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Abstract

We show that the expressive power of Datalog@ programs under the well-founded semantics
does not decrease when restricted to total programs thereby a�rmatively answering an open
question posed by Abiteboul et al. (Foundations of Databases, Addison-Wesley, Reading, MA,
1995). In particular, we show that for every such program there exists an equivalent total
program whose only recursive rule is of the form

win( �X ) ← move( �X ; �Y ); @win( �Y );
where move is de�nable by a quanti�er-free �rst-order formula. Also, for the noninationary
semantics we derive a new normal form whose only recursive rule simulates a version of the
game of life. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the Datalog program

�0 : q(X; Y )← edge(X; Y );

q(X; Y )← edge(X; Y ); q(Y; Z):

Here, q is an intensional symbol of �0 (precise de�nitions are given in subsequent
sections). Given a database instance D=(D; edgeD) with universe D and binary relation
edgeD; �0 de�nes a sequence

q0; q1; q2; : : : (1)

( Expanded version of J. Flum, M. Kubierschky, B. Lud�ascher, Total and partial well-founded datalog
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Notes in Computer Science, vol. 1186, Delphi, Greece, Springer, Berlin, 1997, pp. 113–124.
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with q0 := ∅ and with qn+1 the set of pairs (a; b)∈D×D such that q(a; b) is the head
of a ground instance of a rule of �0, whose body is true in D, if qn is taken as the
(actual) interpretation of q. (One easily veri�es that qn is the set of pairs (a; b) such
that in D there is a path from a to b of length 6 n:)
Since q only occurs positively in �0, the sequence in (1) is increasing, so it eventu-

ally becomes constant, the constant value qt being the truth set of �0 in D. (Clearly,
qt is the transitive closure of edgeD.) The query associating with D the corresponding
binary relation qt is denoted by (�0; qt).
Consider the Datalog¬ (Datalog with negation) program

� : q(X; Y )← r(X; Y; Z);¬q(V; X );

q(X; Y )←¬s(X; Y; Z); r(X; Y; Z); q(X; Y );¬q(Y; Y ):

Now, q occurs negatively and, contrary to the case of Datalog programs, there are
various possible semantics leading to di�erent queries. In this paper we consider the
noninationary semantics (NI-semantics) (cf. [3]) and the well-founded semantics
(WF-semantics) [11]. In both, � induces a sequence q0; q1; : : : of subsets of D × D
(see below). Set

qt := {(a; b) | there is an n0 s:t: (a; b)∈ qn for all n¿ n0}

(qt , the truth set, consists of those pairs that eventually are in all members of the
sequence),

qf := {(a; b) | there is an n0 s:t: (a; b) 6∈ qn for all n¿ n0}

(qf , the false set, consists of those pairs that eventually are outside all members of the
sequence), and qu := (D × D)\(qt ∪ qf ) the unde�ned set.
For a �xed semantics, we say that � is total, if qu = ∅ in all databases; two programs

are equivalent, if they have the same truth set in all databases.
For the NI-semantics and the WF-semantics, we show that
• every Datalog¬ program is equivalent to a total one, and
• for every Datalog¬ program � there is another program having as truth set the false
set of �.
Moreover, for both semantics we derive normal forms of game-theoretic avour.
So, in both semantics, from an extensional point of view, we have the same expres-

sive power, if we restrict of queries (�; qt), where � is a total program or, looking
at the other extreme, if we admit as queries (�; qt); (�; qf ), and (�; qu) with their
obvious meanings.
Let us recall the semantics: In the NI-semantics the stages qn are de�ned in exactly

the same way as for Datalog programs (but now, in general, the sequence qn is not
increasing, since q may occur negatively).
We come to the WF-semantics. Consider the Datalog¬ program � above. Replace

all negative occurrences of q by a new variable q′ (keeping the negation symbol), thus
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obtaining the program

�′ : q(X; Y )← r(X; Y; Z);¬q′(V; X );
q(X; Y )←¬s(X; Y; Z); r(X; Y; Z); q(X; Y );¬q′(Y; Y ):

In �′ the symbol q′ is extensional, hence, �′ is a Datalog program. Now, in a
database instance D=(D; rD; sD), the stages qn of the evaluation of the original pro-
gram � are de�ned by induction: q0 := ∅ and qn+1 is the truth set of q of the Datalog
program �′ in (D; qn) (i.e., taking qn as interpretation of q′). Hence, the evaluation
of � in the WF-semantics corresponds to a nested �xpoint.
While for the NI-semantics, the results mentioned above (besides the game-theoretic

normal form) are consequences of known facts and are more or less explicit in the
literature (see [2, 4, 7]), the corresponding results for the WF-semantics are new; in
particular, they solve an open problem stated in [1]. The parts on the NI-semantics
(Section 3) and the WF-semantics (Section 4) may be read independently.
For the WF-semantics we use a normal form for least �xpoint logic LFP due to

Immerman [9] to show that every program is equivalent to one whose only recursive
rule is of the well-known form

win( �X )←move( �X ; �Y ); ¬win( �Y ): (G)

