone must mean the same thing...

Ontologies

- Shared and common understanding of a domain
- Essential for search, exchange and discovery
- → Ontologies aim at sharing meaning
- [Source: Carole Goble, Nigel Shadbolt, Ontologies and the Grid Tutorial]

