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ABSTRACT 

The emergence of new digital data acquisition technologies in the geosciences has 

important implications for the types and quality of data that are now available to 

researchers.  However, along with these datasets comes an increase in the volume and 

complexity of scientific data that must be efficiently managed, archived, distributed, 

processed and integrated in order for it to be of use to the scientific community.  The 

rapid growth of LiDAR (Light Distance And Ranging, a.k.a. ALSM (Airborne Laser 

Swath Mapping)) for geoscience applications is an excellent example of the opportunities 

and challenges presented by these types of datasets.  Capable of generating digital 

elevation models (DEMs) more than an order of magnitude more accurate than those 

currently available, LiDAR data offer geomorphologists the opportunity to study the 

processes that shape the earth’s surface at resolutions not previously possible yet essential 

for their appropriate representation.   

Unfortunately, access to these datasets for the average geoscience user is difficult 

because of the massive volumes of data generated by LiDAR.  The distribution and 

processing (DEM generation) of large LiDAR datasets, which frequently exceed a billion 

data-points, challenge internet-based data distribution systems and readily available 

desktop software.   

We use a geoinformatics approach to the distribution and processing of LiDAR 

data that capitalizes on cyberinfrastructure developed by the GEON project 

(http://www.geongrid.org).  Our approach utilizes a comprehensive workflow-based 

solution, the GEON LiDAR Workflow (GLW), which begins with user-defined selection 

of a subset of point data and ends with download and visualization of DEMs and derived 
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products.  In this workflow, users perform point cloud data selection, interactive DEM 

generation and analysis, and product visualization all from an internet-based portal.  This 

approach allows users to carry out computationally intensive LiDAR data processing 

without having appropriate resources locally. 

Ultimately, the GLW could be adopted as a valuable infrastructure resource for 

democratizing access to current and future LiDAR point cloud datasets for the geoscience 

community.  Furthermore, the interdisciplinary geoinformatics approach taken to develop 

the GLW represents an excellent model for the utilization of cyberinfrastructure and 

information technology to tackle the data access and processing challenges presented by 

the next generation of geoscience data.  
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CHAPTER 1 

INTRODUCTION:  TECTONIC GEOMORPHOLOGY, DIGITAL TOPOGRAPHY, 

AND GEOINFORMATICS 

 

TECTONIC GEOMORPHOLOGY 

 The geoscience sub-discipline of Tectonic Geomorphology is defined as the study 

of landforms and landscapes that record a measurable tectonic signal (Burbank and 

Anderson, 2001).   The overarching goal of tectonic geomorphology is to utilize the 

tectonic signal recorded in the landscape to understand deformation over centennial 

(interseismic) to millennial (Quaternary) time scales.  Typically, the aim is to understand 

how coseismic (and aseismic) deformation is compounded to manifest itself in landforms 

that reflect thousands of seismic cycles – in other words, how does a mountain range 

thousands of meters tall grow from repeated earthquakes with 1-10s of meters of surface 

displacement?  By looking at the tectonic signal recorded in landforms of varying ages, 

and therefore representing various stages of development, tectonic geomorphology 

provides a mechanism to approach this fundamental question.  In addition to simply 

bridging the gap between time scales of landscape deformation, tectonic geomorphology 

also may provide insight into variations in rates of tectonic deformation over different 

lengths of time.   

 Tectonic geomorphic studies can take on a range of spatial apertures depending 

upon the deformation time scale of interest.  Fault zone geomorphology and paleoseismic 

studies are interested in discerning the tectonic deformation recorded in the landscape 

from the past handful of earthquake cycles (e.g. Sieh, 1978).  Larger spatial aperture 
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studies such as that of the classic Wheeler Ridge along the south-central San Andreas 

fault (e.g. Keller et al., 1995) seek to understand the tectonic signal as recorded in a 

single, relatively large landform.  Finally, large scale studies may aim to understand the 

relationship between surface and tectonic processes at the watershed or orogen scale (e.g. 

Burgmann et al., 1994; Burbank and Anderson, 2001; Kirby et al., 2003).  

 Because the earth’s topography is a measure of the combined effects of tectonic 

and surface properties (Arrowsmith, 2006), understanding the tectonic signal recorded in 

the landscape also requires an understanding of the surface processes that act on that 

landscape.  These surface processes are typically a function of climate, geologic materials 

(bedrock/substrate), and vegetation, animal or anthropogenic factors.  Specifically, 

processes such as linear-slope dependent transport, non-linear transport, soil production 

from bedrock, river incision into bedrock, landsliding, debris flows, and surface wash 

(Dietrich et al., 2003) among others, may act to generate or modify landforms.  

Therefore, to fully understand the formation of landforms in tectonically active regions, it 

is necessary to address both the tectonic and surface processes at work. 

 Tectonic geomorphology studies traditionally employ a number of tools to 

understand both the tectonic and surface processes acting to shape a landform or 

landscape,.  These tools include geologic mapping to constrain bedrock lithology, soil 

analyses, channel and hillslope profiles gathered via total station survey and geomorphic 

mapping on stereo aerial photography.  More recently, tools such as remotely sensed 

imagery, surface exposure age dating and digital topography have supplemented the 

tectonic geomorphologist’s tool kit. 
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DIGITAL TOPOGRAPHY 

The availability of digital topography, in the form of digital elevation models 

(DEMs), has dramatically enhanced the types of analyses that are possible in tectonic 

geomorphic studies, and as a result, the analysis of DEMs has become ubiquitous (Pike, 

2002).  These data enable quick calculation of common geomorphic metrics such as slope 

and aspect as well as more sophisticated analysis such as local relief (e.g. Burbank and 

Andrerson, 2001) and drainage area with respect to gradient calculations (e.g. Roering et 

al., 1999).  Digital topography also is a powerful tool for profile-based analysis of 

landscapes and landforms.  Because profiles can be easily extracted from DEMs, users 

are able to efficiently acquire numerous thalweg or hillslope profiles that can then be 

analyzed in a variety of manners (e.g. Kirby and Whipple, 2001; Crosby et al., 2004 and 

Appendix II this volume).  Finally, DEMs can be used as input for numerical models to 

determine the role of tectonic deformation in the growth of a given landform or 

landscape.  For example, Arrowsmith (2006) uses an elastic dislocation models (e.g. 

Okada, 1985) to calculate the slip and uplift from a single earthquake event on the blind 

fault beneath Wheeler Ridge.  This model predicts the general geometry of deformation 

associated with this single earthquake event and can be used to estimate how repeated 

earthquakes on this fault contribute to the growth and evolution of Wheeler Ridge. 

The availability of topography in a digital form also enables these data to be 

combined with other digital datasets in a Geographic Information System (GIS) 

environment to perform analysis.  The GIS environment allows the integration of 

topographic data with geologic and quaternary mapping, land cover, and raster imagery.  
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This type of data integration is also very powerful for 3D visualization of landscapes for 

both research and educational applications.  

 Digital Elevation Models are available at a variety of scales, ranging from the one 

kilometer resolution global coverage GTOPO30 

(http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) dataset provided by the 

U.S. Geological survey to ultra-high resolution, sub-centimeter data produced from 

terrestrial laser scanning (TLS a.k.a. Ground-based LiDAR).  Common DEM datasets 

utilized for tectonic geomorphic studies include the nearly global 90 m Shuttle Radar 

Topography Mission (SRTM) dataset (http://srtm.usgs.gov/) and the U.S. Geological 

Survey’s National Elevation Dataset (NED) (http://ned.usgs.gov/) which includes 30 m 

and 10 m coverage for the United States.  More recently, the rapid growth of aerial 

LiDAR (Light Distance And Ranging, a.k.a. ALSM (Airborne Laser Swath Mapping)) 

for earth science applications has provided high-resolution topographic data (sub-meter to 

5 m resolution) across large swaths of the United States (see the Chapter 2 section 

entitled “Introduction to Aerial LiDAR Data: Opportunities and Challenges” in this 

volume for a full introduction to LiDAR data). 

 LiDAR data is quickly becoming one of the most powerful tools in the earth 

sciences for studying the earth’s surface. Capable of generating digital elevation models 

(DEMs) more than an order of magnitude more accurate than those currently available 

via the USGS National Elevation Dataset, LiDAR data offer geomorphologists the 

opportunity to study natural processes at resolutions not previously possible yet essential 

for their appropriate representation.  Because of the high resolution of LiDAR-derived 
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DEMs, subtle geomorphic features that would be lost in coarser 10 and 30 m terrain 

models are captured and can thus be quantified as components of the geomorphic process 

acting to shape a given landscape or landform (Figure 1.1). 

 However, as I discuss in the Chapter 2 section entitled “The Computational 

Challenge”, the distribution and processing of LiDAR data for geoscience users presents 

a significant challenge.  In order to make these powerful yet computationally challenging 

datasets useful for the tectonic geomorphology and greater geoscience communities, a 

new approach to their management, archiving, distribution, processing and integration is 

necessary.  

 

GEOINFORMATICS 

 The emerging science discipline of Geoinformatics (in the US, e.g., Sinha, 2000) 

seeks to build a shared cyberinfrastructure for the geosciences though interdisciplinary 

collaboration between earth and computer scientists.  The goal of this geoscience 

cyberinfrastructure is to: 

…(1) manage, preserve, and efficiently access the vast amounts of Earth 

science data that exist now and the vast data flows that will be coming 

online as projects such as EarthScope get going; (2) foster integrated 

scientific studies that are required to address the increasingly complex 

scientific problems that face our scientific community; (3) accelerate the 

pace of scientific discovery and facilitate innovation; (4) create an 

environment in which data and software developed with public funds are 



 
 

6

preserved and made available in a timely fashion; and (5) provide easy 

access to high-end computational power, visualization, and open-source 

software to researchers and students (Owens and Keller, 2003). 