For a database instance (D;moveD), the elements (more precisely, the tuples of
length equal to length( �X )) are viewed as the positions in a game between two players
I and II that move alternately. Read move( �X ; �Y ) as “from position �X a player can
move to position �Y ”. A player loses in �X if she cannot move; she wins in �X if she
can move to a position which the opponent loses. Then in the WF-semantics, wint is
the set of positions �X such that I has a winning strategy for the game starting at �X ,
while winf are the positions for which II has a winning strategy. winu are the drawn
positions for which neither player has a winning strategy.
Consider, for example, a game where D= {a; b; c; d} and moveD= {(a; b); (b; a);

(b; c); (c; d)}. Then wint = {c}; winf = {d}, and winu = {a; b}. In fact, a and b are
drawn; a player in b can move to a (moving to c would leave the opponent in a won
position), thus avoiding to lose by enforcing a game of in�nite length. Now our main
result concerning the WF-semantics can be rephrased as

Every game is equivalent to a draw-free game:

The achieved normal form retroactively justi�es the ubiquity of the win-move example
in the literature.
Note that the NI-semantics and WF-semantics coincide for Datalog¬ programs having

the normal form (G) above. Thus, in terms of expressive power, the nested �xpoint
process is superuous. However in general, the semantics disagree as can be seen from
the program

q(X )← q(X );

q(X )←¬q(X ):



260 J. Flum et al. / Theoretical Computer Science 239 (2000) 257–276

2. Preliminaries

A database schema (or signature) � consists of �nitely many relation symbols
r1; : : : ; rk with associated arities arity(ri)¿ 0 and of �nitely many constants c1; : : : ; cs.
Let dom be a �xed and countable underlying domain. A database instance (database)
over � is a �nite structure D=(D; rD1 ; : : : ; rDk ; cD1 ; : : : ; cDs ) with �nite universe D⊆ dom,
relations rDi ⊆Darity(ri) and elements cDi ∈D.
Let inst(�) denote the set of all database instances over �. A k-ary query q over

� is a computable function on inst(�) such that (i) q(D) is a k-ary relation on
D, and (ii) q is preserved under isomorphisms, i.e., for every isomorphism � of
D; q(�(D))= �(q(D)). Thus, a query de�nes a k-ary global relation on inst(�).
A query language L is a set of expressions together with a semantics which maps

every expression ’∈L to a query (over some �). The expressive power of a query
language L is the class of all queries de�nable in L. ’∈L1 is equivalent to  ∈L2 if
they express the same query. We say that L1 is at most as expressive as L2, denoted
by L16L2, if for every expression in L1 there is an equivalent expression in L2.
Both languages have the same expressive power, written as L1≡L2, if L16L2 and
L26L1.

Notation. Following logic programming notation, we write domain variables in upper
case like X; X ′; Y , etc. Relation symbols like r1; : : : ; rk ; win; move are denoted in lower
case.
�T denotes a vector of n terms T1; : : : ; Tn (variables or constants). For a term T we

denote by T̃ the sequence T; : : : ; T ; its length will be clear from the context. If r is a
relation symbol of arity n and T1; : : : ; Tn are terms then r(T1; : : : ; Tn) is an atom.

Datalog(¬) Programs. A Datalog¬ program � is a �nite set of rules of the form

H←B1; : : : ; Bn;

where the head H is an atom and all Bi in the body are literals (i.e., atoms, negated
atoms, equalities, or negated equalities). Relational symbols occurring in some head �
are called intensional and form the signature idb(�), all other relations are extensional.
The extensional symbols together with the constants form the signature edb(�). For
notational simplicity, we often assume that � only contains one intensional relation
symbol, usually q.
In a Datalog program, only relations from edb(�) may occur negated in bodies of

rules. 1

Let D be a database over edb(�). A ground instance of a rule is obtained by
substituting elements from D for all variables. ground(�;D) denotes the set of all
such ground instances of rules of �.

1 In S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.
such programs are called semipositive, while (positive) Datalog programs contain no negation at all.
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Fixpoint Semantics for Datalog. Fix a Datalog program � with a unique intensional
symbol q arity m and a database D over edb(�). The operators � (=�(�;D)) maps
every subset I of Dm to a subset of Dm:

�(I) := { �a | q( �a)←B1; : : : ; Bn ∈ ground(�;D) and B1; : : : ; Bn are true in (D; I)}:
Here, (D; I) is the database instance over the signature edb(�)∪{q} that extends D

by interpreting q as the set I .
Then � induces a sequence q0; q1; : : : of subsets of Dm given by

q0 := ∅; and qn+1 :=�(qn):

Clearly,

q0⊆ q1⊆ q2⊆ · · · :
In Datalog, the truth set qt is given by

qt =
⋃
n¿0

qn:

We associate to � the query which maps the database instance D to qt . We denote
this query by (�; qt).

3. NI-semantics for Datalog¬ programs2

When applied to Datalog¬ programs, the above �-operator also induces a sequence
q0; q1; : : : of subsets of Dm. However, since negated intensional atoms may occur in the
bodies, in general the sequence is not increasing. For the NI-semantics, we de�ne the
truth set qt , the false set qf , and the unde�ned set qu by

qt := { �a | there is an n0 s:t: �a∈ qn for all n¿n0};
qf := { �a | there is an n0 s:t: �a 6∈ qn for all n¿n0};
qu :=Dm \ (qt ∪ qf ):

Now, in NI-Datalog the program � gives rise to three queries, (�; qt); (�; qf ); and
(�; qu) with their obvious meanings. � is called total, if for all database instances we
have that qu = ∅ or, equivalently, for some n,

qt = qn= qn+1 = · · · = qcf ;

where qcf denotes the complement of qf with respect to Dm.
NI-Datalog2 is the restriction of NI-Datalog to total programs and to the correspond-

ing queries (�; qt).

