INDIVIDUAL ASSIGNMENT 2

(due: Problem 1: Wednesday Jan. 24; Problem 2:1 Monday Jan. 29, both before class)

• This is **not** a programming assignment. For this individual assignment prepare a *concise* (and readable) answer sheet and hand it on the due date, just **before class**. Write your **name** and **email** address on the front page.

Problem 1 (Types, Function Signatures) Below the function signatures are in the style of Haskell type declarations.

a) Explain the type of each of the expressions f_1 , f_2 , and f_3 :

f1 :: String -> Integer

f2 :: Integer -> String

f3 :: (Integer, String) -> Bool

Let's assume the *domain* of each f_i is *finite*. What other names (from the class) describe best the type of each f_i ?

b) Explain the function signatures for

f :: a -> (b -> c) g :: (a -> b) -> c -> d

Hint: e.g., for f think of integer addition, i.e., let a = b = c = Integer. What are the values and types say for f 17 3 and f 17 if f denotes integer addition.

For g, think of the map function explained in class. What types make sense for c and d in case of the map function?

Problem 2 (Functions vs Relations) "(A -> B)" is the set of all functions from A to B. "(A x B)" is the Cartesian product of A and B. Let $A = \{1, 2, ..., n\}$ and $B = \{1, 2, ..., m\}$

- a) How many elements has "(A x B)"?
- b) How many elements has "(A -> B)"?
- c) Let k be given. How can we model a relation over A_1, \ldots, A_k as a function? (Hint: it is sufficient to give a Haskell signature)

¹But preferably you should turn in Problem 2 together with Problem 1, since there will be a programming assignment coming out on Wednesday!