Because of the massive volumes of data and the computational challenges they present, 

aerial LiDAR data is an excellent example of a dataset that would benefit from a 

geoinformatics approach to its management, archiving, distribution, processing and 

integration. 

 In Chapter 2 of this thesis, I present a geoinformatics-based approach to LiDAR 

data distribution and processing – the GEON LiDAR Workflow.  The fundamental goal 

of that project is to democratize access to aerial LiDAR point cloud data for the 

geoscience community.  By allowing users to perform point cloud data selection, 

interactive DEM generation and analysis, and product visualization all from an internet-

based portal, we hope to promote the use of high-resolution topographic data in 

geoscience research.  Clearly, the current implementation of the GLW discussed in 

Chapter 2 is of most interest to tectonic geomorphology and earth surface processes 

researchers.  However, we believe that the GLW could be adopted as a valuable 

infrastructure resource for democratizing access to current and future LiDAR point cloud 

datasets for the whole geoscience community.  Because these datasets also capture 

vegetation and built structures in addition to topography, we expect that researchers in the 

ecological, engineering and urban planning communities could also capitalize upon the 

data and tools available through the GLW. 
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 Although aerial LiDAR data and the GEON approach to these datasets is an 

excellent demonstration of the development of a cyberinfrastructure-based toolset, it is 

but one example of how geoinformatics is being applied to develop community-oriented 

and internet-based databases, tools and computing resources.  For example, the Southern 

California Earthquake Center’s (SCEC) Information and Technology Research (ITR) 

project seeks to use cyberinfrastructure to develop a “Community Modeling Environment 

(CME)” (http://epicenter.usc.edu/cmeportal/index.html) oriented towards system-level 

earthquake science (Jordan et al., 2003).  This “rupture to rafters collaboratory” was 

conceived to provide an environment where basic geophysical research (e.g Zhao et al., 

2004) can be combined with seismic hazard modeling (Field et al., 2003) and earthquake 

engineering in an environment where tools, databases and computing resources are 

integrated by Information Technology.  Yet another example of the informatics approach 

to community geoscience cyberinfrastructure is the NEPTUNE Project 

(http://www.neptune.washington.edu/index.jsp) which plans to deploy a regional cabled 

ocean observatory on the Juan de Fuca plate off the coast of the Pacific Northwest.  In the 

NEPTUNE project, cyberinfrastructure and will be used to monitor and control the 

observation network, distribute raw and processed data products, and to “provide the 

computer-based toolsets needed by scientists, engineers, and others to collect and process 

information generated by the system” 

(http://www.neptune.washington.edu/infrastructure/index.jsp?keywords=NETWRK&title

=Network%20Management) 
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 Although the GLW, SCEC CME and NEPTUNE projects were only briefly 

summarized above, I think they are excellent examples of the growing acceptance that 

geoinformatics provides a powerful new approach for managing geoscience data and 

tools.  As geoscience data acquisition technologies continue to become more 

sophisticated and their data streams more massive, the development of community 

oriented toolsets that provide access to data as well as processing tools and computing 

resources are going to become increasingly necessary.  In many respects, the 

geoinformatics approach presented in this thesis for LiDAR point cloud data distribution 

and processing represents the future of resources designed to facilitate access and 

processing for the next generation of earth science data. 
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Figure 1.1.  A) USGS Digital Orthophoto Quarter Quadrangle (DOQQ) for Mill Gulch 

near Fort Ross, CA along the trace of the northern San Andreas fault (NSAF) (southern-

most portion of area shown in Figure 2.5).  This grey scale raster image has a pixel 

resolution of 1 meter.  Note the representation of geomorphic features such as the right-

laterally offset drainage due to slip on the NSAF, active landslides, vegetation, and 

human influences such as buildings and roads.  B)  Hillshade of a USGS 30 m DEM for 

the same area as shown in (A).  The coarseness of this terrain model obscures many of 

the small, yet important geomorphic features of the landscape that are visible in the 

orthophoto in (A).  C)  Hillshade of a full feature LiDAR derived DEM produced using 

the GEON LiDAR Workflow (Chapter 2, this volume).  In this 1.8 m DEM, many of the 

geomorphic features visible in the orthophoto (A) are captured in the terrain model.  In 

addition, the DEM provides 2.5D representation of the landscape that can be used for 

visualization and modeling.  D)  5 ft contour interval map of the Mill Gulch stretch of the 

1906 Earthquake rupture made by Francois Matthes in the months following the 

earthquake (Lawson, 1908).  The Matthes map, produced with plane table and alidade, 

demonstrates that high-resolution topography has always been of interest for scientists 

studying the expression of tectonic deformation on the landscape. 
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CHAPTER 2 

A GEOINFORMATICS APPROACH TO LIDAR DATA DISTRIBUTION AND 

PROCESSING FOR THE EARTH SCIENCES 

 

ABSTRACT 

The emergence of new digital data acquisition technologies in the earth sciences 

has important implications for the types and quality of data that are now available to 

researchers.  However, along with these new datasets comes an increase in the volume 

and complexity of scientific data that must be efficiently managed, archived, distributed, 

processed and integrated in order for it to be of use to the scientific community.  The 

rapid growth of LiDAR (Light Distance And Ranging, a.k.a. ALSM (Airborne Laser 

Swath Mapping)) for earth science applications are an excellent example of the 

opportunities and challenges presented by these types of datasets.  LiDAR data is quickly 

becoming one of the most powerful tools in the earth sciences for studying the earth’s 

surface and overlying vegetation. Capable of generating digital elevation models (DEMs) 

more than an order of magnitude more accurate than those currently available, LiDAR 

data offer scientists the opportunity to study natural processes at resolutions and extents 

not previously possible yet essential for their appropriate representation. 

Unfortunately, access to these datasets for the average earth science user is 

difficult because of the massive data volumes generated by LiDAR. The distribution and 

processing of large LiDAR datasets, which frequently exceed a billion data-points, 

challenge internet-based data distribution systems and readily available desktop software.  

Digital elevation model (DEM) generation from LiDAR data is difficult for geoscience 
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users who lack the computing and software resources necessary to handle these enormous 

and high-density datasets. 

We use a geoinformatics approach to the distribution and processing of LiDAR 

data that capitalizes on cyberinfrastructure being developed as part of the GEON project.  

Our approach utilizes a comprehensive workflow-based solution, the GEON LiDAR 

Workflow (GLW), which begins with user-defined selection of a subset of raw point data 

and ends with download and visualization of digital elevation models and derived 

products.  In this workflow, the billions of points within a LiDAR dataset point cloud are 

hosted in a spatially indexed database.  Data selection and processing is performed via an 

internet portal that allows users to execute spatial and attribute subset queries on the 

larger dataset.  The subset of data is then passed to a web service built with Open Source 

software for interpolation to grid and analysis of the data.  The interpolation and analysis 

portion of the workflow offers spline interpolation to grid with user-defined grid (DEM) 

resolution as well as control over the spline parameters. We also compute geomorphic 

metrics such as slope, curvature, and aspect as derived products from the DEM that the 

GLW generates.  Users may choose to download their results in ESRI or ASCII grid 

formats as well as geo tiff.   

Ultimately, the GEON LiDAR Workflow could be adopted as a valuable 

infrastructure resource for democratizing access to current and future LiDAR point cloud 

datasets for the geoscience community.  Furthermore, the interdisciplinary 

geoinformatics approach taken to develop the GEON LiDAR Workflow represents an 

excellent model for the utilization of cyberinfrastructure and information technology to 
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tackle the data access and processing challenges presented by the next generation of earth 

science data.  

 

INTRODUCTION 

Recent advances in digital data acquisition technologies in the earth sciences are 

having a profound impact on the types and quality of datasets that are available to 

researchers.  Technologies such as real-time sensor networks, space and airborne-based 

remotely sensed data, real-time geodetic and seismologic data, massive geospatial 

databases and the outputs of large computational model runs are all enabling new and 

exciting research on the forefront of the earth sciences.  However, with these 

technologies comes a prodigious increase in the volume and complexity of scientific data 

that must be efficiently managed, archived, distributed, processed and integrated in order 

for it to be of use to the scientific community.  Unfortunately, data processing expertise 

or computing resource requirements may sometimes be a barrier to accessing these 

massive datasets for the broader scientific community.  An emerging solution for 

enhancing access to these datasets is to develop a shared cyberinfrastructure that uses 

information technology to provide access to data, tools and computing resources.  Owens 

and Keller (2003) describe cyberinfrastructure for the earth sciences as: 

…the information technology infrastructure that is needed to (1) manage, 

preserve, and efficiently access the vast amounts of Earth science data that 

exist now and the vast data flows that will be coming online as projects 

such as EarthScope get going; (2) foster integrated scientific studies that 
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are required to address the increasingly complex scientific problems that 

face our scientific community; (3) accelerate the pace of scientific 

discovery and facilitate innovation; (4) create an environment in which 

data and software developed with public funds are preserved and made 

available in a timely fashion; and (5) provide easy access to high-end 

computational power, visualization, and open-source software to 

researchers and students. 

The emerging science discipline of Geoinformatics (e.g., Sinha, 2000) seeks to build a 

shared cyberinfrastructure for the geosciences though interdisciplinary collaboration 

between earth and computer scientists.  The geoinformatics approach of harnessing the 

tools of information technology to facilitate earth science research provides a mechanism 

to equalize and simplify access to the next generation of earth science data.  