2 As already remarked in the introduction, the reader only interested in the well-founded semantics may
skip this section.
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The following theorem is a straightforward generalization of a result of [2] (cf. also
[7]).

Theorem 1 (NI-Datalog6NI-Datalog2). For every NI-Datalog program � there is an
equivalent total program. Moreover; there is an equivalent total program having as
truth set the false set of �.

Proof (sketch). Let � be a Datalog¬ program and (for simplicity) q its unique inten-
sional symbol, say of arity m. Given a database instance D denote, as above, by qn

the nth stage of the iteration process. Since the universe D of D is �nite, the sequence
q0; q1; : : : must become periodic, so there are n0¿0 and l0¿1 such that qn= qn+l0 holds
for all n¿n0. Choose k s.t. l := k · l0¿n0. Then ql= ql+k·l0 = q2·l.
Clearly, if q2n= qn then
• q0; q1; : : : eventually gets constant i� qn= qn+1.
• qt = qn ∩ · · · ∩ q2n−1 =

⋂
k¿0qn+k .

• qf = qcn ∩ · · · ∩ qc2n−1 =
⋂

k¿0 q
c
n+k .

(Here, for I ⊆Dm, we denote by I c the complement of I with respect to Dm.) These
facts can be used to obtain a total program with the same truth set as � and a total
program whose truth set is the false set of �.

Now, we show that for every NI-Datalog program there is an equivalent total one
in the form of a game resembling the game of life [6] (recall that two programs are
equivalent if they have the same truth set for all databases).

Theorem 2 (NI-Datalog6NI-DatalogGL2 ). For every NI-Datalog program there is an
equivalent total one whose only recursive 3 rule has the form

alive( �X )← r( �X ; �V ); s( �X ; �W ); alive( �V );¬alive( �W ):

Intuitively, the rule says that cell �X is alive in the next generation (= stage) if there
is a r-neighbour �V and a s-neighbour �W of �X such that in the actual generation �V is
alive and �W is dead.
To obtain this result we improve a known normal form for partial �xpoint logic

PFP.

Partial �xpoint logic. PFP-formulas are obtained by repeated applications of �rst-
order operations {¬;∧;∨;∀;∃} and the �xpoint operator FP starting from atoms and
equations, that is, we add to the �rst-order formation rules the rule

’
[FPq( �X )’] �T

; (FP)

3 A rule r is recursive if some literal in the body of r depends – directly or indirectly via other rules –
on the atom in the head of r, cf. [1].
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where length( �X )= length( �T )= arity(q). The semantics D |=  is given as usual (cf.
[4]). In particular, for  ( �Y ; �Z)= [FPq( �X ) ’(q; �X ; �Z)] �Y and �a; �b∈D:

D |= ( �a; �b) i� �a∈ qt ;

where the truth set qt is de�ned by

qt := { �d∈D | there is some n0 s:t: �d∈ qn for all n¿n0}

and where q0 := ∅ and qn+1 := { �d∈D |D |=’(qn; �d; �b)}.

Every PFP-formula  ( �Y ) de�nes a query q as follows:

q :D 7→ { �d |D |= ( �d)}:

It is well known that NI-Datalog≡PFP (e.g., see [4]).
Every PFP-formula is equivalent to a formula which only contains one �xpoint

operator FP. Moreover, by increasing the arity of the second-order variable, Grohe [8]
has shown that the �xpoint operator can be rewritten in such a way that an element of
a new stage is witnessed by two elements, one belonging to the preceding stage, the
other one belonging to its complement. More precisely, for every PFP-formula  ( �Y )
there is an equivalent formula of the form

∃U [FPq( �X ) ( 0( �X )∨∃ �V∃ �W (q( �V )∧¬q( �W )∧  1( �X ; �V ; �W )))] �Y Ũ ; (∗)

where  0;  1 are quanti�er-free and do not contain q and where Ũ =U; : : : ; U for a
variable U (thus, arity(q)= length( �X )= length( �Y ) + length(Ũ )). Moreover, one can
assume that the formula (∗) is total (for all databases D the false set qf is the com-
plement of the truth set qt) and nontrivial (for all D, we have ∅ 6= qn 6=Darity(q) for all
n¿1). 4

We improve this normal form by replacing the ternary relation between �X ; �V , and
�W by two binary relations:

Proposition 3. Every PFP-formula  ( �Y ) is equivalent to a total one of the form

∃U [FPq( �X ) ( 0( �X )∨∃ �V∃ �W (q( �V )∧¬q( �W )∧  1( �X ; �V )∧  2( �X ; �W )))] �Y Ũ �Y Ũ ; (+)

where  0;  1; and  2 are quanti�er-free and do not contain q.

