Digression:
“Sparrow” (Prolog) Syntax for DL

1. Person
2. Female
3. Woman ⊑ Person ⊑ Female
4. Man ⊑ Person ⊑ Woman
5. Mother ⊑ Woman ⊑ hasChild ⊑ Person
6. Father ⊑ Man ⊑ hasChild ⊑ Person
7. Parent ⊒ (Father ⊑ Mother)
8. Grandmother ⊑ Mother ⊑ hasChild ⊑ Grandchild
9. Wife ⊑ Woman ⊑ hasChild ⊑ Man
10. Mother/Granddaughter ⊑ Mother ⊑ hasChild ⊑ Woman

Sparrow “Grammar” and “Parser”

Example in Sparrow Syntax

Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation \(\mathcal{I} = (\Delta^I, \cdot^I) \):

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>(A)</td>
<td>Human</td>
<td>(A^I \subseteq \Delta^I)</td>
</tr>
<tr>
<td>atomic role</td>
<td>(R)</td>
<td>likes</td>
<td>(R^I \subseteq \Delta^I \times \Delta^I)</td>
</tr>
<tr>
<td>conjunction</td>
<td>(C \sqcap D)</td>
<td>Human (\sqcap) Male</td>
<td>(C^I \cap D^I)</td>
</tr>
<tr>
<td>disjunction</td>
<td>(C \sqcup D)</td>
<td>Nice (\sqcup) Rich</td>
<td>(C^I \cup D^I)</td>
</tr>
<tr>
<td>negation</td>
<td>(\neg C)</td>
<td>~ Meat</td>
<td>(\Delta^I \setminus C^I)</td>
</tr>
<tr>
<td>existential restriction</td>
<td>(\exists R.C)</td>
<td>has-child (\cdot) Human</td>
<td>({ x \mid \exists y \cdot (x, y) \in R^I \land y \in C^I })</td>
</tr>
<tr>
<td>value restriction</td>
<td>(\forall R.C)</td>
<td>has-child (\cdot) Blend</td>
<td>({ x \mid \forall y \cdot (x, y) \in R^I \Rightarrow y \in C^I })</td>
</tr>
</tbody>
</table>

Source: Description Logics Tutorial, Ian Horrocks and Ulrike Sattler, ECAL 2002, Lyon, France, July 23rd, 2002

Introduction to DL: Other DL Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>number restriction</td>
<td>((\geq n \cdot R))</td>
<td>(\geq n \cdot \text{has-child})</td>
<td>({ x \mid \left({ y \mid (x, y) \in R^I } \right) \geq n })</td>
</tr>
<tr>
<td>inverse role</td>
<td>(R^\text{-})</td>
<td>(\text{has-mother})</td>
<td>({ x \mid \left({ y \mid (x, y) \in R^I } \right) \leq n })</td>
</tr>
<tr>
<td>trans. role</td>
<td>(R^*)</td>
<td>(\text{has-child})</td>
<td>({ <x, y> \mid (x, y) \in R^I })</td>
</tr>
<tr>
<td>concrete domain etc.</td>
<td>(w_1, \ldots, w_n \cdot P)</td>
<td>n-children, age, etc.</td>
<td>({ \langle x, { w_1, \ldots, w_n } \rangle \in P })</td>
</tr>
</tbody>
</table>

Many different DLs/DL constructors have been investigated

Source: Description Logics Tutorial, Ian Horrocks and Ulrike Sattler, ECAL 2002, Lyon, France, July 23rd, 2002
For terminological knowledge: TBox contains

Concept definitions
- \(A \equiv C \) (A a concept name, C a complex concept)
- Father \(\equiv \) Man \(\land \) hasChild Human

Human \(\equiv \) Mammal \(\land \) hasChild _Human

\(\sim \) introduce names/labels for concepts, can be (acyclic):

Axioms
- \(C_1 \subseteq C_2 \) (C complex concepts)
- \(\text{instance} \) \subseteq \(\text{instances} \)

\(\sim \) restrict your models

An interpretation \(\mathcal{I} \) satisfies:

- a concept definition \(A \equiv C \) \(\iff \) \(A^\mathcal{I} = C^\mathcal{I} \)
- an axiom \(C_1 \subseteq C_2 \) \(\iff \) \(C_1^\mathcal{I} \subseteq C_2^\mathcal{I} \)

A TBox \(\mathcal{I} \) satisfies all definitions and axioms in \(\mathcal{I} \)

\(\mathcal{T} \) is a model of \(\mathcal{I} \)

For assertional knowledge: ABox contains

Concept assertions
- \(a \equiv C \) (a a individual name, C a complex concept)
- John \(\equiv \) Man \(\land \) hasChild (Mother \(\land \) Happy)

Role assertions
- \((a_1, a_2) \equiv R \) (a_1 a_2 individual names, R a role)

\((\text{John}, \text{Mary}) \) has child

An interpretation \(\mathcal{I} \) satisfies:

- a concept assertion \(a \equiv C \) \(\iff \) \(a^\mathcal{I} \in C^\mathcal{I} \)
- a role assertion \((a_1, a_2) \equiv R \) \(\iff \) \(\{a_1, a_2\} \subseteq R^\mathcal{I} \)

A TBox \(\mathcal{I} \) satisfies all assertions in \(\mathcal{A} \)

\(\sim \) \(\mathcal{I} \) is a model of \(\mathcal{A} \)

For subsumption:

- \(C \subseteq D \) \(\iff \) \(C^\mathcal{I} \subseteq D^\mathcal{I} \) in all interpretations \(\mathcal{I} \)

w.r.t. TBox \(\mathcal{T} \):

- \(C \subseteq D \) \(\iff \) \(C^\mathcal{I} \subseteq D^\mathcal{I} \) in all models \(\mathcal{I} \) of \(\mathcal{T} \)

\(\sim \) structure your knowledge, compute taxonomy

Consistency:

- Is there a model \(\mathcal{I} \) of \(\mathcal{T} \) with \(C^\mathcal{I} \neq 0 \) of ABox \(\mathcal{A} \)?

Is there a model of \(\mathcal{A} \)?

- Is there a model of \(\mathcal{T} \) and \(\mathcal{A} \)?

Is there a model of both \(\mathcal{T} \) and \(\mathcal{A} \)?

Inference Problems are closely related:

- \(C \subseteq D \) \(\iff \) \(C \models \neg D \) is inconsistent w.r.t. \(\mathcal{T} \)

- \(C \models \neg A \) \(\iff \) \(A \nleftarrow \mathcal{T} \) in an instance of \(C \nleftarrow \mathcal{T} \)

\(\sim \) Decision Procedures for consistency (w.r.t. TBox) suffice
Most DLs are decidable fragments of FOL: Introduce

- a unary predicate A for a concept name A
- a binary relation R for a role name R

Translating complex concepts C, D as follows:

- $t_c(A) = A(x)$
- $t_c(C \cap D) = t_c(C) \land t_c(D)$
- $t_c(C \cup D) = t_c(C) \lor t_c(D)$
- $t_c(\exists R.C) = \exists x.R(x, y) \land t_c(C)$
- $t_c(\forall R.C) = \forall x.R(x, y) \land t_c(C)$
- $t_c(\forall R.C) = \forall y.R(x, y) \Rightarrow t_c(C)$

A TBox $T = \{ C \equiv D \}$ is translated as

$$\forall \Phi. \bigwedge_{c} t_{c}(C) \Rightarrow t_{c}(D)$$

C is consistent if its translation $t_c(C)$ is satisfiable,

C is consistent w.r.t. T if its translation $t_c(C) \land \Phi_T$ is satisfiable,

$C \subseteq D$ if $t_c(C) \Rightarrow t_c(D)$ is valid

$C \models D$ if $\Phi_{c} \Rightarrow \forall x.(t_{x}(C) \Rightarrow t_{x}(D))$ is valid.

$\neg ALC$ is a fragment of FOL with 2 variables (L2), known to be decidable

$\neg ALC$ with inverse roles and Binary operators on roles is a fragment of L2

\neg further adding number restrictions yields a fragment of L2

L2 is NEpT-complete, most DLs are in EpT

L2 is in NEpT-complete, most DLs are in EpT