 Aerial LiDAR (Light Distance And Ranging), also know as ALSM (Airborne 

Laser Swath Mapping), data have recently emerged as one of the most powerful tools 

available for documenting the earth’s topography and its masking vegetation at very 

high-resolution.  LiDAR derived digital elevation models (DEMs) are typically more than 

an order of magnitude more accurate than the best-available U.S. Geological Survey 10 

meter DEMs.  The ability to use these data to construct two-and-a-half and three-

dimensional models of the earth’s topography and vegetation are rapidly making them an 

indispensable tool for earth science research (Carter et al., 2001).  Unfortunately, due to 

the massive volumes of data associated with this technology, accessing and processing 

these datasets can be challenging for even the most sophisticated LiDAR users.   
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In this paper we present a geoinformatics approach to the internet-based 

distribution and processing of LiDAR data, with particular emphasis on research-grade, 

community datasets.  This approach could be adopted as a model for the utilization of 

cyberinfrastructure and information technology to tackle the data access and processing 

challenges presented by the next generation of earth science data.  The development of 

community oriented data portals as well as internet-based processing, mapping and 

visualization tools is applicable to many types of earth science data and is likely to 

revolutionize the utilization of large and complex datasets. 

This paper provides an introduction and overview of LiDAR technology and its 

applications, followed by a discussion of the computationally challenging aspects of these 

datasets.  Next, we propose a conceptual, work-flow based approach to the internet-based 

distribution and processing of these data.  Finally, we present a proof of concept 

implementation of the workflow and discuss future developments for this project. 

 

INTRODUCTION TO AERIAL LIDAR DATA: OPPORTUNITIES AND 

CHALLENGES 

Acquisition of aerial LiDAR data utilizes a pulsed laser ranging system operating 

at 10s of thousands of pulses per second mounted in an aircraft equipped with a 

kinematic Global Positioning System (GPS) to provide precise positioning information 

for the aircraft.  An accurate inertial measurement unit (IMU) monitors the orientation 

(roll, yaw and pitch) of the aircraft.  By combining the laser ranging system, GPS, and 

IMU on an aircraft, it is possible to quickly and economically acquire hundreds of 
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millions to billions of individual point measurements of the absolute x, y and z 

coordinates of the ground surface and vegetative cover in a survey area.  LiDAR 

instruments typically sample the ground surface multiple times per square meter and 

provide an absolute vertical accuracy of 5-10 cm (Shrestha et al., 1999; Wehr and Lohr, 

1999).  These  LiDAR measurements are commonly referred to as the ‘point cloud’ (x,y,z 

plus attributes) and typically consist of 100s of millions or billions of returns depending 

upon the size of the survey area and resolution of the data being acquired (Figure 2.1).  

Because most modern LiDAR instruments are capable of recording multiple returns from 

each outgoing laser pulse, it is possible to classify the individual laser returns by applying 

a filtering algorithm to differentiate ground returns from vegetation returns (e.g. 

Haugerud and Harding, 2001; Sithole and Vosselman, 2004) (Figure 2.2).  This ability to 

segregate the point cloud data based upon the origin of the return significantly enhances 

the utility of these datasets to a wide variety of user communities.  

 A generalized aerial LiDAR acquisition and processing workflow consists of the 

following four steps: 1) Data acquisition, 2) processing of laser ranging, GPS and IMU 

data to generate LiDAR point cloud, 3) point cloud classification and 4) generation, 

manipulation, and delivery of digital ground and vegetation models (Figure 2.3).  

Typically the first half of this workflow, data acquisition and point cloud generation (and 

sometimes the point cloud classification), is handled by the data provider and is not a 

significant concern to the researcher seeking LiDAR products for science applications.  

The later portion of this workflow however should be of great interest to scientific users 

because point cloud classification and generation of digital ground and vegetation models 
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(Figure 2.4) directly controls the character of the products upon which analyses will be 

performed.  A small percentage of earth science users may have interest in the data 

acquisition and point cloud generation steps in the workflow for geodetically oriented 

studies (e.g. Bevis et al., 2005).  Therefore, for most scientific applications it is 

appropriate to consider the LiDAR point cloud the ‘raw’ data product. 

Because the management and processing (e.g., filtering, digital elevation model 

generation, and manipulation) of LiDAR point cloud data requires sophisticated 

computing resources and knowledge [and because their science application requires it], 

the majority of earth science LiDAR users typically perform their analyses on ‘bare-

earth’ digital elevation models (DEMs) derived from LiDAR ground returns.  These 

digital files are created by interpolating or binning the LiDAR point cloud to a continuous 

surface and then converting this surface to a regularized grid with elevation data sampled 

at uniformly spaced intervals (e.g. Mitas and Mitasova, 1999).  Because of the 

computational difficulty of DEM generation, LiDAR DEMs - often bare-earth (ground 

only) and full-feature (unfiltered) - are generated once by the data provider and then the 

raw point cloud data is essentially discarded.  In some cases the user may not even take 

delivery of the point cloud data.  Unfortunately, users who work only with the standard 

vendor generated DEM products are not to take full advantage of the richness of 

information held in the point cloud. 

By beginning analyses with the raw point cloud data, users gain an understanding 

of the data and control over how those data are used to characterize the landscape and 

vegetative cover.   Details such as the interpolation algorithm and grid resolution can 
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significantly affect the manner in which the resulting DEM represents the landscape.  In 

addition, beginning with the LiDAR point cloud data allows the user to assess the 

homogeneity and density of ground returns, which can vary due to topography, canopy 

characteristics and acquisition parameters, and to evaluate potential artifacts in the data 

caused by errors in data acquisition and processing (point misclassification) (Appendix I) 

(Crosby and Arrowsmith, 2006). 

   The availability of digital topographic data of the resolution and accuracy 

provided by aerial LiDAR has had profound implications for research in earth surface 

processes, natural hazards, ecology and engineering (Carter et al., 2001; Stoker et al., 

2006).  For example, in the geosciences, aerial LiDAR data has been used to document 

ground rupture following the 1999 Hector Mine earthquake (Hudnut et al., 2002), 

measure topographic change during the 2004 eruption of Mount St. Helens, WA 

(Haugerud et al., 2004), calibrate and test hillslope transport laws (e.g., Roering et al., 

1999), quantify beach topography changes (e.g. Sallenger et al., 2003) and to improve 

flood hazard and floodplain maps under the FEMA National Flood Insurance Program 

(e.g. North Carolina Floodplain Mapping Program, 2000).  In addition to the wide 

spectrum of geoscience applications for LiDAR data, the ecology community also uses 

aerial LiDAR data for its ability to provide three-dimensional measurements of 

vegetation canopies and to examine the correlation between topography and vegetation.  

Lefsky et al. (2002) provide an overview of applications of LiDAR data to measuring 

vegetation height, biomass and canopy structure and function in the context of ecosystem 

studies.  Finally, the high-resolution topography provided by aerial LiDAR data is being 
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utilized in urban environments for urban planning, built-structure feature extraction and 

three-dimensional city visualization (e.g. Haala and Brenner, 1999; Maas and Vosselman, 

1999). 

As these examples illustrate, there is rapidly expanding interest in, and utilization 

of, aerial LiDAR data in scientific research.  Due to this increased demand, LiDAR data 

acquisition has exploded in the past 5 to 10 years with more than 120 LiDAR acquisition 

systems in use worldwide (Espinosa et al., 2006).  Although it is difficult to count the 

number of publicly available LiDAR datasets due to a heterogeneous network of aerial 

LiDAR data providers and funding agencies, it is reasonable to assume there are 100s of 

billions of LiDAR point returns in the public domain and available for earth science 

research. Many of these data were gathered with a single scientific or management 

purpose, yet they actually are useful as community datasets with numerous applications 

that can be enabled if they are made appropriately available.  With typical LiDAR 

systems operating at 10s of kilohertz and cutting edge systems operating at 85-100 

kilohertz (Baltsavias, 1999), it is increasingly common for a single LiDAR point cloud 

dataset to contain 100s of millions or billions of points (Figure 2.5).  As LiDAR systems 

continue to mature, the size of these datasets will only continue to expand.  In addition, 

the simultaneous acquisition of raster imagery (aerial and hyperspectral) with LiDAR 

data is becoming increasingly common.  These raster datasets should be hosted together 

with the LiDAR and add significantly to the total size of the dataset.  Although this vast 

and rapidly expanding volume of aerial LiDAR data represents a significant opportunity 

for new scientific endeavors, it also presents a massive challenge in terms of 
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management, distribution and processing.  The current demand for, and interest in, aerial 

LiDAR data far outpaces the resources available within the earth science community for 

the distribution and processing of these data. 

 

THE COMPUTATIONAL CHALLENGE 

Public domain LiDAR point cloud data are typically delivered by the data 

provider to the funding agency or primary investigator in a generic ASCII format or in 

the binary LAS format (ASPRS, 2005) on a portable hard drive or DVDs.  The first 

challenge arises in the act of distributing these massive public domain datasets to the 

scientific community.  Mailing DVDs or hard drives to users who request the data is an 

inefficient and time consuming solution.  A more elegant approach to the problem is to 

utilize high bandwidth cyberinfrastructure and information technology to distribute the 

data via an interactive, internet-based, portal.  The National Oceanic and Atmospheric 

Administration (NOAA) Coastal Services Center’s LIDAR Data Retrieval Tool 

(LDART) (http://www.csc.noaa.gov/crs/tcm/about ldart.html) and the U.S. Geological 

Survey’s Center for LIDAR Information Coordination and Knowledge (CLICK) (Stoker 

et al., 2006) are good examples of ongoing efforts to provide internet-based access to 

LiDAR point cloud data.  The NOAA system is devoted to NOAA coastal LiDAR data 

and is therefore limited in its scope.  The USGS CLICK effort is much broader as it seeks 

to be an archive and distribution resource for raw, unfiltered, LiDAR point cloud data 

from across the United States. 
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Although a centralized resource for locating and accessing LiDAR point cloud 

data such as CLICK is an excellent first step towards allowing earth scientists to utilize 

raw LiDAR data in their research, it does not fully address the challenges associated with 

LiDAR data distribution and processing.  The CLICK data distribution system hosts and 

serves LiDAR point cloud data organized as USGS quarter quadrangles in either generic 

ASCII or LAS binary formats.  Because of the massive number of returns in a single 

LiDAR dataset, a single quarter quadrangle’s worth of data may still contain 10s of 

millions to 100s of millions of returns and result in file sizes of 100s of megabytes (in the 

smaller LAS binary format).  Additionally, by serving data only in quarter quadrangles, 

users are forced to download and merge multiple data tiles if they are interested in a 

region that falls on a quadrangle boundary. 

