Online Querying of Heterogeneous Distributed Spatial Data on a Grid
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This paper explores applications of Open Grid Services Architecture (OGSA) to integration of spatial data sources. In our OGSA-compliant wrapper-mediator system, all data sources and services, including the mediator, are exposed as grid services. The sources are different structurally, syntactically, and semantically. To answer a query against such sources, the mediator has to invoke ontology services, followed by actual query execution and formatting of query results with the help of map assembly services. We describe the services needed for spatial data integration, with the emphasis on efficient map assembly strategies.
Introduction
With the emergence of spatial data interchange and map serving standards, and proliferation of standards-based internet-accessible map servers, online integration of distributed spatial data becomes a reality. Map servers based on WMS and WFS specifications [OGC 2000, 2002], growing acceptance of XML-based open standards for spatial data representation, exchange, rendering, metadata and service capability descriptions (GML [Open GIS Consortium 2001], SVG [W3C 2001], etc.) and development of data grids utilizing WSDL/SOAP protocols [W3C 2003a, 2003b], make it possible to seamlessly query multiple heterogeneous spatial data servers in a standard platform- and vendor-neutral manner. Data federation technologies allow researchers, planners, decision-makers to pose complex queries against multiple spatial data sources, to generate a more complete and current view of the results. Data curators also benefit from federation as it provides the means to publish data sets while maintaining ownership and control of the data. Data federation systems that provide data access and query mechanisms for multiple distributed heterogeneous resources sharing a common logical name space, have been referred to as data grids [Chervenak et al. 2001, Rajasekar et al. 2002]. Recent research and development efforts focused on data and computational grids [Foster et al. 1999, 2001, 2002, Raman et al. 2002] have led to the outline of the Open Grid Services Architecture (OGSA). This architecture combines the Grid systems architecture with Web services technologies. It is being primarily developed through the efforts of the GLOBUS project [GLOBUS 2003] and standardized through the activities of Global Grid Forum [GGF 2003]. 

The advances in global grid-based infrastructure for data integration lead to fundamental changes in how spatial data are managed, accessed, and presented. The goal of this paper is to explore applications of OGSA framework to integration of spatial data sources, outline spatial mediation Web services, and describe our first implementation of a grid-based spatial data integration system. We demonstrate the initial elements of OGSA-compliant spatial data integration services being developed in the course of the collaborative GEON (The Geosciences Network, www.geongrid.org) project. After the initial discussion of the OGSA architecture, the paper focuses on the ontology and map assembly services for spatial data integration developed as grid services, using a query against federated geologic data sources as a motivating example.
OGSA architecture for wrapper-mediator system

The data integration system being developed at SDSC and used in the GEON project, follows the common “wrapper-mediator” architecture [Wiederhold 1992], where queries and results exchanged between system components represent virtual XML documents [Baru et al. 1999]. In such a system, query execution against heterogeneous sources is orchestrated by a mediator, which is responsible for parsing user query, formulating sub-queries against individual XML-wrapped sources registered to the mediator, and assembling query results. In our OGSA-compliant system, all data sources and services, including the mediator, are exposed as grid services. Every data source or processing service exposes a standard interface to the mediator, built around WSDL (Web Services Description Language) source descriptions, and system elements communicate using SOAP (Simple Object Access Protocol) messages. The general architecture of the system for processing queries against spatial data sources is shown in Figure 1. 
Figure 1. General architecture of OGSA-compliant wrapper-mediator system

The OGSA-based system being explored in the GEON project is comprised of three main tiers: the data tier, the middle tier and the online mapping client, outlined below.

