
PEBIL: Efficient Static Binary Instrumentation
for Linux

Michael A. Laurenzano, Mustafa M. Tikir, Laura Carrington, Allan Snavely
Performance Modeling and Characterization Laboratory

San Diego Supercomputer Center
{michaell,mtikir,lcarring,allans}@sdsc.edu

Abstract—Binary instrumentation facilitates the insertion of
additional code into an executable in order to observe or modify
the executable’s behavior. There are two main approaches to
binary instrumentation: static and dynamic binary instrumen-
tation. In this paper we present a static binary instrumentation
toolkit for Linux on the x86/x86 64 platforms, PEBIL (PMaC’s
Efficient Binary Instrumentation Toolkit for Linux). PEBIL is
similar to other toolkits in terms of how additional code is
inserted into the executable. However, it is designed with the
primary goal of producing efficient-running instrumented code.
To this end, PEBIL uses function level code relocation in order
to insert large but fast control structures. Furthermore, the
PEBIL API provides tool developers with the means to insert
lightweight hand-coded assembly rather than relying solely
on the insertion of instrumentation functions. These features
enable the implementation of efficient instrumentation tools with
PEBIL. The overhead introduced for basic block counting by
PEBIL is an average of 65% of the overhead of Dyninst, 41%
of the overhead of Pin, 15% of the overhead of DynamoRIO,
and 8% of the overhead of Valgrind.

I. INTRODUCTION

Binary instrumentation toolkits insert additional code into
an executable in order to observe or modify the behav-
ior of application runs. Instrumentation toolkits such as
Pin[1], Dyninst[2], Valgrind[3] and DynamoRIO[4] have
been widely used to gather information about application
runs. It has been shown that data gathered from instru-
mentation tools can be effectively used in guiding hardware
and system design[5], program debugging and correctness[6],
program optimization[7], security verification[8], and perfor-
mance modeling/prediction[9].

There are two main approaches to binary instrumentation:
static and dynamic. Static binary instrumentation inserts
additional code and data into an executable and generates
a persistent modified executable whereas the dynamic in-
strumentation inserts additional code and data during exe-
cution without making any permanent modifications to the
executable. The static approach can be advantageous because
it usually results in more efficient executables when compared
to the dynamic approach. This is a result of the fact that static
binary instrumentation introduces only the instrumentation
code itself. With dynamic binary instrumentation, additional
overhead is introduced because the instrumentation tool must
perform additional tasks such as parsing, disassembly, code
generation, and making other decisions at runtime. This is
simply not an issue with static binary instrumentation tools
because all decisions and actions are taken prior to runtime.
The only cost taken at runtime is the direct cost of performing
additional instrumentation.

However, static binary instrumentation has some disad-
vantages. It is not possible to instrument shared libraries
unless the shared libraries are instrumented separately and
the executable is modified to use those instrumented libraries.
Static instrumentation also provides less flexibility to tool
developers since any instrumentation code persists throughout
the application run while dynamic instrumentation provides
the means to delete or modify instrumentation code as needed
[10]. However, there are cases where the importance of
efficiency is enough to outweigh other considerations [11] so
that static binary instrumentation is the desirable paradigm.
For example large parallel applications in the Data Center or
High Performance Computing domain may run for hours and
use hundreds or even thousands of processors. In such cases,
instrumented code that runs with lower overhead may make it
practical to collect information about a run while still meeting
deadlines. Furthermore, within these realms larger overheads
may lead to insufficient resources to both run a production
job and to thoroughly measure the properties of such a job.

In this work we present PEBIL, PMaC’s Efficient Binary
Instrumentation Toolkit for Linux. The goal of PEBIL is to
provide a toolkit that enables the construction of instrumenta-
tion tools that produce an efficient instrumented executable.
Similar to previous instrumentation toolkits [2], PEBIL in-
struments the executable by placing a branch instruction at
each instrumentation point in the application that transfers
control to the instrumentation code. This instrumentation
code saves program state, performs tasks requested by the
instrumentation tool, restores program state, and then returns
control to the application. A typical binary instrumentation
tool on a platform with fixed-length instructions [12] ac-
complishes this initial control transfer by replacing a single
instruction at the instrumentation point with a branch that
transfers control to the instrumentation code.