Although nearly ubiquitous high-speed internet access now makes it possible to 

download massive LiDAR point cloud data files such as those provided by CLICK, 

visualization and DEM generation for these data typically require complex and typically 

expensive software packages (see U.S. Army Topographic Engineering Center, 2006 for 

software examples) that may, for financial, computing resource or expertise reasons, be 

beyond the reach of the average earth scientist.  This computational barrier to working 

with LiDAR data is therefore the current limiting factor for earth science users who wish 

to incorporate LiDAR point cloud data analysis and processing into their research. 
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A GEOINFORMATICS APPROACH 

 Because of the data volumes and processing difficulty associated with LiDAR 

point cloud data, it is unrealistic to expect all earth science users who wish to work with 

these datasets to independently acquire the tools and resources necessary.  An enticing 

alternative is to employ an interdisciplinary, geoinformatics approach that utilizes 

cyberinfrastructure resources to build a community-oriented data distribution and 

processing toolset that all LiDAR users can use.  The National Science Foundation large 

Information and Technology Research program-funded Geoscience Network (GEON) 

project (http://geongrid.org/) provides the resources and expertise to undertake the 

development of such a resource (Owens and Keller, 2003).   

GEON was designed as an equal collaboration between Information Technology 

(IT) and geoscience researchers, with the goal of developing an enabling IT platform to 

facilitate the next generation of geoscience research and education. Project participants 

and partners include a number of US universities, federal agencies, and industry, as well 

as international partners. The core cyberinfrastructure that is being developed is broadly 

applicable beyond the geosciences to a variety of other science disciplines and 

application domains.  GEON is based on a “service-oriented architecture (SOA)”.  This 

architecture takes advantage of a distributed network of datasets, tools and computing 

resources to provide access to high performance computing platforms for data analysis 

and model execution.  “Advanced information technologies are being developed in the 

GEON project to support “intelligent” data searching, semantic integration, and 

visualization of multidisciplinary information as well as 4D scientific datasets and 
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geospatial data” (http://www.geongrid.org/about.html).  The GEON Portal provides a 

web-based interface and framework to access the various resources. 

In addition to the computing resources provided by the project, GEON is designed 

to bridge cultural and disciplinary boundaries to bring together geoscientists and 

computer science experts for the common goal of developing the next generation of 

geoscience tools.  This close collaboration enables GEON researchers to identify 

opportunities and tackle problems that they might not otherwise be equipped to handle 

within their own discipline.  Therefore, GEON provides an exciting suite of tools 

(hardware) and computer science skills (people & knowledge) that can be applied to the 

LiDAR distribution and processing challenge faced by the earth science community. 

 

THE VISION: A CONCEPTUAL WORKFLOW FOR LIDAR DATA 

DISTRIBUTION AND PROCESSING 

 Given the distribution and processing challenges presented by LiDAR point cloud 

data, we have created a conceptual workflow for an internet-based LiDAR distribution 

and processing toolset (Figure 2.6).  This workflow capitalizes on cyberinfrastructure and 

information technology expertise and resources available via the GEON project to offer 

interactive point cloud data distribution, generation of digital elevation models, and 

analysis of large LiDAR datasets.  The GEON conceptual LiDAR workflow is an end-to-

end approach beginning with data distribution and ending with download and or 

visualization of products in two and three dimensions.  The workflow is designed to 

utilize a modular, web service-based architecture that is scalable and dynamic.  The goal 
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of the modular approach is to allow new tools and resources to be easily added and to 

allow the workflow to be customized on-the-fly based upon the processing selections 

made by the user. 

 In the GEON conceptual workflow, LiDAR point cloud data are hosted in a 

spatially indexed database which is accessed through an interactive web-portal.  By 

storing the point cloud data in a database, users are able to perform spatial and attribute-

based queries on the data.  For example, the user can select all of the ground returns 

(attribute) within a given polygon (spatial) drawn on an interactive map in the web portal.  

[the query is converted from the portal interaction to an SQL statement in the 

background].  This approach allows users to select just the data in which they are 

interested and avoids the problems incurred by hosting data in tiles.  We also propose 

hosting raster imagery that was acquired in tandem with the LiDAR data in a similar 

database so that these data can also be interactively accessed by users. 

 Once the user has selected their data of interest and the working geographic 

projection, sophisticated users may wish to exit the workflow by downloading the point 

cloud to their local computer to perform their own processing and analysis.  For these 

users, the workflow acts only as a LiDAR point cloud data distribution resource.  Other 

users however, may choose to take advantage of an interpolation and analysis toolset 

where they can perform tasks such as point cloud classification, evaluation of return 

density and classification errors, and DEM generation and analysis.  Finally, users are 

able to download their data products in a variety of common file formats.  By providing 

data products in a wide variety of formats, users are able to bring the data into their 
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software package of choice for additional scientific analysis.  In certain situations, users 

may wish to view their data products before, or in place of, downloading to a local 

computer.  In this case, the workflow offers the option of either two or three dimensional 

visualization of data products within the web browser.  This functionality could be 

employed for verifying data products before beginning large downloads, for users who 

lack visualization and mapping resources locally or for educational purposes where 

students use the workflow to explore landscapes digitally.  

 For geoscience users, the generation of DEMs is likely the most important toolset 

available within the GEON conceptual LiDAR workflow because DEMs derived from 

LiDAR are the most frequently used LiDAR product for scientific analysis (and 2.5D 

visualization).  Because DEM generation can be performed with a number of different 

interpolation and binning algorithms, the aim of the workflow is to provide the user with 

a suite of algorithms (i.e. spline, TIN, IDW, Kriging, block mean/min/max) along with 

control over algorithm parameters to allow fine-tuning of the resultant surface (Appendix 

I).  The user is also given control over the resolution of the resultant DEM.  The goal is to 

provide an interactive processing environment for iteration and exploration of various 

DEM generation algorithms and processing options.  Ultimately, these tools can be used 

to optimize landscape representation based upon the user’s scientific applications. 

 By utilizing the distributed computing resources available through the GEON 

project, the conceptual workflow allows the user to quickly and easily run multiple jobs 

with different algorithms and/or parameter settings and compare results.  Similar iteration 

may take days or weeks if done locally on a single computer.  The conceptual LiDAR 
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workflow is designed to allow computationally intensive data processing to be handled 

by the cyberinfrastructure available through GEON and to offer the user manageable 

download products in common file formats relatively quickly. This Geoinformatics 

approach effectively removes many of the computational barriers to working with 

LiDAR data and thereby democratizes access to these datasets.   

 

PROOF-OF-CONCEPT IMPLEMENTATION 

 To illustrate our geoinformatics approach to aerial LiDAR point cloud data 

distribution and processing, we have built a proof-of-concept toolset, the GEON LiDAR 

Workflow (GLW), which offers a subset of the functionality discussed above (red 

pathways in Figure 2.6).  The GLW provides users access to LiDAR point cloud data, 

DEM generation and analysis algorithms and download and visualization of data 

products all through an internet-based web portal.  The GLW portal is hosted within the 

GEON portal (http://portal.geongrid.org) where users can access a variety of geoscience 

data and applications. 

The GEON LiDAR Workflow capitalizes on a series of distributed computing 

resources to complete the three main processing tasks within the workflow: selection of a 

subset of point cloud data, generation and analysis of digital elevation models, and 

download and visualization of the resulting products.  Coordination of these resources is 

handled through an architecture developed by the GEON project (Jaeger-Frank et al., 

2006).  This architecture uses the Kepler scientific workflow system (Ludäscher et al., 

2005) to link the various databases, processing tools and computing resources.  Because 
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each tool in the processing workflow is designed to be a modular web service, Kepler can 

dynamically generate a custom workflow - by linking the appropriate modules - based 

upon the processing parameters selected by the user at the portal.  The modularity of the 

GLW architecture also allows us to easily add new databases, processing tools and 

computing resources, making the architecture adaptable and extensible.   

 The proof of concept GLW currently features three exemplary LiDAR point cloud 

datasets: 1) Data collected along the Northern San Andreas Fault (NSAF) and associated 

marine terraces in Sonoma and Mendocino Counties, California (Figure 2.5), 2) data 

from the Western Rainier Seismic Zone in Pierce County, Washington, 3) data covering 

active faults in the Eastern California Shear Zone portion of the Mojave Desert, 

California, and 4) the Dragon’s Back Ridge portion of the southern San Andreas Laser 

Scan dataset (a.k.a “the B4 Project”).  Each of these datasets is hosted in an IBM DB2 

spatially indexed database running on the terascale supercomputer DataStar 

(http://www.sdsc.edu/user_services/datastar/) at San Diego Supercomputer Center.  

DataStar is optimized for data-intensive computing tasks and is therefore able to 

efficiently handle spatial and attribute-based queries on these massive LiDAR point cloud 

datasets. 

The LiDAR point cloud datasets, and associated processing tools, are accessed via 

an internet-based portal (Figure 2.7).  This portal features an interactive web map as well 

as check and dialog boxes which allow the user to query the dataset and control 

processing parameters.  The interactive Web Map Service (WMS) map provides basic 

geospatial data layers such as roads, cities, topography and bodies of water that help the 
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user to understand the geographic context of the dataset.  Once the user has located the 

data of interest, he or she draws a box on the map that defines the spatial extent of the 

query to be submitted to the database.  In addition to the spatial query on the database, 

users are also able to query by the return classification attribute (vegetation, ground, 

structure etc. if available) so that they can more accurately select the data of greatest 

scientific interest (Figure 2.7B). 