We postpone the proof of this proposition and �rst show Theorem 2:

Proof of Theorem 2. Let � be a NI-Datalog program. Consider an equivalent PFP-
formula which we may assume to be given in the form (+). But formula (+) is

4 Although the answer to the original query q may be ∅ or Darity(q ).
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equivalent to a NI-Datalog program �′ of the desired form:

�′ : q( �X ) ←  0( �X );

r( �X ; �V ) ←  1( �X ; �V );

s( �X ; �W ) ←  2( �X ; �W );

q( �X ) ← r( �X ; �V ); s( �X ; �W ); q( �V ); ¬q( �W );
answer( �Y ) ← q( �Y ; Ũ ; �Y ; Ũ ):

More precisely, if  0( �X ) has an equivalent disjunctive normal form
∨k

i=1(’i;1( �X )∧ · · ·
∧’i;mi( �X )), one has to replace the rule “q( �X )←  0( �X )” above by k rules

q( �X ) ← ’1;1( �X ); : : : ; ’1; m1 ( �X );
...

...
...

q( �X ) ← ’k;1( �X ); : : : ; ’k;mk ( �X )

and similarly for the rules de�ning r and s.

Proof of Proposition 3. Assume that the PFP-formula  ( �Y ) has the Grohe normal
form

∃U [FPq( �X ) ( 0( �X )∨∃ �V∃ �W (q( �V )∧¬q( �W )∧  1( �X ; �V ; �W )))] �Y Ũ

and that  is total and nontrivial. Let arity(q)=m. Then  ( �Y ) is equivalent to a
formula of the form

∃U [FPr(X̂ ) ((  0( �X1)∧ �X1 = �X2)

∨∃V̂∃Ŵ (r(V̂ )∧¬r(Ŵ )∧ �1(X̂ ; V̂ )∧ �2(X̂ ; Ŵ )))] �Y Ũ �Y Ũ ;

where arity(r)= 2m; X̂ = �X1 �X2; V̂ = �V1 �V2; Ŵ = �W1 �W2; and length( �Xi)= length( �Vi)=
length( �Wi)=m for i=1; 2.
The equivalence holds if �1 and �2 are arranged in such a way that the following

holds for all databases and all n¿1:

r2n−1 = {( �a; �a) | �a∈ qn}∪ (qn−1 × qcn−1);

r2n= {( �a; �a) | �a∈ qn}∪ (qn × qcn)

(then, rt = {( �a; �a) | �a∈ qt}∪ (qt × qct )).
This is achieved by setting

�1 := ( �X 1 = �X 2→ ( 1( �X1; �V1; �V2)∧ �V1 6= �V2))

∧ ( �X1 6= �X2→ ( �X1 = �V1 = �V2));

�2 := ( �X1 6= �X2→ ( �X2 = �W1 = �W2)):
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Remark. By passing in the proof to a relation r of higher arity (and a longer sequence
Ũ ), one can obtain a normal form ∃U [: : :] �Y Ũ , where the formula inside the brackets
has the same form as in (+) of Proposition 3.

4. WF-semantics for Datalog¬ programs

As mentioned in the introduction, the evaluation of Datalog¬ programs under the
WF-semantics corresponds to a nested �xpoint, also called alternating �xpoint [11]. It
is computed as follows:
Given a Datalog¬ program �, replace every negative occurrence of q∈ idb(�) by

the new relation symbol q′ (keeping the negation symbol). Since q′ does not occur in
the head of any rule, it is extensional, so the resulting program �′ is a Datalog program.
The stages qn of � for a given database D are de�ned using the program �′ : q0 := ∅,
and qn+1 is the result of evaluating �′ in (D; qn), i.e., where q′ is interpreted by qn.
As above, the set qt ; qf , and qu are de�ned, giving rise to the WF-Datalog queries
(�; qt); (�; qf ), and (�; qu), respectively. One easily veri�es that

q0⊆ q2⊆ q4⊆ · · ·⊆ q5⊆ q3⊆ q1;

so

qt =
⋃
n¿0

q2n and qf =
( ⋂

n¿0
q2n+1

)c
:

This was used by van Gelder [11] to show: 5

Theorem 4 (WF-Datalog6LFP). For every WF-Datalog query there is an equivalent
LFP-formula.

LFP-formulas (for least �xpoint) are de�ned like PFP-formulas except that a proviso
is added to the rule (FP) above, namely, the variable q may only occur positively in
the formula ’. This implies that all LFP-formulas are total (the truth set always being
the least �xpoint of the corresponding operation).
Let WF-Datalog2 be the restriction of WF-Datalog to total programs and queries of

the form (�; qt) (recall that � is total, if qu = ∅ for all databases D and all q∈ idb(�)).
In [1], Abiteboul et al. raised the question whether one can �nd for each WF-Datalog
program an equivalent total one. In other words, is WF-Datalog6WF-Datalog2? (WF-
Datalog26WF-Datalog holds trivially.) When restricted to ordered databases, this is
known to be the case, since strati�ed datalog is equivalent to LFP on ordered databases,
and qu = ∅ for strati�ed Datalog programs evaluated under the WF-semantics (see, e.g.,
[1]).

5 In A. Van Gelder, The alternating �xpoint of logic programs with negation, J. Comput. System Sci.
47(1) (1993) 185–221. it was also shown that for every LFP-formula  there is an equivalent WF-Datalog
query (� ; qt), i.e., LFP6WF-Datalog.
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As we will show in the sequel, the question can also be answered a�rmatively in
the absence of order. First, using the above result of van Gelder and a normal form for
LFP due to Immerman, we show that every WF-Datalog program can be transformed
into a normal form which corresponds to a certain game. Finally, we establish our
main tool, the reduction of games to draw-free games.