When instructions are variable-length, however, this strat-
egy is not always possible since there may not be enough
space to correctly insert such a branch instruction. To address
this, PEBIL relocates and transforms the code for each
function to ensure that enough space is available to hold a
full-length branch instruction at any instrumentation point.
This method of function relocation enables transformation of
the code so that PEBIL can use longer-range yet efficient
branch instructions to transfer control from the application
to the instrumentation code. PEBIL also allows for the
insertion of instrumentation snippets, which are lightweight
hand-written bodies of assembly code that can be used to
perform instrumentation tasks, rather than relying solely on

175978-1-4244-6022-9/10/$26.00 ©2010 IEEE

heavyweight instrumentation functions.
The PEBIL toolkit, along with other accompanying tools

and documentation, is open source and available to the public
for download at [13]. The PEBIL distribution contains several
instrumentation tools including a function execution counter,
a basic block execution counter, and a cache simulation tool
that consumes the memory address stream of an application
run. Each of these tools is built on top of an API that provides
both enough low-level detail to allow the tool developer to get
involved in the details of instrumentation and enough high-
level capability to allow the tool builder to ignore these details
if he wishes. These three instrumentation tools, which are
provided with the distribution, are implemented in less than
700 lines of C++ code.

The remainder of the paper is organized as follows. Section
II describes the basic design and implementation of PEBIL.
Section III discusses several aspects of the toolkit that are re-
lated to efficiency. Section IV presents some experiments that
expose the performance penalties imposed by instrumenting
applications with PEBIL, as well as a comparison of PEBIL
to other binary instrumentation toolkits for x86. Section V
discusses the future of PEBIL, Section VI discusses other
popular instrumentation toolkits that are related to PEBIL,
and Section VII concludes.

II. DESIGN AND IMPLEMENTATION

PEBIL is designed to instrument ELF executables that run
on the Linux/x86 platforms, including both x86 and x86 64.
There are several challenges that must be addressed by any
instrumentation tool in this setting, the largest of which
include how to correctly interpret the information found in
the text segment of the application and how to organize the
extra information needed by an instrumentation tool.

A. Application Code and Data Discovery

When compilers explicitly produce a text and data segment
for an ELF application, most take the default action of placing
the text segment prior and adjacent to the data segment.
However in any ELF executable data can also be intertwined
with code in the text segment of the executable, which in
practice is done for several reasons. These reasons include
the storage of branch target locations (e.g. for a jump table
that results from a switch statement) or the storage of small
data structures that provide convenient and efficient lookup
of data such as identifiers and descriptors. For the sake of
correctness of the instrumented executable, it is necessary to
identify the parts of the text section that constitute code and
the parts that constitute data. Mishandling of the data in the
text section as code may result in instrumented application
behavior that differs from the original behavior, especially if
the instrumentation tool modifies or relocates some part of
that data to serve the needs of the instrumentation tool. Such a
change in program behavior may cause outright application
failure due to some unintended change in the control flow
or state of the program. Alternatively, if code is mistakenly
treated as data in the text section, instrumentation might not
be inserted or analysis performed that should be reserved for
data alone.

PEBIL currently uses a code discovery algorithm that
operates on a per-function basis. In order to determine which

parts of the text sections are functions that contain code,
PEBIL uses the program’s symbol table entries1 to guide it
to each function’s entry point. Note that it is possible and
in some cases preferable to use techniques that do not rely
on the information found in the symbol table in order to
perform code discovery. However, when employed statically,
these techniques tend to result in less complete disassembly
coverage because many control flow instructions use runtime
information to determine their targets (for example, as the
result of using a function pointer).

The code discovery algorithm being used consists of two
possible phases: (1) control-driven disassembly backed up by
(2) linear disassembly. During the control-driven disassembly
phase PEBIL follows the control flow through a function,
beginning at its entry point. If a problem is encountered
during disassembly, PEBIL assumes that some part of the
disassembly is incorrect and falls back to the second, more
naive, linear disassembly phase. During the linear disassem-
bly phase, each instruction is disassembled in the order it
appears in the function, again beginning at the function’s
entry point. If a problem is found, the function is tagged
as uninstrumentable and the disassembly of the function is
left incomplete and disregarded for further instrumentation.

Problems that can be encountered during both phases of
code discovery are situations where an undefined opcode is
encountered, where control appears to fall into the middle
of an instruction PEBIL has already disassembled, or if
control leaves the boundaries of the function via a traditional
branch (not a call) instruction. In most cases control-driven
disassembly is sufficient to disassemble the entire function,
and at most instructions determining the control target is
straightforward because control either falls through to the
following instruction or the location of another possible
control target is encoded entirely within the instruction itself.
In more challenging cases an indirect address is used by
a control instruction, where the target resides either at a
fixed address in memory (possibly with some offset), in a
register, or at a location given by a register. The cases where
target computation uses a register value can be difficult to
resolve without runtime information since the computation
of the target address can be arbitrarily complex and can
span control boundaries. Nevertheless, PEBIL performs a
peephole examination of the preceding instructions and is
able to determine the target address of the indirect branch
in most cases. This 2-phase disassembly algorithm correctly
disassembled an average of 99.0% of the bytes in the SPEC
CPU2000 Integer benchmarks.