Once the parameters of the database query have been defined, the user can verify 

the number of LiDAR returns in their selection and make choices about the download 

products, and file formats for those products they would like to receive.  The GLW 

currently offers generation of digital elevation models via a spline with regularized 

smoothing and tension (rst) algorithm (Mitasova and Mitas, 1993) available in the 

GRASS Open Source Geographic Information System (GIS) package (Neteler and 

Mitasova, 2004).  At the web portal, users are given control over the DEM resolution as 

well as spline algorithm parameters such as tension and smoothing (Figure 2.7C).  By 

having control over processing parameters, users are able to experiment to find the 

settings that produce a DEM best suited to their scientific applications.  Using algorithms 

in GRASS GIS, the GLW also allows users to calculate the common geomorphic metrics 

of slope, aspect and profile curvature, as products derived from the DEM they have 

generated (Mitasova and Hofierka, 1993).  Finally, the GLW offers users the ability to 

download the raw point cloud data as well as their DEM and derivative products (Figure 

2.8).  Point cloud downloads are offered in a compressed ASCII format while the DEMs 

and derivatives can be downloaded in ARC ASCII and standard ASCII grid formats or as 
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a GeoTIF.  Upon submission of their job at the web portal, the user can choose to wait for 

their results to be delivered to the browser or they may close the window and an email 

notification will be sent when the job is complete. 

Out of sight to the user, the submission of a job at the web portal executes a 

sequence of processing steps that are tailored to fulfill the user request.  This sequence of 

processing steps is performed on a geographically distributed network of computing 

resources orchestrated by the Kepler workflow system (Figure 2.9).  As such it represents 

a powerful example of cyberinfrastructure at work. Not only are the software and data 

components modular, diverse compute resources may be “plugged in” as they become 

necessary and/or available. 

The GLW portal is served from a computer at SDSC while the LiDAR point 

cloud data are hosted on the separate DataStar supercomputer at SDSC (Figure 2.9).  

Upon submission of a job, the user’s spatial and attribute query information is sent to 

DataStar, where the query returns all points with the given attribute value that reside 

within a user selected bounding box.  Next, the “clipped” subset of data, along with the 

processing parameters, is sent from SDSC to Arizona State University where a GEON 

computing cluster is waiting to perform the data processing.  This transfer of data occurs 

within seconds and takes advantage of high-bandwidth internet connections and tools 

such as the Grid File Transfer Protocol (Grid FTP).  A GRASS GIS web service deployed 

on the ASU cluster accepts the data and processing parameters and then executes the 

request as the user defined it at the GLW portal.  The bulk of the computational run time 

in the workflow is spent interpolating the point cloud data to produce a DEM using the 
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spline algorithm within GRASS GIS.  Once the DEM and derived products are complete, 

they are compressed and shipped back to SDSC where yet another computer generates 

browse images of the products using Global Mapper (http://www.globalmapper.com/).  

Finally, a web page with the browse images and links to a directory containing the user’s 

products is produced and an email is sent to notify the user that their job is complete. 

Given the current architecture and processing tools, a job submitted to the GLW 

will run to completion in less than 10 minutes.  At present we limit jobs to a maximum of 

1.6 million points for DEM generation and 20 million points for download.  Interpolation 

of large volumes of LiDAR point cloud data currently represents a bottleneck in the 

overall GLW workflow.  The implementation of parallelized interpolation code or 

alternative, more efficient, binning or interpolation algorithms are likely to result in 

significantly improved processing performance. 

Because the GLW architecture is designed to access and utilize distributed 

databases and computing resources (Figure 2.9), the system can easily be adapted to 

expose new resources as they become available.  Although the LiDAR data distributed 

via the GLW are currently hosted by GEON at the San Diego Supercompter Center, the 

architecture allows us to expose additional datasets in the GLW portal if they are hosted 

in a manner that is accessible to the GLW’s web service-based architecture.  Likewise, 

the GLW currently only takes advantage of the ASU GEON compute nodes for DEM 

generation and analysis.  However, the GLW architecture allows us to harness additional 

distributed computing resources if they become necessary. 
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The flexibility and extensibility of the GLW architecture lends itself to a 

community-oriented approach to distribution and processing of LiDAR point cloud 

datasets.  This model allows funding agencies or data hosts to maintain control over 

archiving and management of their datasets, yet still allows their users to seamlessly take 

advantage of processing tools and resources hosted elsewhere.  We propose that the GLW 

architecture could be adopted by the scientific community to provide a centralized data 

distribution and processing system that could significantly enhance user’s ability to 

incorporate these datasets into their research (Figure 2.10). 

 

FUTURE WORK 

 The GEON LiDAR Workflow as presented here represents one step in the 

ongoing evolution of this tool.  As figure 2.6 shows, there are many pathways within the 

GEON Conceptual LiDAR Workflow that have not yet been implemented. Efforts are 

underway to enhance the GLW’s functionality on a number of fronts.  In addition to 

hosting and serving more datasets, we are actively seeking to improve DEM generation 

efficiency and to add new processing and analysis tools. 

 One area of future development is the integration of raster imagery (aerial 

photography or hyperspectral imagery) into the GLW workflow.  It is becoming 

increasingly common for ultra high-resolution raster imagery to be acquired at the same 

time as LiDAR data and therefore it is logical to integrate these two datasets so that they 

could be accessed by GLW users.  Because of the terabytes of data associated with raster 
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imagery, a geoinformatics approach to the archiving and distribution of these data is 

necessary. 

 We also recognize a need for point cloud processing tools that can be used to 

manipulate the point data before the user generates their DEMs.  We are currently 

exploring a “projection engine” that would allow the user to project their point cloud data 

selection into a variety of geospatial coordinate systems.  This functionality is essential to 

allow users to integrate LiDAR data with their preexisting geospatial datasets.  Also 

necessary are a suite of tools that would allow users to interactively filter the raw point 

cloud to extract vegetation and bare earth products.  This is important for datasets that 

were not classified by the provider, or that show evidence of classification errors. 

 Digital Elevation Model generation is a central component to the GLW and 

therefore we are investing considerable effort to provide additional interpolation and 

binning algorithms for the generation of DEMs.  Because each algorithm generates a 

terrain model from the point data differently, it is important to offer the user a variety of 

choices within the GLW environment.  Ultimately, we would like to offer Triangular 

Interpolation (TIN), Kriging, and binning methods such as local mean or local minimum 

in addition to the spline algorithm already implemented in the GLW (see Appendix I for 

more on interpolation algorithms).  Our goal is also to optimize the performance of the 

algorithms so that the GLW can quickly generate DEMs for very large point cloud 

datasets. 

   Another logical area of development for future versions of the GLW is in tools 

that allow users to analyze the DEMs they produce.  Currently we calculate three basic 
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geomorphic metrics: slope, aspect and profile curvature as derived products from the 

DEMs, but efforts are underway to offer additional basic functionality such as hillshade 

generation.  Because of the computing resources available to the GLW, certain 

computationally difficult analysis tasks such as generating hydrologically corrected 

DEMs lend themselves to implementation in the GLW. 

 Finally, we plan to provide a greater selection of download product formats so 

that GLW outputs are compatible with a wide variety of software packages.  Beyond the 

standard data formats, we are also exploring the generation of products that allow the 

user to visualize their data products in three-dimensions within the web browser.  This 

functionality may include generation of vrml models or fledermaus scene files and would 

interface with web-based visualization efforts that GEON is pursuing for a number of 

research projects. 

 

CONCLUSIONS  

 High-resolution topography from aerial LiDAR data is one of the most powerful 

new tools for the study of the earth’s surface and overlying vegetation.  These datasets 

have great utility for a wide variety of earth science, ecology and engineering 

applications.  Access to raw LiDAR point cloud data is important for scientific research 

so that users can take full advantage of the information contained within these massive 

datasets.  The size of these publicly available datasets presents a significant challenge to 

distribute to users.  Once users do gain access to the data, they face significant software, 
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hardware and expertise requirements to generate digital elevation models and perform 

analysis of these models. 

 Using cyberinfrastructure available through the GEON project, we have 

developed an interdisciplinary, geoinformatics-based, approach to the distribution and 

processing of aerial LiDAR point cloud data.  The proof-of-concept demonstration of this 

approach, the GEON LiDAR Workflow, is an end-to-end data distribution and processing 

workflow that leaves the computationally challenging data processing to distributed 

resources provided by the GEON network.  As a result, the GLW has the power to 

democratize access to LiDAR point cloud for the greater scientific community.  The 

GLW architecture could be adopted to build a centralized data distribution and processing 

resource for LiDAR data in the earth sciences. 

 The interdisciplinary collaboration and the utilization of cyberinfrastructure and 

information technology used to develop the GEON LiDAR Workflow represent an 

excellent model for building internet-based tools for the earth sciences. This approach to 

developing community data archives and processing tools that integrate distributed 

databases, tools and computing resources is the future of earth science research and 

education.  Resources such as the GLW can help to facility new and exciting 

interdisciplinary science because users are more easily able to explore and integrate data.  

As earth science datasets become larger and more complex, a geoinformatics approach 

will be necessary to develop the tools and resources that facilitate data access and 

processing for the next generation of earth science data. 
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Figure 2.3.  Generalized aerial LiDAR acquisition and processing workflow consisting 

of four steps: 1) Aerial data acquisition—scanner, IMU, and GPS  (modified from R. 