The data tier
Spatial data are served by a variety of distributed heterogeneous servers that include Oracle Spatial, DB2, ArcIMS and WMS servers. All data sources are wrapped in WSDL/SOAP wrappers, so that they can exchange and process SOAP messages. In case of ArcIMS sources, for example, the wrappers convert mediator-generated grid service calls into ArcXML requests understood by the source. The source output, an XML document possibly referencing a map image or a compressed feature set, is returned to the mediator wrapped in SOAP response. Similarly, Oracle Spatial sources are accessed via a collection of servlets and stored procedures, also exposed through WSDL/SOAP interfaces. All spatial source schemas and capability descriptions are registered at the mediator, so that the latter can plan and orchestrate query execution against the sources.
The middle tier
The middle tier of the system is responsible for interpreting user queries, and planning and orchestrating query execution. Since the sources may exhibit various aspects of heterogeneity (system, structural, syntactic, semantic – see Sheth et al. 1999), the mediator layer is equipped with a range of data conversion services which include type conversion, coordinate conversion, format conversion and concept resolution. In addition, the spatial nature of data and results necessitates a special results assembly service responsible for merging diverse result components into a presentable composite map. Specifically, the following components supporting spatial information integration are included; all of them are exposed as grid services:
· Mediator: Mediator is the central service of the middle tier, the core of the integration mechanism. In the running example described below, we deployed a customized version of XMediator from Enosys Markets [Papakonstantinou and Vassalos 2001], which uses X-Query to define integrated views over distributed spatial data sources.
· Registration Service: This service automates the process of source registration at the mediator. Source schemas and capabilities (functions supported by the source) are exported to the mediator using procedures described in [Gupta et al., 2002] for Oracle sources. For ArcIMS sources, the mediator has access to ArcCatalog-generated XML files with schema descriptions, in addition to a number of WSDL/SOAP-wrapped ArcXML requests. At this moment, only selected ArcXML requests that support map integration scenarios, are exposed as Web services.
· Ontology Service: This service handles semantic discrepancies across source schemas. It maintains a global ontology, and maps concepts used at individual data sources, to the global concepts. User queries formulated in terms that are available in the global ontology, are rewritten into queries that are source schema-specific, and can therefore be processed by individual source wrappers.
· Result Assembly Service: Since query results returned by individual spatial services may represent a combination of XML documents (with or without coordinate information), image files, and compressed feature sets, a special map assembly service is required beyond standard XML result assembly capabilities of mediators. This grid service generates map composites on demand, as one or several image files or feature coordinate streams that can be displayed at the client. Its operation depends on the size and format of the result fragments supplied by the sources, as well as on client capabilities, as described below.
The web mapping client
The query and mapping client used in the system is based on AxioMap (Application of XML for Interactive Online Mapping [Zaslavsky 2000]). The client is capable of rendering both vector and raster data generated by mediator’s results assembly service. In particular, it can render one or more images served by one or several ArcIMS or WMS servers, as well as XML-formatted vector data (in SVG or VML). The client supports map presentation of query results in each of the map assembly scenarios described in this paper.

Several of these components, while essential to the system, have been described elsewhere. Here, we discuss primarily the ontology and map assembly services, which are specific to spatial mediation in grid environment. The rationale and machinery of these services are described using a running example of geologic map integration.
The running example

The motivating example for this paper is provided by a common analytical situation when a geologist needs to select areas with geologic formations of a given age, within a region covered by multiple geologic maps. Each state in the region of Rocky Mountains maintains its own geologic map, or a collection of maps. The state geologic maps are available in different formats and served in different projections. Data schemas are also different: on some maps geologic age is referenced by a single attribute called Period, while on others it is called Geo_Unit_A, Time_Unit, Age, or is referenced by a series of attributes (Era, System, Series, Period). A summary of source schema differences is given in Table 1.

Table 1. Comparison of source schemas for the running example

Beyond the schema differences, we note that the actual terms used as values for column(s) referencing “geologic age”, may reflect different levels of detail in geologic age descriptions. For example, some states may use term “Quarternary” while others would refer to its subdivisions (“Holocene”, “Pleistocene”). In addition, the values may represent data developer’s uncertainty about geologic age of a particular feature (evidenced by the occurrence of values such as “Jurassic?”, “Jurassic??”, and even “??”) or transitional/mixed zones (called, for example, “Jurassic/Triassic”). In such circumstances, a common GIS query such as “Select polygons where Period = ‘Jurassic’” will return incomplete results from one set of maps, empty results from other maps, and may fail in the third group, where the term “Period” is not present in the schema. A semantic mismatch resolution service is necessary to rewrite this query before passing it to individual map sources.