One of the more common uses of the indirect jump is
as part of a jump table. Fortunately most compilers use
relatively simple calculations to determine targets for jump
tables. Usually an offset is added to a fixed memory address
to determine where the data comprising the branch target
resides. Therefore if a peephole examination of the preceding
instructions reveals a fixed memory address nearby, this
address is treated as the first entry in a table whose remaining
entries are considered to be either addresses or offsets that
comprise the entries of a jump table. PEBIL makes an

1The use of the program’s symbol table requires that the program be
compiled with debugging information, -g for most compilers.

176

(a) Layout of an unmodified ELF file. (b) Layout of a PEBIL-instrumented ELF file.

Fig. 1. (a) and (b) show that the text required by an instrumentation tool is prepended to the application text and the data required by an instrumentation
tool is appended to the data application data.

iterative pass over this table to determine the target address
for each entry in the jump table, stopping when it finds a
value in the table that yields a target address that is outside
the function. Once found and treated correctly, the jump table
code and targets can be integrated into the control flow graph
of the function, where it and the data that accompanies it can
be modified to accommodate the insertion of instrumentation
code.

B. Instrumentation Code and Data

Instrumentation generally requires the use of code and
data that are not part of the original executable. In order to
insert additional code and data into an executable, additional
space needs to be allocated within the executable in such
a way that they will, at load time, be treated as code and
data respectively. Most compilers produce an ELF executable
whose structure is similar to that shown in Figure 1(a). To
accommodate the code and data needed for instrumentation,
PEBIL appropriates a segment for instrumentation text and
a segment for instrumentation data. It also extends the
existing text segment in a way that allows some of the
existing control structures of the ELF file to be upgraded
and expanded to contain the extra information needed for
instrumentation. This scheme, demonstrated in Figure 1(b),
has the added benefit of causing no immediate disturbance to
the original application’s code and data, greatly simplifying
the implementation of any code modification undertaken later
on during the instrumentation process.

The code introduced by PEBIL to perform instrumen-
tation serves several functions. It saves any machine state
that can be destroyed by the instrumentation, performs the
instrumentation task, restores the machine state after the
instrumentation task is completed, and finally restores control
to the original code. When control is transferred from the

application to the instrumentation code, it is necessary to
maintain the machine state of the application since the
instrumentation code may use and destroy some of that
state and the original application behavior must be observed.
This machine state can contain anything modified by the
instrumentation code, but in practice is usually limited to a
relatively limited set of registers and some information about
the call stack.

Since instrumentation tools may also need additional data
to support the needs of the instrumentation tool, PEBIL
provides mechanisms to insert and initialize additional data
within the executable. These additional code and data that
are used by the instrumentation tool are included in the extra
text and data segments of the ELF file respectively, as shown
in Figure 1(b).

III. EFFICIENCY OF INSTRUMENTED CODE

The goal of PEBIL is to provide a toolkit that enables the
construction of instrumentation tools that produce efficient
instrumented executables. Several techniques are employed
to accomplish this. Fast constructs are used to get control
to and from the instrumentation code, which requires the
application code to be relocated and transformed in order
to accommodate them. PEBIL also supports the use of
lightweight instrumentation snippets that can be used in
place of instrumentation functions, as well as the inlining of
these snippets in order to avoid potential control interruptions
around their execution at instrumentation points.

A. Code Relocation and Transformation

On platforms with fixed-length instruction sets, a common
strategy used by static instrumentation toolkits to transfer
control from application code to instrumentation code is to
replace a single instruction at the instrumentation point with
an unconditional branch instruction that performs the transfer.

177

Fig. 2. Instruction sizes for the SPEC CPU2000 Integer benchmarks presented on a cumulative basis.

This is fairly straightforward because, by the definition of a
fixed-length instruction set, the instruction being replaced and
the replacing branch instruction have the same length. The
use of relocation at the function level in PEBIL stems from
the fact that instrumentation is being performed statically on a
platform that uses a variable-length instruction set. The pres-
ence of variable-length length instructions means that it may
not always be possible to instrument an arbitrary point in the
application using this traditional replacement technique since
the amount of space available at the instrumentation point
is often less than the amount of space needed by a branch
instruction that is large enough to reach the instrumentation
code.