Haugerud, USGS: 

http://duff.geology.washington.edu/data/raster/lidar/About_LIDAR.html) 

 2) processing of laser ranging, GPS and IMU data to generate LiDAR point cloud 

(modified from Harding, 2006), 3) generation of classified point cloud, and 4) generation 

of digital ground and vegetation models.  Point cloud classification and generation of 

digital ground and vegetation models directly controls the specifications of the products 

upon which analyses will be performed.  
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Figure 2.4.  Vertical and three dimensional view of full feature (unfiltered) LiDAR 

digital elevation model (top).  Brown shades show ground surface.  Vegetation is shown 

in shades of green with vegetation color coded by canopy height (darker is taller).  Lower 

images show the digital elevation model produced from just the point returns classified as 

having been returned from the ground surface.  Images are from a portion of the Northern 

San Andreas Fault (NSAF) LiDAR dataset at Anapolis Road near Sea Ranch, CA 

(middle area of figure 2.5).  Note the linear trace of the NSAF clearly visible in the bare 

earth digital elevation model.  The fault’s obvious geomorphic expression is obscured by 

the vegetation in the upper images.  The ability to ‘virtual deforest’ the landscape is 

extremely powerful for many geoscience applications (e.g. Haugerud and Harding, 2001).  
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Figure 2.5.  Map showing the extent of the Northern San Andreas Fault (NSAF) LiDAR 

dataset in Sonoma and Mendocino Counties, California (shown in orange).  This dataset 

is one of three pilot datasets for the development of the GEON LiDAR Workflow.  The 

NSAF data were acquired in February 2003 by Terrapoint LLC with funding from NASA 

in collaboration with the U.S. Geological Survey.  LiDAR data were acquired in an 

approximately 418 square mile area with a focus on the NSAF and associated marine 

terraces.  With approximately 1.2 billion LiDAR classified returns, this dataset is a good 

example of the data types and volumes that are common in aerial LiDAR datasets. 
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NOTE: Process will be 
wrapped in an 
a u t h e n t i f i c a t i o n  
protocol that has 
already been 
developed by GEON.  
At login, site visitor is 
identified as Guest, 
User, or Owner of data 
and their permissions 
are set accordingly.
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Figure 2.6. Conceptual GEON LiDAR workflow.  This workflow capitalizes on 

cyberinfrastructure available via the GEON project to offer an end-to-end LiDAR point 

cloud distribution and processing toolset.  The workflow begins with point cloud data 

(and raster imagery) selection and includes DEM generation and analysis as well as 

product download functionality Pathways shown in red are currently implemented in the 

proof of concept GEON LiDAR Workflow (GLW).  Pathways shown in white or black 

are under development for future generations of the GLW.

50



 
 

51

 

 

 

 

 

 

Figure 2.7.  A) Screen capture of the GEON LiDAR Workflow portal.  Red box shows 

the extent of (B) and orange box shows the extent of (C).  B) Detail view of the spatial 

and attribute selection portion of the portal.  Users can use the WMS (Web Mapping 

Service) map to zoom to the portion of data of interest and then draw a box on the map to 

select a subset of data.  If attribute information for the dataset is available, that selection 

can be made here as well.  C) Detail view of the processing portion of the portal.  Users 

choose their products (DEM and derived products) as well as the file format for those 

products.  Processing parameters such as DEM resolution and spline interpolation 

settings (Mitasova and Mitas, 1993) can also be defined. 
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B. Figure 2.7 continued
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C. Figure 2.7 continued
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Figure 2.10.  Proposed GEON-Based Model for accessing and processing of distributed 

community LiDAR datasets.  Although the organizations named in the figure are not 

committed, they are exemplary of different agencies and research organizations likely to 

fund publicly available LiDAR datasets.  In this model, a single web-portal allows users 

to seamlessly access datasets hosted and maintained by various organizations and 

agencies.  Likewise, various tiers of distributed computing resources can be recruited 

depending upon the size of the processing job submitted, ranging from a single 

computing cluster to the TeraGrid (“the world's largest, most comprehensive distributed 

cyberinfrastructure for open scientific research”.  http://www.teragrid.org/about/).  The 

orchestration of the various databases, processing tools and computing resources would 

be managed by the cyberinfrastructure developed by GEON and currently implemented 

in the GEON LiDAR Workflow.  Red arrows show the pathways through this model that 

are implemented as the GLW, future pathways are shown in black.   
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APPENDIX I 

EXPLORATION OF LIDAR POINT CLOUD DATA ARTIFACTS, RETURN 

DENSITY AND DIGITAL ELEVATION MODEL GENERATION 

 

SUMMARY 

The growing availability of LiDAR (Light Distance And Ranging (a.k.a. ALSM – 

Airborne Laser Swath Mapping)) data in the earthquake geology and tectonic 

geomorphology communities (among numerous others – see Introduction and Chapter 2) 

means that these powerful data are being utilized in an increasing number of research 

projects.  LiDAR point cloud data (x, y, z, return classification) (Figure I.1) are 

challenging to manipulate, so users typically only take advantage of interpolated surfaces 

(digital elevation models; DEMs) generated by the LiDAR data vendor for their analysis.  

However, by not returning to the LiDAR point cloud data, users may fail to fully exploit 

the richness of these data sets.  

Initiating geomorphic analyses and visualizations with the point cloud gives users 

more understanding of the data and control over how those data characterize the 

landscape.   Details such as the interpolation algorithm and grid resolution can 

significantly affect the manner in which the resulting DEM represents the landscape.  In 

addition, beginning with the LiDAR point cloud data allows the user to assess the 

homogeneity and density of ground returns in the area of interest (Figure I.2) and to 

evaluate potential artifacts in the data caused by errors in data acquisition and processing 

(e.g. point misclassification) (Figure I.1).  By understanding the variation in ground-

return density (which can vary due to topography, canopy characteristics and acquisition 
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parameters) (Figure I.5), the user has a better understanding of potential artifacts that may 

be introduced into their DEMs by this variation.   

Using LiDAR point cloud data from the Northern San Andreas Fault (Figure 2.5) 

recently made available via the GEON LiDAR Workflow (GLW) 

(http://www.geongrid.org/science/lidar.html) (also see Chapter 2 in this volume), I focus 

on evaluation of LiDAR point return density in both forested and unforested landscapes 

near Fort Ross, California.  This prototypical methodology was originally presented as 

Crosby et al., 2006 and demonstrates that by evaluating LiDAR ground return density 

before generating a DEM, the user is able to performed “informed” DEM generation 

whereby the resolution of the DEM is optimized to take full advantage of the data 

resolution (Figure I.3).   This analysis revealed that DEMs generated from LiDAR point 

cloud data often do not take full advantage of the point return density, producing DEMs 

that have multiple returns per DEM cell.  I propose that LiDAR DEMs can be accurately 

produced down to a one point per pixel on average threshold.  In this appendix I also 

explore the accuracy of common DEM interpolation algorithms to fit the LiDAR point 

cloud (Figure I.4).  In areas of high-ground return density relative to the grid resolution, 

there is little variation between interpolation algorithms in the accuracy with which they 

fit LiDAR ground returns.  

Through interactive exploration and interpolation of LiDAR point cloud data, 

users gain a better understanding of the strengths and weakness of their data and are able 

to optimize DEM generation to represent the landscape they are studying.  This approach 



 
 

61

to working with LiDAR data allows tectonic landforms to be delineated more efficiently 

and with greater detail than by working with the vendor generated DEMs. 

 

REFERENCES CITED: 

Crosby, C.J. and Arrowsmith J R., 2006, Utilization of LiDAR / ALSM Point Cloud Data  

for Earthquake Geology and Tectonic Geomorphic Mapping, Analysis, and 

Visualization: Proceedings of the 100th Anniversary of the 1906 Earthquake 

Conference 
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Figure I.1.  3D visualization of classified LiDAR point cloud data.  These images show 

a NE view up Mill Gulch near Fort Ross, CA.  Note U.S. Highway One in the lower left 

of each image.  A) 3D rendering of ground returns (black) and vegetation returns (green) 

over the bare earth DEM (brown).  B) 3D rendering of ground returns (black) and 

vegetation DEM (shades of green color coded by height with darker shades of green for 

taller vegetation -- maximum tree height is approximate 280 ft) over the bare earth DEM 

(brown).  C) 3D rendering of ground returns (black) over the bare earth DEM (brown).  

Note the lack of ground returns (gaps in the black points) underneath the canopy.  D) 3D 

rendering of vegetation returns (green) over the bare earth DEM (brown).  Note returns 

classified as vegetation on the flat surfaces in the foreground.  These points are 

misclassified, reclassifying them as ground returns would yield higher ground return 

densities in these areas.  The misclassification of these points is likely an error due to 

swath mismatches within the processed data set.  This offset is likely traceable to the 

mislocation of the aircraft due to GPS or Inertial Navigation problems. 
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Figure I.2.  LiDAR return density evaluation.  This figure shows the number of LiDAR 

ground (A) and vegetation (B) returns for each 6 ft pixel in the DEM.  Note the limited 

vegetation returns on the flat, grass-covered, marine terraces and high return density (up 

to 12 per pixel) in the heavily forested drainages.  Also note the very low number of 

ground returns (< 1 per pixel) beneath the forest canopy (recall Figure I.1C).  This lack of 

ground returns beneath dense vegetation is likely due to poor penetration of the LiDAR 

pulse through the canopy and the point classification algorithm.  The plots show the 

distribution of points per pixel for both ground (C) and vegetation (D) returns.  Note that 

the majority of 6 ft pixels have 2 or more ground returns.  Thus, in certain portions of the 

data set, it may be appropriate to generate DEMs at resolutions better than 6 ft in order to 

take full advantage of the richness of these data.  Conversely, these figures illustrates that 

in certain areas, due to poor penetration of the tree canopy, there are very few ground 

returns.  In these areas the density of ground returns may not support the 6 ft DEM 

resolution as produced by the data vendor.  If DEM generation is going to be undertaken 

in these areas of very low return density, it is necessary to interpolate to span the gaps in 

the data and thus the method (gridding algorithm) becomes important. 
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Figure I.3.  Testing digital elevation model resolution based on LiDAR ground return 

density.  In order to illustrate how and understanding of ground return density can inform 

the generation of digital elevation models (DEMs) from LiDAR point cloud data, a 

~280,000 ground return subset of the Northern San Andreas LiDAR data was selected.  

