
4

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

CAL Actor Language: Motivation
• Writing simple actors should be simple.

– Ptolemy II API very rich
– actor writing requires considerable skill
– BUT: Actors have a lot of common structure.

• Models should allow efficient code generation.
– actor descriptions contain a lot of "admin" code

Generate actors from a more abstract description.
– reduces amount of code to be written
– makes writing actors more accessible
– reduces error probability
– makes code more versatile

• retargeting (other platforms, new versions of the Ptolemy API)
• analysis & composition Src: J. Janneck, CAL – An actor language, 2003 B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

actor ID () In ==> Out :

action [a] ==> [a] end
end

Simple actors

actor A (k) Input1, Input2 ==> Output:

action [a], [b] ==> [k*(a + b)] end
end

actor Merge ()
Input1, Input2 ==> Output:

action Input1: [x] ==> [x] end
action Input2: [x] ==> [x] end

end

actor firing ≡ execution of one enabled action
Src: J. Janneck, CAL – An actor language, 2003

Parameter(s)
Ports

Port Pattern(s)

Name

non-deterministic example

actor C ()
Double Input ==> Double Output:

action [a] ==> [a] where a >= 0 end

action [a] ==> [-a] where a < 0 end
end deterministic example

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Stateful Actors Action Guards
actor FairMerge ()

Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

action
• input patterns

declaring variables
• guard

specifying enabling conditions
• output expressions

computing output tokens
• body

modifying the actor state

Src: J. Janneck, CAL – An actor language, 2003

actor Sum () Input ==> Output:

sum := 0;

action [a] ==> [sum]
do

sum := sum + a;
end

end

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Action schedules

actor FairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule fsm State0:
State0 (A) --> State1;
State1 (B) --> State0;

end
end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule regexp
(A B)*

end
end

Src: J. Janneck, CAL – An actor language, 2003

5

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Executing CAL: Discovering concurrency

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

Thread 1

Thread 2

Thread 3
Queue 1

Queue 2

Queue 3

actor B () a, b ==> x, y:

s := <something>;

action a: [v] ==> x: [f(v, s)] end

action b: [v] ==> y: [g(v)]
do

s := h(v, s);
end

end Src: J. Janneck, CAL – An actor language, 2003 B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

References & Further Reading
• Dataflow Process Networks

– E. A. Lee and T. M. Parks, Dataflow Process Networks, Proc. of the IEEE, vol.
83, no. 5, pp. 773-801, May, 1995.
http://ptolemy.eecs.berkeley.edu/publications/papers/95/processNets

– Krzysztof Kuchcinski, Class notes, EDA 380, Design of Embedded Systems,
2002

• Actor-oriented Modeling:
– Actor-oriented Models for Codesign: Balancing Re-Use and Performance,

Edward A. Lee and Stephen Neuendorffer, in Formal Methods and Models for
System Design, Kluwer, 2004
http://ptolemy.eecs.berkeley.edu/publications/papers/04/FormalCodesign/Form
alCodesign.pdf

• Caltrop Project/Cal Actor Language
– Janneck et al., http://embedded.eecs.berkeley.edu/caltrop
– CAL Language Report, J. Eker, J. Janneck

http://embedded.eecs.berkeley.edu/caltrop/docs/LanguageReport/CLR-1.0-
r1.pdf