In x86 platforms, an unconditional branch instruction that
uses a 32-bit offset requires 5 bytes. However, for many
instrumentation points of interest there may not be enough
space to hold a 5-byte branch instruction because the in-
strumentation point itself (which might be an instruction or
a basic block) is smaller than 5 bytes. Figure 2 shows a
breakdown of the sizes of instructions for the SPEC CPU2000
Integer benchmark suite. This figure shows that between 52%
and 75% of the instructions in these applications are smaller
than 5 bytes. In fact an average of 65% of instructions are
smaller, which indicates that simply replacing an instruction
with a branch to instrumentation code is not sufficient to
allow the instrumentation of arbitrary locations in the appli-
cation code.

This leaves two techniques that can be used to transfer
control to the instrumentation code. The first alternative is to
use a series of branches, perhaps where the instruction at the
instrumentation point is a small branch that transfers control
to a larger intermediate branch which in turn delivers control
to the instrumentation code. This method is unsatisfactory
because the smallest traditional branch instruction available
on the x86 platform is 2 bytes in length, yet there are
instrumentation points with only a single byte available to
them. Refer again to Figure 2, which shows that an average

of 4% of instructions use a single byte. Furthermore, this
technique requires additional space to be available in close
proximity to the instrumentation points since these smaller
2-byte branches are also short reaching, and such space is
unlikely to be available since functions are often packed
tightly together within the application text.

Another option is the method proposed by the BIRD
project [14], which is to use an interrupt instruction (int3)
when a larger traditional branch does not fit at the instru-
mentation point. This instruction is functionally perfect for
instrumentation because it requires only a single byte and
allows us to transfer control to an arbitrary location by using
the exception handling facilities provided by the system.
However, it is unsuitable for doing so efficiently because
the heavyweight system call conventions must be invoked,
however infrequently.

PEBIL uses relocation and reorganization of the code at
the function level in such a way that that enough space is
available to accommodate a 5-byte branch at each instru-
mentation point. Specifically, the steps used by PEBIL to
relocate the application’s functions and prepare them for
instrumentation are as follows. Figure 3 shows how this
process looks when performed on a trivial function in order to
prepare the function for instrumentation at every basic block.

1) Function Displacement + Entry Point Linking
2) Branch Conversion
3) Instruction Padding
4) Instrumentation
Figure 3(a) shows the contents of the function prior to any

relocation/instrumentation activities.
Function Displacement + Entry Point Linking, shown in

Figure 3(b), relocates the contents of the entire function
to an area of the text section allocated for use by the
instrumentation text. This is done because functions are often
packed tightly together. As a result it is generally not possible
to leave a function’s entry point undisturbed and to expand
its size in a straightforward way without disturbing the entry

178

(a) An unmodified application function. (b) The application function after it has been relocated and the
old function entry has been linked to it.

(c) The application function after the branches have been
converted to use 32-bit offsets.

(d) The application function after it has been padded with 5
bytes at each instrumentation point.

(e) The application function after a single basic block (Basic
Block 1) has been instrumented.

Fig. 3. The steps taken in order to prepare a function for instrumentation that will be inserted at every basic block.

point of another nearby function. The original entry point of
the function is then linked to the new location by inserting an
unconditional branch at the original function entry to transfer
control to the displaced function entry. Linking is done in
this fashion because most references to the entry point of a
function are in the form of function calls, which routinely
are indirect references (i.e. their value is computed or looked
up at runtime) and can be difficult to resolve without runtime
information.

Branch Conversion is shown in Figure 3(c). The code is
reorganized in the following step, which may strain the limits
of smaller 8-bit or 16-bit offsets. Therefore all branches are
converted to use 32-bit offsets so that the targets of each
branch will still be reachable without the need to make further
changes to the code. Note that there may be some opportunity
here to reduce space by using the smallest branch offset
size that accommodates the branch, but currently a single
unified technique is used to simplify the implementation. The
experimental evidence shown in Section IV indicates that the
opportunities for improving the efficiency for this step are
minimal.

Instruction Padding, seen in Figure 3(d), pads each instru-
mentation point with enough empty space so that a 5-byte
branch can be accommodated.

Instrumentation replaces the instructions at each instru-

mentation point with a branch that transfers control to the
instrumentation code, which is shown in Figure 3(e).

