Data-flow vs Control-flow
Fuzzy distinction, yet useful for:
— specification (language, model, ...)
— synthesis (scheduling, optimization, ...)
— validation (simulation, formal verification, ...)
* Rough classification:
—control:
« don’t know when data arrive (quick reaction)

« time of arrival often matters more than value
—data:

« data arrive in regular streams (samples)
« value matters most

8. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Data-flow vs Control-flow

¢ Specification, synthesis & validation methods tend to
emphasize ...

e ... for control:
— event/reaction relation
— response time
— (Real Time scheduling for deadline satisfaction)
— priority among events and processes
e ... fordata:
— functional dependency between input and output
— memory/time efficiency
— (Dataflow scheduling for efficient pipelining)
— all events and processes are equal

B. Ludaescher, ECS289F-WO0S, Topics in Scientific Data Management

Process Networks

» Communicating processes with directed flow

— communication: token “stream” between two
processes

— process: operations on tokens
— host language: process description
— coordination language: network description

token stream

»| Process channel »| process

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Kahn process networks (1974)

FIFO

T
r [l

» special class of process networks

» stream is FIFO with unbounded capacity.
* process:

— destructive read (“consumption”) at process start,
— non-destructive write (“production”) at process end,

— blocking read — process only executed if data available,
— non-blocking write.
[1,2,3,2,..]

EXAMPLE _{[ID\Q_G]D_&‘
Al

B. Ludaescher, ECS289F-W0S, Topics in Scientiic Data Management 0,1

Kahn Process Networks: Formalism

Sequence (a stream) X=1[xq, Xo, ...]
Prefix ordering [X4, X5] <[Xq, X5, X3]
x={Xo X4, ...} where X, c X,

lubx < Y where X; Y for all X; ey

Increasing chain of seq.

Least upper bound

X

Continuous process F (lub x)= lub F ()

8. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Kahn Process Networks: Formalism

p-tuple of sequences

X=(Xq, Xy, ... Xp) eSP
ordered set of seq.

XX’ if X; c X, for each i
x= X, Xy, .}
F:s8P—s*

set of p-tuple of sequences
functional process
FIFO

FIFO

FIF0 dlll X

Continuous process F (lub)= lub F ()

B. Ludaescher, ECS289F-WO0S, Topics in Scientific Data Management

Kahn Process Networks: Monotonicity
» Monotonicity

-XcX' > F(X)cF(X)
* It can be proved that...

—acontinuous process is monotonous

= given a part of the input sequence it may be
possible to compute part of the output
sequence.

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Monotonic does not imply continuous
e ConsiderF:S 2 S

[0]; ifX is a finite sequence

FX) = { [0,1]: otherwise @

Only two outputs are possible, both finite sequences. To show that this is monotonic, note that if
the sequence Y is infinite and ¥ = X", then X = X’ so

Y=FX) =Y =FX))
If X is finite, then ¥ = F(.X) = [0] . which is a prefix of all possible outputs. To show that it is

not continuous, consider the increasing chain

X ={X,. X, ... howhere X, £ X, € .., ®)
where each Y, has exactly / elements in it. Then U % is infinite, so
Fluy)=[01]#uF(y) =[0] 7)
Iterative computation of this function is clearly problematic
A useful property is that a network of monotonic processes itself defines a monotonic pro-
cess. This property is valid even for process networks with feedback loops, as is formally proven

using induction by Panagaden and Shanbhogue [78]. It should not be surprising given the results

5 so far that one can formally show that networks of monofonic processes are determirare.

Non-monotonic Processes

+ “Canonical” non-monotonic process: fair merge
« Fairness: every non-empty sequence is processed

[X4, %2, -]

;KE@—' (X1, Y1, %o ,y@y3,...]
[y17y21y37'“]

[X1,%5]
ﬁ—' [X1v y’ﬁ X2 vy@]
[y11y27y31"-]

[X1,X2, X3, -]
j@_' [X’Iv y1' X2 vy@]
[y1,Yal

8. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Non-monotonic Processes
¢ In the previous example, we have:
(x1,x21, [ylLy2,y3,...]) < ([x1,x2,x3,...], [yl,y2,y3,...])
e but
—[x1, y1, x2, y2, x3,y3, ...] and
—[x1,y1,x2,y2,y3, ...]
e are incomparable

=>» The process is not monotonic (needs
prediction of the future to be really fair).

= The process is not continuous.

In fact the process is not even a (deterministic)
function.

B. Ludaescher, ECS289F-WO0S, Topics in Scientific Data Management

Fair Merge
ab c a c
Input a is a prefix of ab and c is a prefix of c,
but neither of the possible outputs ac nor ca is
Bhe ac £ abc a prefix of abc.
ca £ abc
 Fair merge:

— interleave input streams X, and X, to produce
output stream Y

B. Ludaescher, ECS289F-W05, Topics in Scientific Data Management

Least Fixed Point Semantics

Let X be the set of all sequences.

A network is a mapping F from the sequences to the
sequences (where [represents the input sequence):

X=F(X1)

The behavior of the network is defined as the unique
least fixed point of the equation (LFP).

If Fis continuous then the least fixed point exists
LFP=LUB({F"(L,1):n=0})

B. Ludaescher, ECS289F-W0S, Topics in Scientific Data Management