A)  The dataset extent is shown in the yellow box.  This region was selected because it is 

largely unvegetated and has a high density of ground returns (B).  In addition, the area is 

crossed by a marine terrace riser and also contains a number of sea stack remnants.  With 

the except of the brush in the upper portion of the sample area, the point density 

evaluation (B) shows that each 6 foot DEM pixel is sampled by at least 2 LiDAR ground 

returns.  This density of ground returns suggests that a DEM at resolutions greater than 6 

feet are supported by the data.  C)  Standard, vendor provided 6 foot DEM for the area 

shown in (B).  D)  Point cloud data interpolated to produce a 3 foot DEM.  Note the 

increased clarity of subtle features in the landscape when compared to the 6 ft DEM (C).  

E)  Point cloud data interpolated to produce a 1.5 foot DEM.  Again, note the increased 

clarity of subtle landscape features when compared to both the 6 (C) and 3 foot (D) 

DEMs.  Given the ground return density evaluation shown in (B), the 1.5 foot DEM is 

likely at the threshold of what is appropriate for this data set. 
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Figure I.4.  Comparison of common DEM generation interpolation algorithms.  The 

images in this figure explore the accuracy of common DEM interpolation algorithm to fit 

the LiDAR point cloud.  The analysis is performed for the region shown in the yellow 

box in Figure 3A.  Each image is a 3 foot DEM produced with one of four interpolation 

algorithms:  A) Spline  B) TIN (Triangular Interpolation Network)  C) IDW (Inverse 

Distance Weighted)  D) Kriging.  The elevation of the grid at each of the 280,000 

individual ground return points was then extracted from the DEMs to test the fit of the 

surface to the original ground returns.  The histograms show the differences between the 

points and the corresponding DEM pixel.  The mean and standard deviation are also 

indicated.  This analysis indicates that in areas of high-ground return density (like this 

sample data set), there is little variation between interpolation algorithms in the accuracy 

with which they fit LiDAR ground returns.  Therefore, interpolation algorithm is likely 

not the most important factor in the generation of DEM in such situations.  
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Figure I.5.  Digital elevation model generation in areas of low ground return density.   

A)  Hillshade of the first return surface (full feature) DEM for a portion of the Northern 

San Andreas fault (NSAF) LiDAR data (Figure 2.5)  that is characterized by very dense 

forest canopy on steep slopes.  B)  Hillshade of the bare earth DEM of the area shown in 

(A).  The San Andreas fault zone crosses the image from the upper left to lower right 

(with in the orange box).  Much of the NSAF is located in landscapes like this example.  

Although the LiDAR data helps to reveal the geomorphology of the SAF fault zone, the 

density of ground returns in these areas is low due to difficulty of LiDAR penetration 

through the dense forest canopy.  When these data are interpolated, the sparse density of 

ground returns results in artifacts such as the triangular facets (associated with the TIN 

interpolation used by the data provider) visible in the bare earth image.  Changing 

interpolation algorithm and/or parameters may enhance the landscape representation in 

these areas by altering the way that the interpolated surface treats the sparse ground 

returns.  C)  This image shows the number of ground returns per 6 foot DEM pixel.  Note 

that in most of the forested areas there is less than one ground return per pixel.  

Interpolating these data to DEMs of resolutions less than 6 feet would not be appropriate 

in this case.  D)  Hillshade of a 6 foot bare earth DEM of the area shown in (A).  This 

DEM was generated by interpolating the same ground return LiDAR point cloud data 

(~301,000 points) as in (B) but the spline algorithm (settings: DMin=1 ft, tension=40, 

smoothing=0.1) available in the GEON LiDAR workflow was used instead of a TIN.  

The spline algorithm does not produce the large facets associated with the TIN so it 

provides a smoother representation of the landscape.  The spline surface is characterized 
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by generally smooth surface with occasional bumps or “pimples”.   However, the extent 

to which the representation of the SAF fault zone geomorphology is enhanced by the 

spline is open to debate.  Furthermore, the triangular facets artifact produced by the TIN 

are a clear indication of low ground return density.  These facets alert the users to the 

return density problem with the data set while the spline algorithm conceals some of 

these data density issues and may therefore fool the user into believing that the data set is 

robust.  One could also use a semi-transparent overlay color coded by return density to 

assess this issue.   For the reasons discussed above, users working with these data may 

wish to further explore the role of interpolation algorithm and parameters in low-ground 

return environments. 
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APPENDIX II 

EXPLOITING LIDAR DATA FOR REGIONAL MORPHOLOGIC CORRELATION 

AND DATING OF WAVE-CUT AND FAULT-CONTROLLED LANDFORMS 

 

SUMMARY 

The capability to generate high-resolution Digital Elevation Models (DEMs) from 

LiDAR data (Light Distance and Ranging, also known as Airborne Laser Swath 

Mapping, or ALSM) across broad geographic regions provides a new tool for studying 

landscape response to tectonic deformation.  Expanded LiDAR coverage from 

GeoEarthscope (http://facility.unavco.org/project_support/es/geoearthscope/) and the 

National Center for Airborne Laser Mapping (NCALM) (http://www.ncalm.ufl.edu/) 

offers the prospect of applying these data to a variety of tectonic geomorphic studies.  

The data volume and point-density of LiDAR allows extensive repetition of profile-based 

landscape analyses without the need for laborious survey transects.  Traditional DEMs, 

such as those available through the USGS National Elevation Dataset, lack the resolution 

necessary for these types of analyses.   In this appendix I develop a scheme for exploiting 

LiDAR data for landform correlation by conducting profile-based morphologic dating 

(using linear diffusion) of fault scarps and marine, lake and fluvial shorelines.  The 

resolution and geographic extent of LiDAR coverage makes broad spatial correlations 

possible, assuming that controls on the hillslope processes are relatively constant across 

the region.  Due to the high data density and their digital format, numerous topographic 

profiles can be extracted from a DEM and analyzed for morphologic age.  Correlation 

from profile to profile can then be established by comparing morphologic age for various 
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landforms in a research area.  With calibration, morphologic dating also offers the 

opportunity to constrain absolute ages of landforms.  Once calibrated, landforms across 

the region can be quickly dated via profile-based analysis of the LiDAR-derived DEM.   

In addition, morphologic comparison of landforms of known age offers the opportunity to 

test the role of other constraints, such as aspect, microclimate, and substrate type on 

landform development by diffusive processes.   

The linear hillslope diffusion method requires the simplistic assumption that 

controls on hillslope processes are relatively constant cross the region of correlation.  

Other assumptions include: transport-limited conditions, regolith transport rate increases 

with increasing slope, a simple ramp-shaped initial topography, and no geomorphic 

transport in or out of the strike of the profile.  Simple linear diffusion is expressed as the 

following analytical solution for an initial ramp-shaped form (Andrews and Hanks, 1985) 

(Figure 1): 

 

Equation 1. 

 

  

Where: 

 b = far field fan slope 
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a = scarp half offset 

k = diffusion constant  (m2/1000 yrs) 

t = time 

θ = initial scarp slope   

H = elevation along the profile which is a function of distance (x) and time (t) 

 

Analysis of scarp profiles was performed using the Diffusion Scarp Dater MATLAB 

graphical user interface written by George Hilley (Hilley and Arrowsmith, 2001).  This 

tool allows calculation of finite scarp RMS, by comparing the observed profiles from 

LiDAR to the modeled ones, and forward modeling of topographic transect data.  The 

tool is available for download at: http://activetectonics.asu.edu/diffuse. 

In this appendix, I first demonstrate a methodology for performing morphologic 

age dating on synthetic profiles.  It illustrates the ability of morphologic dating to 

differentiate landforms of morphologic age 50 m2 from ones of 100 m2.  Next, I revisit a 

pair of classic morphologic dating studies (Hanks et al., 1984; Hanks and Wallace, 1984) 

to test the results of my methodology against the published results for these studies.  

Finally, I apply our methodology to LiDAR data sets from marine terraces along the 

Mendocino County, California coast and from normal fault scarps in Death Valley, 

California.   

Application of our morphologic dating technique to these recently acquired 

California LiDAR data sets illustrates the potential power of morphologic dating for 

establishing correlations among regional landforms.  However, this analysis also reveals 
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that this kind of morphologic dating and analysis is over simplified and is highly 

dependent on transect selection.  Typically, transect selection has been done by the 

geomorphologist’s qualitative assessment in the field.   The abundance of high-resolution 

topographic data provided by LiDAR creates a new suite of geomorphic and technical 

complications that need to be addressed in order to make morphologic correlation 

effective.  Ultimately, these complications will provide insight into the geomorphic 

process once fully understood.  The complications in the morphologic age analysis can be 

traced to following causes:  landform rejuvenation, non-transport limited conditions, non-

linear diffusion, and non-diffusive conditions.  Also, high-frequency noise in the LiDAR 

data effects slopes along the profile.  Undersampling by using every other DEM cell 

along the profile for the slope calculations help to reduce this problem. 

 

 

 

Figure II.1.  Simple scarp diffusion: finite slope initial form.  Model of simple linear 

diffusion of a theoretical scarp-like landform with diffusion constant (k) of 10 m2/ka.  

Our algorithm assumes initial vertical riser morphology rapidly evolves to a steep, ramp-

shaped topography via mass wasting processes immediately after formation (θ in 

equation 1).  Diffusive process then continue to modify the riser (e.g. Rosenbloom and 

Anderson, 1994; Hanks et al., 1984, Hanks, 2000).   
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Figure II.2.  Illustration of morphologic dating method on synthetic "LiDAR data".   