There are several ways that this proposed method for
preparing the application code for instrumentation can ad-
versely affect the performance of the instrumented executable
aside from of the overhead that will be imposed by the
instrumentation code. Each function call now has an extra
control interruption associated with it since control must
be passed first to the original function entry point and
subsequently to the relocated function entry point. In addition
it is possible that using 32-bit offsets for every branch rather
than some smaller number of bits has an overhead associated
with it. Finally since the code is being reorganized and
expanded, some positive alignment and size optimizations
that the compiler might have made on the instructions in the
function might be destroyed.

To quantify the impact of this relocation method on the
performance of an executable, for the SPEC CPU2000 In-
teger Benchmarks, we generated executables in which the
executable is set up for instrumentation (extra text and
data segments are present but unused and any extra ELF
control information is added), functions are relocated, and
branches are converted to use 32-bit offsets. Note that this
experiment does not measure the destruction of alignment
that will occur when 5 bytes are reserved for a control

179

instruction at each instrumentation point. It would indeed
be very difficult to include this effect in our experiment
without including either some extra control overhead or
extra overhead that would come from decoding/executing the
innocuous instructions that fill in for those bytes. The average
overhead for the instrumentation-prepared SPEC CPU2000
Integer benchmarks on the reference input is just 1.2%, with
a maximum overhead of 4.8%. Thus the overhead incurred
by function relocation and code transformation in PEBIL in
order to accommodate single 5-byte branch instructions is
well within reason and does not represent a significant hurdle
for efficiency of the instrumented code.

B. Instrumentation Snippets

In many instrumentation toolkits, the tasks performed
by the instrumentation tool are accomplished by allowing
the user to transfer control from an instrumentation point
in the application to an instrumentation function provided
by the user, typically via a shared library or some object
code. Since these instrumentation functions are delivered via
a shared library or other object code, the instrumentation
tool developer has the advantage of being able to use a
software development toolchain to write the instrumentation
code in a language that compiles to object code. However,
from an efficiency standpoint the instrumentation function is
heavyweight due to the overhead of performing a function
invocation including saving the complete machine state for
all possibles cases that occur in the function. In cases where
efficiency is important, it can be more desirable to insert small
sequences of assembly code to perform a task and only save
the small subset of machine state that will be affected rather
than relying entirely on instrumentation functions and the
more costly state preservation required for their correct use.

Most of the state preservation needed around instrumen-
tation code is in the form of register saving and restoring,
but in the case of the x86 64 architecture some of it comes
in the form of protecting the application call stack from the
instrumentation function. The call stack requires protection
from the instrumentation code during execution because the
x86 64 ABI allows for a red zone, which is an area of 128
bytes above the top of the stack that cannot be modified by
signal or interrupt handlers and thus can be used by the
application. In practice, this feature is used by compilers
within leaf functions that only use a small amount of stack
space in order to save time by not explicitly creating a
stack frame. Thus, the area above the stack needs to be
protected when an instrumentation function is called from
a leaf function since the function call may overwrite some
data on what appears to be the top of the stack but could be in
use by the leaf function. PEBIL protects the stack contents
from an instrumentation function call by incrementing the
stack pointer by at least 128 bytes prior to modifying the
stack in instrumentation, which has the effect of giving the
leaf function the appearance of a 128 byte stack frame while
the instrumentation code is running.

A good illustration of the use of an instrumentation snippet
is at an instrumentation point where the desired outcome
for the instrumentation tool is to increment a counter that
resides in memory. In order to accomplish this task with
an instrumentation snippet, control is transferred to the

instrumentation code which will save the flags register,
update the counter in memory, restore the flags register,
then transfer control back to the application. If instead one
used an instrumentation function, prior to performing the task
the tool must save the flags register, any registers used
by the function, and possibly perform stack protection. It
also requires at least two more control transfers in order to
enter and exit the instrumentation function. Furthermore these
control flow transfers generally use the call/return paradigm,
which in addition to changing the application’s program
counter also store and retrieve information about the function
call site onto the stack and thus have some extra overhead
associated with them.

Furthermore, the use of an instrumentation function is
also likely to pollute the instruction cache more than using
a compact instrumentation snippet. For an instrumentation
snippet the application code must contend with the snippet
code only, whereas using an instrumentation function puts
the application code in contention with the application and
the intermediate code needed to save/restore machine state
and transfer control to the function. Since instrumentation
functions tend to be more heavyweight than instrumentation
snippets, using snippets rather than functions whenever pos-
sible allows PEBIL to gather program information quickly,
particularly when the task being performed in instrumentation
is small.