Ontology services for map integration
The ontology service resolves concept heterogeneities, by mapping geologic concepts used in each state, to a global ontology describing geologic time. A fragment of the global ontology is shown in Figure 2. 
Figure 2. A fragment of global geologic age ontology available to the mediator.

In this document, geologic periods, sub-periods and epochs are characterized by their estimated age (million years ago, my), and duration (million years, ma). The xml tree reflects conventional hierarchy of geologic eras, periods and epochs. Using this hierarchy, the mediator’s ontology service disambiguates user query in the following steps:
A. Concept Expansion. At this step, all sub-concepts of the queried term are extracted from the global ontology. For example, if the user requests “Tertiary” geologic formations to be shown on the map of the 8 states in the Rocky Mountains, the extracted set of concepts includes all “Tertiary” child concepts from Figure 2: Neogene, Pliocene, Piacenian, etc. Thus generated ontology subset is handed, as a virtual XML document, to the Concept Resolution service.
B. Concept Resolution. At this step, each source is queried to return a set of unique values for each of the query terms. This enables the service, at the source wrapper level, to map the global ontology terms extracted at the previous step, to a set of actual values present at a source. The mappings are recorded in the mapping XML files unique for each source.  For example, for the geologic map of Nevada, the concept “Tertiary” is mapped to values present at the data source as follows:

<?xml version="1.0" encoding="UTF-8"?>
<concepts>
     <list><concept>Tertiary</concept></list>
     <list><concept>Quaternary/Tertiary</concept></list>
     <list><concept>Tertiary/Jurassic</concept></list>
     <list><concept>Tertiary/Cretaceous</concept></list>
</concepts>

Using the mapping, the Concept Resolution service can now rewrite the sample query for each source, replacing the initial WHERE clause. In the Nevada map example, the new WHERE clause is therefore:

TIME_UNIT = "Tertiary" OR TIME_UNIT = "Quaternary/Tertiary" OR TIME_UNIT = "Tertiary/Jurassic" OR TIME_UNIT = "Tertiary/Cretaceous" OR TIME_UNIT = "Tertiary"

The new WHERE clause is supplied as one of parameters in a web service call to the Nevada map source. However, the actual format of web service calls against individual spatial sources depends on the chosen map assembly scenario. These scenarios, and the services that implement them, are described below.
Map assembly services

Within the architecture shown in Figure 1, there exist several options for generating a map with query results. Map images may be generated at data sources or at the mediator level. To produce a composite result, they may be merged at the mediator or simply overlapped at the client. Further, if enabled by data sources and the clients, map integration may rely on combining vector data returned by each source, either at the mediator or at the client. A combination of these options produces the following primary map assembly scenarios. If several assembly scenarios are permitted within a mediation architecture (as in the grid-based architecture described in this paper), the choice of a scenario depends on the size of map data to be returned to the mapping interface, on query context, on the desired level of interactivity at the client, etc. 
Scenario 1: client-side overlay of map images from individual sources

In this scenario, web services for each map server implement GetCapabilities and GetMap requests of the WMS specification (for ArcIMS: GET_SERVICE_INFO and GET_IMAGE requests respectively). Queries are processed at each map server individually; each server generates a GIF or PNG file with transparent background and within the common map envelope computed by the mediator. The GetMap (in the WMS case) and GET_IMAGE (in the ArcIMS case) requests are invoked using a common grid service interface:  
GifService:getGif (String imageService, String layerID, String highlightColor, String envelope, String imageSize, String expression)

which, in the example of querying “Tertiary” geology in Nevada, is: 
GifService:getGif 
("nevada", 
"2", 
“255,255,0”,
”-122.523,51.09,-99.361,29.10315875613748”,
 “611,580 “ 
“(TIME_UNIT = &apos;Tertiary&apos; OR TIME_UNIT = &apos;Quaternary/Tertiary&apos; OR TIME_UNIT = &apos;Tertiary/Jurassic&apos; OR TIME_UNIT = &apos;Tertiary/Cretaceous&apos; OR TIME_UNIT = &apos;Tertiary&apos;)”
)

