CAL Actor Language: Motivation

» Writing simple actors should be simple.

— Ptolemy Il API very rich

— actor writing requires considerable skill
— BUT: Actors have a lot of common structure.
» Models should allow efficient code generation.
— actor descriptions contain a lot of "admin" code

=>» Generate actors from a more abstract description.
— reduces amount of code to be written
— makes writing actors more accessible

— reduces error probability

— makes code more versatile
« retargeting (other platforms, new versions of the Ptolemy API)
o Luescrer, s ANBIYSIS. & COMBOSILIQN... Sre: J. Janneck, CAL — An actor language, 2003

Simple actors
Name

actor 1D (f\lrliwt_y
action\Eil_iji’[gl end
end

Parameter(s)
Ports

AN

actor A (k3 Inputl, Inﬁutz ==> Ouiput:

tion [a], [b] ==> [k*(a + b d
ond action a\ r ¥a/)]_ en

actor Merge

end

Input2 ==> Output:
action hnputl: [x] ==> [x] end
action Anput2: [x] ==> [x] end

non-deterministic example

Port Pattern(s)

actor C ()
Double Input ==> Double Output:

action [a] ==> [a] where a >= 0 end

action [a] ==> [-a] where a < 0 end
end deterministic example

actor firing = execution of one enabled action
Src: J. Janneck, CAL — An actor language, 2003

B. Ludaescher, ECS289F-WO0S, Topics in Scientific Data Managemer,

Stateful Actors

actor Sum () Input ==> Output:

action [a] ==> [sum]
do h—
sum = sum + a;
end
end A1
action
input pattern:
declarj
guard

specifying enabling conditions
output expressions
computing output tokens

body
modifying the actor state

Action Guards

actor FairMerge O

Inputl, Input2
s 1= 0;
action Inputl:
guard s = 0
/ do
s 1= 1;
end

action Input2:
guard s = 1
do

s 1= 0;
end

end

==>

[x1

Output:

==> [x]

==> [x]

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Managemer. Sre: J. Janneck, CAL — An actor language, 2003

Action schedules

actor FairMerge

Inputl, Input2 ==> Output:
s :=0;
action Inputl: [x] ==> [x]
guard s = 0
do
s = 1;
end
action Input2: [x] ==> [x]

guard s = 1
do

s :=0;
end

e}

end

actor FairMerge O

Inputl, Input2 ==> Output:
: action Inputl: [x] ==> [x] end
: action Input2: [x] ==> [x] end

schedule fsm StateO:
State0 (A) --> Statel;
Statel (B) --> StateO;
end

w

B. Ludaescher, ECS289F-W0S, Topics in Scientific Data Managemer

end

actor FairMerge

Inputl, Input2 ==> Output:
: action Inputl: [x] ==> [x] end
: action Input2: [x] ==> [x] end

schedule regexp
(A B)*
end

Src: J. Janneck, CAL — An actor language, 2003




Executing CAL: Discovering concurrency

T :

ayv

actor B ) a, b ==> x, y:

s := <something>;

actio[v] ES s Yf(v, s)] end
:ﬁtio[v] =>(y:)[aW]

s = h(v, s);
end

end Src: J. Janneck, CAL — An actor language, 2003

B. Ludaescher, ECS289F-W05,

References & Further Reading

» Dataflow Process Networks

— E. A Lee and T. M. Parks, Dataflow Process Networks, Proc. of the IEEE, vol.
83, no. 5, pp. 773-801, May, 1995.
http://ptolemy.eecs.berkeley.edu/publications/papers/95/processNets

— Krzysztof Kuchcinski, Class notes, EDA 380, Design of Embedded Systems,
2002

* Actor-oriented Modeling:

— Actor-oriented Models for Codesign: Balancing Re-Use and Performance,
Edward A. Lee and Stephen Neuendorffer, in Formal Methods and Models for
System Design, Kluwer, 2004
http://ptolemy.eecs.berkeley.edu/publications/papers/04/FormalCodesign/Form
alCodesign.pdf

« Caltrop Project/Cal Actor Language

— Janneck et al., http:/embedded.eecs.berkeley.edu/caltrop

— CAL Language Report, J. Eker, J. Janneck
http://embedded.eecs.berkeley.edu/caltrop/docs/LanguageReport/CLR-1.0-
rl.pdf

B. Ludaescher, ECS289F-WO0S, Topics in Scientific Data Management