C. Instrumentation Inlining

The fact that PEBIL relocates functions yields a practically
unlimited amount of space that can be used in order to further
optimize the execution of instrumentation-related tasks by
inlining them into the function code rather than inserting an
instruction to transfer control to code that performs the same
task. Inlining eliminates the overhead that goes along with
the execution of control transfers associated with running
instrumentation code, leaving only the overhead associated
with protecting the machine state and executing the instru-
mentation task itself. A series of tests was conducted on the
SPEC CPU2000 Integer benchmarks in order to ascertain
the validity of this optimization, which showed that for an
instrumentation tool that counts the number of basic block
executions in the application run, the overhead is reduced by
45% by inlining the instrumentation.

IV. RESULTS

To investigate the efficiency of instrumented executables
created by PEBIL, we ran several experiments on the SPEC
CPU2000 Integer benchmark suite using the reference input
set. All of the experiments are run on a single core of a
quad-core 2.4GHz IA32 Intel Xeon running Red Hat Linux
Enterprise 4.1.2 (Linux kernel 2.6.18) and each runtime
presented is the average runtime of three identical runs unless
otherwise noted.

The first set of experiments quantifies the overhead of
the program relocation and transformation techniques used
by PEBIL as described in Section III-A. Recall that PEBIL
modifies the structure of the ELF executable, adds an addi-
tional unconditional branch execution to each function call in
order to relocate the function then extends all of the branches
in the code to use 32-bit offsets. In order to measure the

180

Fig. 4. Application overhead caused by preparing the code for instrumentation but without any instrumentation inserted.

overhead caused by these steps: (1) setup, (2) relocation and
(3) transformation, these techniques were applied in stages
so that the effect of each stage can be examined.

Figure 4 presents the runtime overhead of each stage
as it accumulates onto the previous stages for the SPEC
CPU2000 Integer benchmarks. Modifying the structure of
the ELF executable has an overhead that averages 0.27% of
the original application runtime, with a maximum penalty
of 1.14%. Relocating the functions of a program carries an
overhead that averages 0.91%, with a maximum overhead
of 4.17%. Finally, converting all of the branches to use
32-bit offsets has an overhead that averages 0.05% with a
maximum penalty of 0.53%. In total, the penalty incurred
by preparing the executables for instrumentation has an
overhead that averages 1.23%, with a maximum overhead
of 4.73%. Among a set of popular dynamic instrumentation
toolkits, Pin, DynamoRIO, and Valgrind, the lowest overhead
for running the application within the instrumentation tool
but performing no instrumentation is obtained by using
DynamoRIO, which has an average of 38% overhead and
a maximum overhead of 113% [1]. These results show that
the overhead involved with the instrumentation preparation
techniques used by PEBIL does not undermine the goal of
producing efficient instrumented code.

The next set of experiments measure the overhead intro-
duced by instrumenting the application to count the number
of times each basic block is executed. We use this particular
instrumentation tool because basic block counting is a case
where we expect PEBIL to generate efficient instrumented ex-
ecutables since the number of instrumentation points required
is high and the amount of work done at each instrumentation
point is low, thus highlighting the overhead introduced by the
tool. Much of the work performed in basic block counting,
namely updating a single counter every time a basic block
is encountered, can be done easily using an instrumentation
snippet rather than by a full instrumentation function. The
counters embodied in the instrumentation snippets must also
be persistent throughout the entire run of the application,
which is more suited to a static instrumentation approach
because static instrumentation does not utilize any resources
at runtime to determine whether instrumentation should be
removed.

Figure 5 presents the overhead introduced by a basic block

counter as a percentage of the original application runtime.
The data presented for Pin, DynamoRIO and Valgrind is from
previously published research [1]. There, the eon benchmark
is excluded from the results because DynamoRIO was unable
to instrument eon at the time. The data presented for Dyninst
uses the static instrumentation feature of Dyninst 6.1.

The overhead of PEBIL’s basic block counter ranges from
28%-111% with an average overhead of 62%. The average
overhead is 96% for Dyninst’s static instrumentation toolkit
(ranging from 41%-179%), 151% for Pin (ranging from 8%-
350%), 408% for DynamoRIO (ranging from 58%-693%),
734% for Valgrind (ranging from 91%-1483%). Our experi-
ments demonstrate that executables instrumented by PEBIL
run with an average of 35% less overhead than Dyninst and
59% less overhead than Pin, which is 34% and 89% of the
original application runtimes respectively.