These requests are converted, at source wrappers, to source-specific GetMap or GET_IMAGE requests. After execution at each source, the GifService wrapper extracts/generates a URL for each result image, and returns it to the mediator, to be assembled in a composite map image. In this scenario, the task of the map assembly service is fairly straightforward: to generate a list of individual image URLs, and return it to the client. Since the GifService requests all image fragments within a common envelope, and wrappers translating the request specify transparent map background, the list of images can be passed on to the mapping client without any additional processing. The client then displays all received images in the same coordinate space, one on top of the other, to produce a seamless display as shown in Figure 3. 
Figure 3. Displaying a stack of image fragments at the client, to produce a composite map.

As a variation of this scenario, the map assembly service may merge individual image fragments into a composite image, using an Image Fusion service described below. The final map image is then retrieved by the client. This scenario may be more efficient with a thin client capable of displaying a single map image at a time, and if all component images are expected to be updated regularly (at each request). If the resultant map is composed of multiple fragments many of which are not updated (such as administrative boundaries, base map features, etc.) then the first variant is preferable. In our tests, this solution appears to scale well with the increasing number of data sources and simultaneous requests. 
Scenario 2: generation of results image by a mediator-level service that integrates coordinate information from ArcIMS sources 
For this scenario, we wrapped the ArcIMS GET_FEATURES request as a web service. Query results are returned from each server as ArcXML documents with geometry of selected polygons. The map assembly service then generates a single multi-part polygon from all features returned. This “result” polygon is added as an acetate layer to a “blank” ArcIMS service which is a part of the map assembly Web service. The ArcIMS service then generates a single image file with query results. The mapping client then retrieves the resulting image and displays it over the existing map images. The advantage of this method is that, for each query, only the results image is being generated, and this image may be significantly smaller than geologic map fragments. At the same time, the geologic map fragments for each source are generated only during map initialization, or when changes in the global spatial extent occur. The strategy works well if the result image is relatively small. In case of large result sets, transmitting large fragments of XML-formatted geometry information, and combining them into a single polygon for rendering as acetate layer becomes counterproductive. This approach does not scale well with the size of data sets to be queried, as well as with the number of simultaneous requests. 
As a variation of this scenario, the geometry information retrieved from individual sources as XML documents may be passed on to the client for vector rendering. The client we employed is capable of rendering vector layers using SVG (Scalable Vector Graphics) or VML (Vector Markup Language [W3C, 1998]). Since the query results are rendered as vector objects in the client browser, it is possible to interact with them directly, without additional query roundtrips. The enhanced interactivity typically leads to better user experience. Furthermore, our “fatter” mapping client enables direct user interaction with remote ArcIMS and WMS services, which alleviates mediator load. The additional (thematically related to the query) ArcIMS and WMS services can be added to the client’s configuration file generated by map assembly service (as described, for the previous version of the client, in [Zaslavsky 2000]). 

This latter approach, however, also suffers from the limitations on the size of the results set. The XML geometry data sent to the client for rendering may impose a heavy load on client resources. Unless the system implements some progressive vector rendering technique, the speed and available RAM and VRAM of the client computer limit the effectiveness of browser-side vector rendering of query results. 
Scenario 3: the results map is dynamically generated at the mediator as a complete ArcIMS image service 
In this last group of map assembly options, the service dynamically generates a mediator-level ArcIMS image service using fragments of data and images retrieved from individual sources (using GridFTP, in particular). Web services for each data server implement ArcIMS’s GET_EXTRACT request (or a similar functionality in conjunction with a WFS server or Web-enabled DBMS), to convert individual query results into shapefiles or compressed GML documents for shipping to the mediator. The map assembly service generates an ArcXML service configuration file that references the data fragments retrieved from individual sources. The mapping client then interacts with this dynamically-generated service. 
This scenario provides for most flexibility in map assembly and implies a more comprehensive construction of a map assembly service, which we now describe in fuller detail. Figure 4 shows the main internal components of the map assembly service being implemented as part of GEON middleware.