4.1. Win–move games

De�nition 5 (Win–move games). A win–move game (or game) is a triple G=
(V;M; v0) where V is a �nite set of positions (or vertices), M ⊆V × V is a set of
possible moves, and v0 ∈V is the distinguished start position of G.
The game G is played with a pebble by two players I and II rounds. Each round

consists of two moves. Initially, I starts the game from the start position v0. A player
can move from x to y i� (x; y)∈M . A player loses in x, if she cannot move; she wins
in x, if she can move to a position in which the opponent loses.
A position x∈V is won for a player if the player can win every game starting at

x, no matter how the opponent moves. Conversely, x∈V is lost for a player if the
opponent can always win the game starting at x, no matter how the player moves. A
position x is drawn if x is neither lost nor won. G=(V;M; v0) is won=lost=drawn if v0
is won=lost=drawn for I.
If x is won, the length of x, denoted |x|, is the number of rounds which are necessary

for I to win, provided both players play optimal (i.e., each player tries to win as quickly
or to lose as slowly as possible). If x is lost or drawn, we let |x| :=∞.
A game is called draw-free if no position in V is drawn. Note that a game may be

determinate, i.e., the start position v0 is either lost or won, yet it may contain positions
x which are drawn.

Observe that the presence of cycles in M is necessary but not su�cient for the
existence of drawn positions in G. For example, if M = {(a; b); (b; a); (b; c)} then b is
won, whereas a and c are lost. If the move (c; d) is added to M then d is lost, c is
won, and a and b are drawn.
Games have a very elegant and intuitive representation in WF-Datalog in the form of

the famous win-move example. Indeed this example has always been used to demon-
strate that WF-Datalog handles negation in a nice and intuitive way (but note that the
WF-semantics and the NI-semantics coincide for this class of programs).

De�nition 6 (WF-DatalogG). Let WF-DatalogG be the class of WF-Datalog queries
obtained from programs � which have a single recursive rule of the form

win( �X )←move( �X ; �Y );¬win( �Y )

where �X and �Y have the same arity¿1, and a rule of the form

answer( �V )←win( �T )
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Fig. 1. Two diagrams.

where �V are variables occuring in �T . All other rules of � are nonrecursive, contain
neither win nor answer, and are semipositive (i.e., negation is allowed only in front of
edb relations).
Let WF-DatalogG2 be the restriction of WF-Datalog

G to total programs and queries
(�; qt).

Remark. Consider the following WF-DatalogG program:

�Game: win(X )←move(X; Y ); ¬win(Y )
answer←win(v0):

Since every game G=(V;M; v0) is a �nite structure, it can be used as input to �Game.
One easily veri�es that �Game represents such games in the sense that

v0 ∈



qt
qf
qu


 ⇔G is




won
lost

drawn


 :

4.2. Diagrams

As an auxiliary notation for games, we make use of diagrams as those depicted in
Fig. 1. We assume that with every variable X we have associated a variable X ′ in a
one-to-one fashion.

De�nition 7 (Diagrams). A diagram d consists of a �nite set of squares and a �nite
set of (possibly labeled) arrows between squares. Every diagram contains exactly one
distinguished start square s0. In case an arrow is labeled, the label has one of the
forms

“’”; “∃ �X ′
 ”; or “∃ �X ′

”;
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where
(1) ’ and  are quanti�er-free, and
(2) ’ only contains unprimed variables.
If “∃ �X ′

” or “∃ �X ′
 ” (for some  ) occurs in d, then �X are bound variables of d. All

other unprimed variables of d are called parameters of d.

Example 8. In Fig. 1, the diagram d1 contains the bound variable Y and the parameter
X , while d2 has no parameters.

Playing Games with Diagrams. Given a �xed database D, every diagram d with
parameters among �U induces a game Gd; �u ( �u are the �xed domain values used for the
variables �U ). Gd; �u is played as follows:
Let Sq= {s0; : : : ; sm} be the squares and �X =X1; : : : ; Xn the bound variables of d.

The game is played with n domain pebbles (lying on the current domain values �x∈Dn

assigned to �X ) and an additional square pebble (lying on the current square si ∈ Sq).
Initially, the square pebble is on the start square s0 of d and the domain pebbles �X

are on a �xed element cD. 6 The players move alternately with player I starting the
game. In each move, a player may move the pebbles according to the rules induced
by the diagram: the square pebble has to be moved along an arrow of d. Additionally,
the domain pebbles have to be moved in accordance with the constraints given by the
labels:
More precisely, the positions of Gd; �u are

V = {(s; �x) | s∈ Sq; �x∈Dn}:
The start position of Gd; �u is (s0; c̃) where s0 is the start of d. The moves between
positions are given by the arrows in d: there is a move from (s; �x) to (s′; �x′) in Gd; �u

if
(1) there is an (unlabeled) arrow s→ s′ in d and �x′= �x,
(2) there is an arrow s

’→ s′ with quanti�er-free ’ such that D |=’( �x) and �x′= �x, or

(3) there is an arrow s
�→ s′ where � contains quanti�ers and

(a) for all Xi such that X ′
i is not ∃-quanti�ed in �, we have x′i = xi, and

(b) if � contains a quanti�er-free formula ’( �X ; �X
′
), then D |=’( �x; �x′).