The instrumentation provided by Dyninst’s static instru-
mentation toolkit is, in many respects, similar to that provided
by PEBIL. We suspect that the difference in performance has
two major causes. The first is that Dyninst uses a function
relocation mechanism wherein each branch in the relocated
function points to the branch target at the correct address in
the original application code, which subsequently points to
the correct branch target in the relocated application code.
This results in the execution of two control transfers in the
instrumented application for every taken branch in the origi-
nal. Furthermore Dyninst uses the pushf/popf instructions
in order to save and restore the contents of the flags register
at each instrumentation point when protection of its contents
are necessary. For basic block counting PEBIL uses the lahf
and sahf instructions to accomplish this task, which are less
likely to cause pipeline stalls than pushf/popf since they
operate on fewer bits of the flags register.

V. FUTURE WORK

PEBIL currently does not perform any register analysis
when considering how to insert instrumentation. Like Pin
and Dyninst, PEBIL could perform liveness analysis on the
individual registers and on the individual bits of the flags
register. By doing the former PEBIL could first allocate
registers from the set of dead registers in order to avoid saving
and restoring their contents around an instrumentation point.
By doing the latter PEBIL would be able to choose the most

181

Fig. 5. Performance of several x86 instrumentation tools with basic block counting instrumentation.

efficient method of flags protection while still keeping its
contents safe. This would take the form of not protecting
the flags register in any way if all the flags bits are dead,
protecting only the subset of the bits handled by lahf/sahf
when those bits are the only live ones, or protecting all of
the bits when necessary using pushf/popf.

Currently PEBIL allows the tool writer to specify which
mechanism is used, and it is therefore up to the tool writer
to determine which mechanism is safe to use based on what
he knows about the instrumentation code being inserted.
Generally this is limited to the tool writer’s knowledge of the
instrumentation code he is inserting rather than information
about the context into which the instrumentation code is
being inserted. Automatic analysis of both the instrumen-
tation code and the application code can serve to further
reduce the amount of time spent unnecessarily saving and
restoring machine state, and can be implemented in a rela-
tively straightforward manner using tools like XED, VEX or
instructionAPI, which are the instruction decoders used by
Pin, Valgrind, and Dyninst respectively.

VI. RELATED WORK

ATOM [15] and EEL [16] are two of the earliest imple-
mentations of binary instrumentation toolkits. Both work in a
way that is conceptually similar to PEBIL; instrumentation is

† Results are derived from previously published research [1].
∗ Results for eon are not included in [1] because DynamoRIO was unable

to instrument it.

performed on the compiled binary prior to runtime, meaning
that any overhead due to code analysis and code generation
is incurred outside of the instrumented application’s run
cycle. Unfortunately, ATOM is available only for the Alpha
platform. Since this processor is not being produced anymore,
ATOM is no longer viable as a long-term solution for those
who wish to perform static, efficient instrumentation. EEL
is another early example of a static binary instrumentation
toolkit. EEL was designed to provide a platform-independent
interface for editing executables so that it would require
minimal understanding of the underlying architecture in order
to make changes to the executable. This design philosophy
differs from the philosophy used when designing PEBIL.
PEBIL exposes certain platform-dependent details to the tool
writer so that the tool writer has the potential to use his
knowledge of the underlying platform to get performance
benefits for the instrumented application.

BIRD [14] is a binary rewriting platform for Windows/x86.
BIRD is similar to PEBIL because it uses what they call
a redirecting approach to executing instrumentation code,
which is another way of saying that they insert a 5-byte
branch at the instrumentation point. BIRD uses some clever
techniques to avoid it, but when 5 bytes are not available it
relies on a software interrupt in order to get control from
the application to instrumentation. Software interrupts are
generally very heavyweight; PEBIL instead uses function
relocation so that the 5-byte branch can be used at all
instrumentation points.

182

Dyninst [2] is a popular static and dynamic instrumentation
toolkit, meaning that it can operate either as a runtime in-
strumentation engine or by writing a persistent instrumented
binary to disk. Similar in concept to what is done in PEBIL
and BIRD, in order to accomplish a control transfer to the
instrumentation code Dyninst replaces an instruction from
the application with a branch instruction. Dyninst employs
several optimizations that currently are not available in PE-
BIL, most notably that they perform liveness analysis on the
registers and individual bits of the flags register. It is our plan
to integrate this type of analysis into PEBIL in the future.

