
Department of Computer Science and Engineering CSE 130

University of California, San Diego Winter 2001

MIDTERM

LASTNAME: FIRSTNAME: GRADE:

� You can also write on the back of the pages. If you absolutely need to turn in more and
separate pages, then write your full name on every sheet that you turn in separately!

� This midterm is CLOSED BOOK (no books, private notes, laptops, etc.)

� Academic honesty is mandatory (a grade of 0 points is assigned otherwise)

� Write legible and concise explanations

� The points for each problem indicate the relative weight. You have roughly 1 minute per
point.

Problem 1 (14+3+3+3, Composite Data Types)
a) Give an example type declaration (in Haskell) for each of the following types (note: not all

examples have to be di�erent):

� an enumeration type

� a product type

� a union type

� a list type

� a record (tuple) type

� a recursive type

� a non-recursive type

� an algebraic (\sum of products") type

1



b) Explain brie
y the di�erence between a polymorphic type and a \normal" type (i.e., a non-
polymorphic or monomorphic one). Hint: you may want to use an example from part (a) in
your explanation.

c) What is the di�erence between a \regular" array (e.g., myboringarray = array[0..100]

of integer) and an associative array?

d) What is the relation between arrays and �nite functions?

Problem 2 (2+3+3, Function Signatures) Consider the following two function signatures:

add1 :: Integer -> Integer -> Integer

add1 x y = x + y

add2 :: (Integer, Integer) -> Integer

add2 x y = x + y

a) What is the type and the value of add1 3 4?

b) What is the type of add1 -1 and what does it stand for?

c) What happens if instead of addl -1 we consider addl2 -1?

2



Problem 3 (4+6+2 Reduction Strategies) Consider the following functions:

double x = x + x -- (d)

second x y = y -- (s)

f x y

| x == y = x -- (f1)

| x < y = f y x -- (f2)

| otherwise = f y (x-y) -- (f3)

a) Reduce the expression double (second (double 2) (double 3)) leftmost outermost.

b) Reduce f 4 6 and f 7 12.

c) What does this function compute? What happens for f 0 3?

Problem 4 (4+15, Abstract Data Types) a) What is an abstract data type (ADT)? (Hint:
name the two distinct parts of an ADT and brie
y explain their role.)

3



b) De�ne an ADT IntStack (stack of integers) in Haskell. Instead of using two separate
functions, use just one function pop that returns both, the topmost stack element, and the
reduced stack. Indicate clearly each of the parts mentioned in (a)!

Problem 5 (3+6, Higher Order Functions) a) De�ne the function map that takes a func-
tion f of type a -> b, a list xs of type [a] and returns the list of type [b] in which f has
been applied to each element of xs.

b) De�ne the function length which returns the number of elements of a list using foldr.
Recall that the e�ect of foldr can be depicted as follows:

foldr (
) e [x1; : : : ; xn] = x1 
 (x2 
 (� � � (xn 
 e) � � �))

4



Problem 6 (2+4+5, Trees) Consider the following Haskell function foo:

data MyTree a :: Leaf a | Node (MyTree a) a (MyTree a)

foo (Leaf x) = [x]

foo (Node left x right) = (foo left) ++ (foo right) ++ [x]

mytree0 = (Node

(Node

(Leaf 1)

10

(Leaf 3))

20

(Leaf 5))

a) Draw mytree0 as a tree.

b) What are the types of foo and mytree0?

c) What does foo mytree0 evaluate to? So what is foo doing?

5