Theorem 9. For every diagram d with bound variables �X there is a WF-DatalogG

program �d with move relation move (S; �X ; S ′; �X
′
) such that for �d.

(s; �a)∈



qt
qf
qu


 ⇔ (s; �a) is




won
lost

drawn


 in Gd; �u:

6 To simplify the presentation, we assume that there is at least one constant c whose interpretation in D

is cD.
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move(s0; X; Y;a; X ′; Y ′)←X ′=X; Y ′=Y;

move(a; X; Y;b; X ′; Y ′)←X ′=X;

move(b; X; Y; c; X ′; Y ′)←X ′=X; Y ′=Y;

move(b; X; Y;e; X ′; Y ′)←X ′=X; Y ′=Y;

move(c; X; Y;d; X ′; Y ′)← edge(Y; X ); X ′=X; Y ′=Y;

move(e; X; Y; f; X ′; Y ′)←X ′=X; Y ′=Y;

move(f; X; Y;g; X ′; Y ′)←X ′=Y; Y ′=Y;

move(g; X; Y; s0; X ′; Y ′)←X ′=X; Y ′=Y;

win(S; X; Y )←move(S; X; Y; S ′; X ′; Y ′); ¬win(S ′; X ′; Y ′);

answer(V )←win(s0; V; Y ):

Fig. 2. Encoding of diagram d2 in WF-DatalogG.

Proof. The translation is straightforward and should be clear from Fig. 2 which shows
how d2 from Fig. 1 is encoded. 7

In the following, we show how one can �nd for every WF-Datalog query an equiv-
alent query from WF-DatalogG, i.e., in the form of a game. As a �rst step, we show
how to encode �rst-order formulas as games:

Theorem 10. For every �rst-order formula  ( �U ) there is a diagram d such that
(1) I wins Gd ; �u⇔D |=  ( �u).
(2) Gd ; �u is draw-free.

Proof. We de�ne d by induction on the structure of  . Note that s0 denotes the start
square of the corresponding diagram. In the inductive de�nition of diagrams, arrows
pointing to a subdiagram are connected to the start square of this subdiagram.

Clearly, I wins Gd ; �u i� D |=  ( �u).

7 Note that the constants s0; a;b; : : : denoting squares of a diagram do not belong to the database schema
in question. Here and in the following, one can avoid such new constants c1; : : : ; cr using new variables
Z1; : : : ; Zr and letting all tuples �z∈Dr with zi 6= z1 = : : : zi−1 = zi+1 = · · · = zr take over the role of ci .
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Note that I wins (loses) Gd ; �u i� II loses (wins) Gd’; �u. Here we use that Gd’; �u is
draw-free by induction hypothesis.

I wins Gd ; �u i� she can win both the game for ’ and the game for � (if one of
them is lost for I, then II could choose the corresponding arrow and win).

In this case, I wins Gd ; �u i� there is a value a∈D such that I wins Gd’; �ua·
The game is draw-free since the move graph of Gd ; �u is acyclic.

Note that the squares of the d can be 2-colored such that player I may only move
along arrows from white-to-black squares, while II may only use arrows from black-
to-white squares (cf. Fig. 1). Moreover, by the above construction, it is clear that if an
atomic formula ’ occurs only positively (negatively) in  , then arrows marked with
“’” can only be used by player I (II).
We want to extend part (1) of Theorem 10 to LFP-formulas. For this purpose, we

need the following theorem which is due to Immerman [9]:

Theorem 11. Every LFP-formula is equivalent to a formula of the form

[LFPq( �X )’]c̃;

where ’ is �rst-order.

We will use Theorem 11 to prove:

Theorem 12. For every LFP-formula  ( �U ) there is a diagram d such that

I wins Gd ; �u ⇔ D |=  ( �u):

Proof. Let  ∈LFP. By Theorem 11 we may assume that

 ( �U )= [LFPq( �X )’( �U; �X )]c̃;

where ’ is �rst order and positive in q. By Theorem 10 there is a diagram d’ such
that I wins Gd’; �u; �x⇔D |= ’( �u; �x). We modify d’ as follows to obtain the diagram d :
Let A be an arrow of d’ which is marked with “q( �T )” (q being the relation symbol

bounded by the LFP-operator). Since  ∈LFP; q occurs only positively in  and by
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the construction of d’, A can only be used by player I (i.e., points from a white to a
black square). In other words, I has the obligation to proof that q( �T ) holds. This is
achieved in the new diagram d as follows:
• the label of A is replaced by “∃ �X ′ �X ′= �T”, and
• there is a new unlabeled arrow from the black square in which A ends to the start
of d’.

This construction is illustrated by Example 13 below and d2 in Fig. 1.
Let qk be the kth iteration of q in  . By induction on k one easily veri�es that:
• If �a∈ qk then player I has a winning strategy for Gd ; �a where she uses the start
square at most k times. In the induction step, I uses a winning strategy for the game
Gd’; �a in (D; qk−1), i.e., taking qk−1 as the interpretation of q in ’.

Conversely, if �a =∈ qt then player II can prevent I from winning Gd ; �a by repeatedly
using a winning strategy for Gd’; �a in (D; qt).
Finally, let �a= c̃D and the claim follows.