Figure 4. Internal organization of map assembly services within a spatial wrapper-mediator system.

The following components shown in Figure 4 are essential for general purpose map assembly:

· File Transfer Service: This service is used to transfer selected large datasets from data source wrappers to the spatial results assembly mechanism using an HTTP channel, a GridFTP Web service, or similar.
· Uncompress Service: To minimize network load, data sets are transmitted to map assembly in a compressed form. The Uncompress Service uses standard libraries (zlib and Xceed) to uncompress the data entering map assembly.
· Image Assembly Service:  This core map assembly service combines vector and raster data fragments from individual sources, into a single ArcIMS image service, by generating a service configuration file and making the service available for querying. The newly generated service is then used to serve the resultant map image to the client (and, possibly, respond to follow-up user requests without regeneration).

· Image Fusion Service: This service is designed to combine raster images generated by different sources, into a composite map image (as in scenario 1 above)
· Query Service: This service enables querying the dynamically created map service.

· Data Conversion Service: Since different sources generate raster and vector data in different formats, this service is an essential part of results assembly.
· Command Module: The Command Module represents a collection of map assembly templates (stored as command.xml at the service) which bind together the processing components into a map assembly workflow. The module is extendable to accommodate new processing services and map assembly templates.  
Dynamic generation of an ArcIMS image service referencing data fragments retrieved from source wrappers, provides for several interesting extensions to the system:
a) The service may represent not strictly a “results map”, but a presentation plan that supports further exploration by the user. For example, generated in response to the “Select ‘Tertiary’ geology” query, the image service may contain additional layers that provide both geographic context (base layers: oceans and seas, land, shaded relief, scale-dependent administrative boundaries, highway network, place names, etc.) and thematic context for the results. The latter may reference layers that reflect the “neighbor concepts” of concept ‘Tertiary’ in the global ontology (Figure 2), or such common geologic layers as faults and geologic symbols. Common “geographic base” and “thematic context” layers may be registered to the mediator and stored at the mediator-controlled database, as they may be not available at individual data sources accessed during a query session.
b) Generating an image service provides a convenient basis for session management. If the user registers to the query system, the ArcXML service configuration files generated on user requests may be saved at the mediator-level user database, and invoked in follow-up sessions. Of course, the time required for instantiating an image service from a configuration file will largely depend on the need to ship data fragments to the mediator again, and hence on system policy for storing data replicas at the mediator level.
c) Optimization. Our query system will be more efficient if the image service can support user queries beyond the first one, thus reducing the number of service regeneration cycles and round-trips between the mediator and spatial data sources. To do this efficiently, the image service has to include additional data layers, and perhaps cover a larger area than initially requested. An optimal configuration of the mediator-level map service is a research issue that has not been addressed systematically in this paper or elsewhere. With the two issues above, it represents an interesting topic for further investigation.
Conclusion 

An open, extensible and scalable system for querying a federation of heterogeneous distributed spatial data sources becomes feasible, aided by the emerging standards in grid computing, Web services, and spatial data interchange.  We demonstrated a prototype of such a system being developed within the GEON project at SDSC. Discussion in this paper focused on the ontology and map assembly services which are critical for any spatial mediation scenario in a heterogeneous Web environment. We outlined several map assembly strategies that differ in complexity and scalability, and provided the internals of general purpose map assembly services. Choosing among these strategies for answering particular query types is an interesting problem that requires further exploration. Beyond that, we identified several additional research challenges, related to optimization of mediator-level map assembly services and generation of presentation plans that support further querying. Formulating and solving them requires close collaboration between domain scientists and database/mediation experts: the environment created by the Geosciences Network project. 
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