Pin [1] is another popular dynamic binary instrumentation
toolkit that uses a JIT-based (Just In Time compilation)
approach to instrumentation. This approach entails running
the application on top of Pin, while Pin intercepts the
application at its natural control flow interruptions so that it
can instrument upcoming parts of the program. For efficiency,
Pin performs many optimizations including caching these
instrumented sequences of code to allow for re-use, chaining
instrumented sequences of code together to avoid unnecessary
tool intervention, and avoiding state protection overheads
whenever possible.

DynamoRIO [4] and Valgrind [3] are two other dynamic
binary instrumentation toolkits that use a JIT-based approach
to instrumentation and operate in a similar fashion to Pin.
These toolkits offer certain functionality that is not available
anywhere else. Valgrind offers support for a feature called
shadow values [6], which can be used to create instrumen-
tation tools that are difficult to build without this feature.
An example of this is a tool that tracks the initialization of
every bit in the program’s data in order to show when the
program accesses uninitialized data. While incredibly useful,
support of this kind entails a more heavyweight approach to
instrumentation that is unsatisfactory when efficiency is the
primary goal.

VII. CONCLUSIONS

In this paper we introduced an efficient static instrumen-
tation toolkit, PEBIL, for Linux on the x86/x86 64 platform
family. PEBIL uses function relocation in order to subse-
quently transform the application code so that it can create
enough space to enable fast instrumentation at arbitrary points
in an executable. PEBIL’s function relocation mechanism and
the ability to insert efficient assembly code snippets allow
PEBIL to produce efficient instrumented executables. The
overhead of PEBIL for counting basic block executions on a
set of applications is 65% of the overhead of Dyninst, 41%
of the overhead of Pin, 15% of the overhead of DynamoRIO,
and 8% of the overhead of Valgrind. PEBIL is freely available
to the public for download at [13].

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the DOD High Perfor-
mance Computing Modernization Program, the DOE Office
of Science through the SciDAC2 award entitled Performance
Evaluation Research Center and the DOE through the High
Performance Computing Research Program.

REFERENCES

[1] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V.J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 190–200. ACM New York, NY,
USA, 2005.

[2] B. Buck and J.K. Hollingsworth. An API for runtime code patching.
International Journal of High Performance Computing Applications,
14(4):317, 2000.

[3] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 PLDI
conference, volume 42, pages 89–100. ACM New York, NY, USA,
2007.

[4] D.L. Bruening. Efficient, transparent, and comprehensive runtime code
manipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[5] R.A. Uhlig and T.N. Mudge. Trace-driven memory simulation: A
survey. ACM Computing Surveys, 29(2), 1997.

[6] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In Proceedings of the 3rd international conference
on Virtual execution environments, pages 65–74. ACM New York, NY,
USA, 2007.

[7] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Ber-
shad, and B. Chen. Instrumentation and optimization of Win32/Intel
executables using Etch. In Proceedings of the USENIX Windows NT
Workshop, pages 1–7. Citeseer, 1997.

[8] B.P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorodskii,
and F. Popovici. Playing inside the black box: Using dynamic
instrumentation to create security holes.

[9] A. Snavely, X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and
P. Jones. Performance modeling of HPC applications. Dresden,
Germany, August, 2003.

[10] M.M. Tikir and J.K. Hollingsworth. Efficient instrumentation for
code coverage testing. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 86–
96. ACM New York, NY, USA, 2002.

[11] L. Carrington, A. Snavely, and N. Wolter. A performance prediction
framework for scientific applications. Future Generation Computer
Systems, 22(3):336–346, 2006.

[12] M.M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely. PMaC
Binary Instrumentation Library for PowerPC/AIX. In Workshop on
Binary Instrumentation and Applications. Citeseer, 2006.

[13] Performance Modeling and Characterization: PEBIL Project Home-
page. http://www.sdsc.edu/pmac/projects/pebil.html.

[14] S. Nanda, W. Li, L.C. Lam, and T. Chiueh. BIRD: Binary interpretation
using runtime disassembly. In Proceedings of the International Sym-
posium on Code Generation and Optimization, pages 358–370. IEEE
Computer Society Washington, DC, USA, 2006.

[15] A. Srivastava and A. Eustace. ATOM: A system for building cus-
tomized program analysis tools. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementa-
tion, pages 196–205. ACM New York, NY, USA, 1994.

[16] J.R. Larus and E. Schnarr. EEL: Machine-independent Executable
Editing. ACM Sigplan Notices, 30(6):291–300, 1995.

183

