Department of Computer Science and Engineering CSE 130
University of California, San Diego Winter 2001

e Problems marked “I” are individual assignments and are due by Monday Feb. 12th
before class.

e Problems marked with “P” should be implemented in Haskell and a printout (comment
your functions!) should be turned as part of the assignment.

e If you turn in more than one page, staple all of those pages together!!!
INDIVIDUAL ASSIGNMENT 4

Problem 1 (I,P, Folding)
Define the following functions using the higher-order function foldr from class:

a) and_list and or_list of type [Bool] -> Bool which return True if all (in the case of
and_list) or at least one (in the case of or_list) of the list elements evaluates to True.
Otherwise the functions should return False.

b) length’ :: [a]l -> Int which computes the length (number of elements) of a list.

c) charcount :: Char -> [Char] -> Int which counts how many times a character occurs
in a given character list. For example, charcount ’s’ "Haskell is fun'" = 2

Hint: for some of these, it may be useful to define a separate “helper function” which is passed to

[1P )

foldr as the folding operation “o” (= first argument of foldr).

Problem 2 (I,P, Folding) The maximum (or minimum) of a list of numbers (say integer or
floating point) cannot be directly defined using foldr since there is no suitable “start value” e
(cf. lecture notes). For such cases, we can use the functions myfoldl and myfoldr which have the
signature (a -> a -> a) -> [a]l -> a and which are defined as follows:

myfoldr (®) [z1,...,2p] = 1 @ (X2 ® (- (Tp—1 @ Tp) "))
myfoldl (®) [z1,...,zp] = (- (#1Q@x2)Rx3) ) @ xy

a) Define myfoldr and myfoldl in Haskell.

b) Use either of those functions to define minlist and maxlist.