Note that in general, the game d constructed for a LFP-formula  contains drawn
positions, i.e., if D 6|=  ( �u) then II can prevent I from winning but may not be able
to win Gd ; �u either.

Example 13 (Good Nodes; Abiteboul et al. [1]). Consider the LFP-formula

 (U )= [LFPgood(X ) ∀Y (edge(Y; X )→ good(Y )]︸ ︷︷ ︸
’(X )

U:

It completes the “good notes” of a directed graph, i.e., those that cannot be reached
from a cycle. The diagram d1 in Fig. 1 corresponds to the subformula ’(X ) of  
(according to the proof of Theorem 10) and d2 in Fig. 1 corresponds to  (according
to the proof of Theorem 12).

By applying Theorems 12 and 9 we directly obtain:

Corollary 14. Eevry LFP-formula is equivalent to a WF-DatalogG query of the form
(�; qt).

Using Theorem 4 this implies:

Corollary 15 (WF-Datalog6WF-DatalogG). Every WF-Datalog query (of any of
the forms (�; qt); (�; qf ); or (�; qu)) is equivalent to a WF-DatalogG query of the
form (�; qt). In particular, WF-Datalog6WF-DatalogG.

Remark. In [5] an alternative proof was given using a normal form for LFP which is
due to Grohe [8] and which allows a very simple translation into a game. In contrast,
the proof presented above uses the normal form of Immerman [9] which is more known
and easier to obtain.
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4.3. Reduction from games to draw-free games

In this section, we show that WF-DatalogG6WF-DatalogG2 , i.e., for every WF-
Datalog query, there is an equivalent query in WF-DatalogG2 . By Corollary 15 ev-
ery WF-Datalog program corresponds to a game. It remains to show that for each
such game, an equivalent draw-free game can be constructed and represented by a
WF-DatalogG program.

Theorem 16 (WF-DatalogG6WF-DatalogG2 ). For every WF-DatalogG query there is
an equivalent query in WF-DatalogG2 .

Proof. First, we present an informal proof emphasizing the idea of the construction. 8

Technical details are given afterwards.
The main problem consists in detecting and avoiding drawn positions. In the absence

of an order on the domain it seems particularly di�cult to limit the length of the game
in order to eliminate drawn positions, e.g. we cannot use a counter for that purpose.
The basic idea is to limit the length of a game by comparing it to a game of maximal

length. Two games are compared by playing them independently but synchronously.
Thus, we construct a new game 2G which simulates these two games on the original
structure G. To do so, we need two pebbles – one for each game in G. Call these
the clock pebble �Y (on position �y in G) and the verify pebble �X (on position �x in
G). 9 The game played with the clock pebble is used to limit the length of the game
played with the verify pebble. The latter plays the role of the pebble in the original
game G.
Initially, player I claims that the verify pebble is on a won position, i.e., | �x|¡∞

(cf. De�nition 5). II places the clock pebble on �y and claims that | �y| is the maximal
length of a won position in the game. If this is true, I and II can compare | �x| and | �y|
and thus verify the original claim of I. The di�culty remains that both players have to
agree upon the choice of �y. To solve this, one has to design 2G in such a way, that
II can be disproved if she “cheats” by choosing a �y which is not maximal.
The new game 2G is constructed as follows (cf. Fig. 4): We use two macros 1 round

( �X ) and 1 round( �Y ) to denote a round of moves of the pebbles on �x and �y in G,
respectively (Fig. 3). Note that in the simulated game G, I moves �rst in 1 round( �X )
while II moves �rst in 1 round( �Y ).
Like above, the diagram in Fig. 4 de�nes a set of semipositive nonrecursive rules for

the new relation move (S; �X ; �Y ; S ′; �X ′; �Y ′). Thus, if the move relation of the original
game G (used in the macros of Fig. 3) is n-ary, the new move relation of 2G is
2(n+1)-ary. For a given answer relation answer( �V )←win( �X ) in �G, the new answer

8 The reduction presented is due to [10] which also contains the details of a proof of a normal form for
LFP implying Theorem 16.
9 Thus, we abstract from the fact that �X is a tuple of pebbles, and simply call �X a pebble in 2G;

analogously for �Y .
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Fig. 3. Macro de�nitions.

relation of �2G is de�ned as

answer( �V )←win(s0; �X ; �Y ):

It is easy to see that I wins in 1 round( �X ) if | �x|=1, and II wins 1 round( �Y ) if | �y|=1.
Assume for the moment that the dashed edge from m4 to s0 in Fig. 4 is absent. The

loop l1→m4→ l1 compares the lengths of �x and �y: I wins this comparison if | �x|¡∞
and | �x|6| �y|, while II wins if | �y|¡∞ and | �y|¡| �x|.
To get a better understanding of the construction of 2G, we explain the diagram

in Fig. 4 as a dialog between I and II, where each move corresponds to a claim
of the moving player. Observe that each claim of a player contradicts the previous
claim of the opponent, and that each false claim can indeed be disproved using the
corresponding moves in the diagram.
Using the diagram and the implicit claims of the players, it should be clear that I

wins (s0; �x; �y) in 2G (for arbitrary �y) if I wins �x in G, and II wins (s0; �x; �y) in 2G if
�x is lost or drawn (for I) in G. Thus the new game 2G is determinate for positions
(s0; �x; �y).
However 2G may still contain positions which are drawn: Consider, for example,