A)  Map view of theoretical field area.  In this scenario, two terraces risers are offset 

right-laterally by a dextral strike-slip fault.  Five profiles from each of the terrace risers 

were analyzed to test their correlation across the fault.  B)  Synthetic profiles produced by 

forward model calculations of 500 and 1000 m2 profiles starting with a 10 m riser and flat 

tread (for a diffusion constant (k) of 10 m2/ka the morphologic age (kt) yields an absolute 

age of 50,000 yrs and 100,000 yrs respectively).  To the resulting profiles we added +/- 

50 cm of noise to simulate  local heterogeneity in the surface as is typically encountered 

and would be likely in the LiDAR derived profiles.  C)  Best fitting model profiles to the 

synthetic "data" at left.  Initial scarp morphology shown as blue line, topographic "data" 

are red dots.  D)  Illustration of the relationship between RMS error and morphologic age 

for the five different profiles of the two different risers.  This analysis demonstrates the 

ability of morphologic dating to differentiate landforms of morphologic age 500 m2 from 

ones of 1000 m2. 
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Figure II.3.  Hanks et al., 1984 - Profile modeling of the Santa Cruz, CA marine 

terrace risers revisited.  Using the topographic profiles published in Hanks et al., 1984, I 

recreated this Santa Cruz terrace study to test my methodology and demonstrate the 

technique's utility for morphologic dating of marine terrace risers.  A)  Santa Cruz, CA 

marine terrace topographic profile recreated from Hanks et al., 1984.  Ages for the three 

risers come from U-Th and amino acid racemization data, global sea level curves and the 

assumption of a constant uplit rate of 0.35 m/ka (see Hanks et al., 1984).  B)  Plot 

showing slope calculated along the marine terrace topographic profile.  Profiles illustrate 

qualitative observation that the older terrace risers have more subtle topography.  The 

peak slope diminishes and the scarp widens.  C)  Diffusion model calculations (solid 

lines) for the Santa Cruz terrace risers.  Assumed initial morphology shown as dashed 

blue line.  Actual topography is shown as red dots.  Model parameters are summarized in 

(D).  D)  Table showing model calculation parameters and results for both the original 

Hanks et al., 1984 paper and this study.  My methodology yields similar morphologic 

ages (kt) to those calculated by Hanks et al., 1984 for the Santa Cruz marine terrace 

flight.    
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Figure II.4.  Hanks and Wallace, 1984 - Morphological analysis of Lake Lahontan 

shoreline scarps revisited.  From topographic profiles of Lake Lahontan high stand 

shorelines published in Hanks and Wallace, 1985, I revisited their quantitative 

comparison of profiles to demonstrate how morphologic dating can be used to correlate 

landforms.   A)  Centered Lake Lahontan shoreline topographic profiles recreated from 

Hanks & Wallace, 1985 (topographic profiles as published were reused).  Shown are the 

profiles for which Hanks & Wallace performed model calculations.  B)  Example 

diffusion model calculations (solid lines) for two Lake Lahontan shorelines.  The 

assumed initial riser morphology is shown as the dashed blue line.  Actual topography is 

shown as red dots.  Model parameters are summarized in (D).  D)  Table showing model 

calculation parameters and results for both the original Hanks and Wallace, 1984 paper 

and this study.  My methodology yields similar morphologic ages (kt) to those calculated 

by Hanks and Wallace, 1984 for the Lake Lahontan terrace flight. 
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Figure II.5.  Application of morphologic dating to LiDAR/ALSM data - Sheep Creek 

fan fault scarps, Death Valley, CA.  In this analysis, I blindly apply the morphologic 

dating technique to fault scarps cutting the Sheep Creek alluvial fan (data courtesy of Dr. 

Thad Wasklewicz, University of Memphis).  Topographic profiles were extracted from 

the ALSM data and then analyzed for morphologic age.  A)  Hillshade of 1 meter digital 

elevation model derived from ALSM data.  Three fault scarps clearly offset the Sheep 

Creek fan.  The locations of topographic profiles extracted from the DEM are shown as 

colored lines (red: scarp 1, green: scarp 2, orange: scarp 3).  B)  Slope-offset plot (Hanks, 

2000) for topographic transects across the three Sheep Creek fan scarps.  Transect data 

shown as colored Xs.  Also shown are model calculations for a variety of kt values.  The 

transects generally plot at low kt values (< 5 m2/ka) however the significant scatter in the 

data makes it difficult to associate any scarp with a single kt value.  Plotting the 

topographic transects in the slope-offset space reveals significant variation in kt along 

strike for all three scarps.  In general, the slope offset plot suggests low morphologic ages 

(< 5 m2/ka) for the Sheep Creek scarps.  Although it is difficult to distinguish these 

profiles from one another due to the scatter, the slope-offset analysis is likely to allow 

these scarps to be distinguished from ones of 50 m2/ka.  C)  Calculated model fit to a 

select topographic profile.  Note relatively poor fit to the data in the upper and lower 

parts of the scarp.  Many of the topographic profiles reveal an over-steepening of the 

scarp near its base and a bevel in the upper scarp.  Qualitative forward modeling (manual 

selection of the best-fit) of these transects may yield a very different kt than that of the 

analytical solution, depending upon what portion of the scarp you choose to fit.  The 
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over-steepened base and the upper bevel of the scarp may suggest that the scarps are a 

product of multiple earthquakes.  Mating the morphologic dating analysis with 

paleoseismic trench studies may yield additional insight into the number of earthquakes 

responsible for the scarp morphology.  D)  Relationship between RMS and kt for model 

calculation shown in (C).  Note the range of potential kt values that fit the topographic 

data.  This range of kt values is due to the poor fit of the model calculation to the 

topographic profile data.  E)  Table showing model calculation parameters and results for 

the Sheep Creek alluvial fan scarps.  Kt values obtained using both model calculations 

and qualitative best-fit for each topographic profile are shown.  Note that the kt value for 

each scarp profile can vary dramatically depending on which method is used to fit the 

data. 
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Scarp 1
kt (m2) kt (m2)

kt (m2) kt (m2)

kt (m2) kt (m2)

transect # a (m) b
o
 (setup) b

o
 (calculated) qualitative calculated

1 0.85 2.5 2 5 - 21 9.68

2 1 2.5 2.4 1 1.61

3 0.75 2.7 2.8 15 17.74

4 1.4 2.5 0.8 2 - 15 4.84

5 0.4 4 3.2 0.3 - 2 -

Scarp 2

transect # a (m) b
o
 (setup) b

o
 (calculated) qualitative calculated

1 1.2 3.3 3.2 2 - 15 48.39

2 2.7 2.5 2.4 10 - 60 25.81

3 2.3 2.5 2 1 16.13

5 0.3 5 - 1 -

6 0.5 5 4 0.3 -

7 1.1 3 2.8 7 32.26

Scarp 3

transect # a (m) b
o
 (setup) b

o
 (calculated) qualitative calculated

1 0.9 4 4 3 - 15 19.35

2 1 4.5 4 2 9.68

3 0.9 4 3.6 2 9.68

PARAMETERS / RESULTS - Sheep Creek Fan scarps

E.

Figure II.5 continued
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Figure II.6.  Application of morphologic dating to LiDAR/ALSM data - Marine 

terraces, Mendocino County, CA.  Morphologic dating has potential utility for 

correlating marine terraces over significant lengths of coast line.   Here I compare 

topographic transects extracted from a small piece of coastal LiDAR data to test the 

technique's ability to differentiate risers of different ages (location is northern most 

portion of Figure 2.5).  A)  Hillshade of 1.8 m bare earth DEM derived from LiDAR data. 

The three lowest marine terrace risers are mapped by colored lines (blue: riser 1, green: 

riser 2, orange: riser 3).  Mapping is from aerial photography and the LiDAR data 

(Prentice et al., 2003).  Topographic profiles extracted for this study are shown as straight 

line segments, colored by riser.  B)  Upper plots show centered topographic profiles 

across riser 1 (left) and riser 3 (right).  The lower left plot shows slope along the riser 1 

topographic profiles.  Red lines denote one sigma buffer around the red profile to 

demonstrate the extent of the high-frequency noise in the gridded LiDAR DEM.  Note 

the significant along strike variation in riser morphology.  The lower right plot shows 

slope along the riser 3 topographic profiles.  Note the along strike variation in riser 

morphology - risers shown with blue, yellow and cyan dots and blue x's all show 

evidence for rejuvenation.  C)  Calculated model fit to transect across riser 1 (black line).  

The green line shows a qualitative best fit (determined by manually selecting the best fit) 

to the upper portion of the riser.  The analytical solution is driven to higher kts due to 

“excess mass” on the terrace platform.  Excess mass is typically material that has moved 

into the plane of the profile by non-diffusive processes such as wind transport (see Hanks 

et al., 1984 for a full discussion of the excess mass problem).  In order to avoid this 
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problem, I favor a best fitting model of the upper riser only when the mass excess 

problem exists on the terrace tread below.  D)  Table showing model calculation 

parameters and results for the Mendocino County, CA marine terrace risers.  Kt values 

obtained using both model calculations and qualitative best-fit for each topographic 

profile are shown.  Note that the kt value for each scarp profile can vary dramatically 

depending on which method is used to fit the data.  For this example I also calculate the 

diffusion constant (k) for each of the transects using the assumed ages of oxygen isotope 

stage 5a (~83 ka) for riser 1 and oxygen isotope stage 7 (~194 ka) for riser 3 (C. Prentice, 

personal communication).  Note that many of the transects from riser 3 yield very low 

morphologic ages, often younger than the riser 1, suggesting that rejuvenation of this 

older landform by non-diffusive processes such as fluvial erosion and anthropogenic 

activity is a concern. 
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