
Department of Computer Science and Engineering CSE 130

University of California, San Diego Winter 2001

� Problems marked \I" are individual assignments and are due by Monday Feb. 12th
before class.

� Problems marked with \P" should be implemented in Haskell and a printout (comment
your functions!) should be turned as part of the assignment.

� If you turn in more than one page, staple all of those pages together!!!

INDIVIDUAL ASSIGNMENT 4

Problem 1 (I,P, Folding)
De�ne the following functions using the higher-order function foldr from class:

a) and list and or list of type [Bool] -> Bool which return True if all (in the case of
and list) or at least one (in the case of or list) of the list elements evaluates to True.
Otherwise the functions should return False.

b) length' :: [a] -> Int which computes the length (number of elements) of a list.

c) charcount :: Char -> [Char] -> Int which counts how many times a character occurs
in a given character list. For example, charcount 's' "Haskell is fun" ) 2

Hint: for some of these, it may be useful to de�ne a separate \helper function" which is passed to
foldr as the folding operation \�" (= �rst argument of foldr).

Problem 2 (I,P, Folding) The maximum (or minimum) of a list of numbers (say integer or

oating point) cannot be directly de�ned using foldr since there is no suitable \start value" e

(cf. lecture notes). For such cases, we can use the functions myfoldl and myfoldr which have the
signature (a -> a -> a) -> [a] -> a and which are de�ned as follows:

myfoldr (
) [x1; : : : ; xn] = x1 
 (x2 
 (� � � (xn�1 
 xn) � � �))
myfoldl (
) [x1; : : : ; xn] = (� � � ((x1 
 x2)
 x3) � � �)
 xn

a) De�ne myfoldr and myfoldl in Haskell.

b) Use either of those functions to de�ne minlist and maxlist.

1