(l1; �x; �y) where �x and �y are drawn in G. Then II gets no chance of refuting the claim
that �x is won in G, hence (l1; �x; �y) is also drawn in 2G. In order to allow II to defeat
such false claims, the dashed edge is needed. By moving along m4→ s0, II can win
and refute I by choosing the maximal �y in the move a→ f.
The �nal obstacle is that one has to verify that if �x is won in G, then II cannot

delay the game in�nitely using the edge m4→ s0. Indeed | �x| decreases each time the
game reaches m4: If II chooses in a some �y with | �y|¿| �x|, then I has to move along
f→ k thereby enforcing that at least 1 round( �X ) is played. Otherwise, if II chooses
| �y|¡| �x|, then I chooses a new �x with | �x|= | �y| + 1. Independent of the choice of II
(g→ h1 or g→ i1), the new �x will be at least one smaller, when m4 is reached.
We turn to the formal proof. In the sequel, if we say that “player I (II) achieves

: : :”, we mean that there is a strategy such that either player I (II) wins, or situation
“: : :” occurs.
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Fig. 4. Draw-free game 2G and implicit claims of I and II.

The following lemmas are immediate:
L1. Let | �x|6k and I starts to move (from the �rst square) in a subdiagram 1 round( �X ).

Then I achieves that | �x|6k − 1 on the exit square (of 1 round( �X )). In particular,
I wins if k =1.
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L2. Let | �x|¿k¿1 and I starts in a subdiagram 1 round( �X ). Then II achieves that
| �x|¿k − 1 on the exit square. If | �x|=∞, II achieves that | �x|=∞ on the exit
square.

L3. Let | �y|6k and I starts in a subdiagram 1 round( �Y ). Then II achieves that | �y|6k−1
on the exit square. In particular, II wins if k =1.

L4. Let | �y|¿k¿1 and I starts in a subdiagram 1 round( �Y ). Then I achieves that
| �y|¿k − 1 on the exit square. If | �y|=∞, I achieves that | �y|=∞ on the exit
square.

L5. (d1; �x; �y) is won ⇔ | �x|=1.
L6. (b; �x; �y) is won ⇔ ∃ �x | �x|¡∞. (Note that ∃ �x | �x|¡∞⇔∃ �x | �x|=1.)
The following lemma is shown by induction on k:
L7. Let | �x|6k. We simultaneously show that (s; �x; �y) is won : : :

(i) : : : if s= l1 and | �y|¿k: I achieves that if m4 is reached, then | �x|6k − 1 and
| �y|¿k − 1. If II moves back to I1, then I wins by the induction hypothesis; if
II moves to s0, then I wins using (v) for k − 1.

(ii) : : : if s= h1 and | �y|¿k − 1: I achieves that if h4 is reached, then | �x|¡k − 1
and wins by (i) for k − 1.

(iii) : : : if s= i1 and | �y|¿k: I achieves that if i4 is reached, then | �y|¿k and wins
using (i).

(iv) : : : if s= f: If | �y|¿k then I moves to k and wins by (i). Otherwise, if | �y|¡k
then I moves to g and chooses some �x such that | �x|= | �y|+1. This is possible
since by assumption | �x|= k¿| �y|, hence �y is not maximal. Now if II moves
to h1 then I wins by (ii) for some smaller k. If II moves to i1 instead, then
after the move | �y|= | �x| + 1 (since the variables have been swapped!) and I
wins by (iii).

(v) : : : if s= s0: I moves to a. If II moves to b, I wins by L6 above; otherwise,
if II moves to f then I wins by (iv).

We need two �nal lemmas:
L8. If | �y|= k; | �x|¿k + 1 and I starts to move from (l1; �x; �y), then II wins:

By induction on k, after passing I and m we have: | �y|6k − 1; | �x|¿k, so II
moves back to I and wins by the induction hypothesis.

L9. If | �x|=∞, then II wins from (a; �x; �y):
If no position is won, i.e. | �x|=∞ for all | �x| then II moves to b and wins by

L6. Otherwise, II moves to f choosing some �y such that | �y| is maximal. There are
three cases:
(a) I moves to k: then II wins by L8.
(b) I moves to g choosing �x s.t. | �x|=∞: then II moves to h. Since | �x|=∞, II

achieves that after h, still | �x|=∞, hence wins using L8.
(c) I moves to g choosing �x s.t. | �x|= k¡∞: since �y is maximal, | �x|6| �y|. II

moves to i after which | �y|6| �x| (recall that the variables are swapped!). Thus
after i, II achieves | �y|6k − 1 and wins by L8.

Summarizing, this shows that (for arbitrary �y)
• I wins (s0; �x; �y) in 2G i� �x is won in G (use L7(v)), and
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• II wins (a; �x; �y) in 2G i� �x is lost or drawn in G (use L9), and
• no positions (s; �x; �y) in 2G are drawn (use L7(i) and L8).

Putting everything together, we have

WF-Datalog
Corollary 15
6 WF-DatalogG

Theorem 16
6 WF-DatalogG26WF-Datalog

which proves:

Corollary 17 (WF-Datalog≡WF-Datalog2). For every WF-Datalog query; there is an
equivalent query in WF-Datalog2.
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