
Merging the CCA Component Model with the OGSI Framework

Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu,
Aleksander Slominski, Dennis Gannon, Randall Bramley

Department of Computer Science, Indiana University.
215 Lindley Hall, 150 S Woodlawn Avenue, Bloomington, IN 47405-7104�

mgovinda, srikrish, chiuk, aslom, gannon, bramley � @cs.indiana.edu

Abstract

The most important recent development in Grid systems
is the adoption of the Web Services model as its basic ar-
chitecture. The result is called the Open Grid Services
Architecture (OGSA). This paper describes a component
framework for distributed Grid applications that is consis-
tent with that model. The framework, called XCAT, is based
on the U.S. Department of Energy Common Component Ar-
chitecture (CCA) but with an implementation based on the
standard Web Services stack. Using this framework, an ap-
plication programmer can compose an application from a
set of distributed components. The result is a set of Web
Services that collectively represent the executing applica-
tion instance. This paper describes the basic architecture of
XCAT and the design issues to be considered for a compo-
nent to serve as both a CCA and Open Grid Service Infras-
tructure (OGSI) service.

Key Words: Computational Grids, Component Archi-
tectures, Web Services, OGSA, OGSI, CCA, Composition,
Workflow

1 Introduction

A computational Grid [17] is a set of hardware and soft-
ware resources that provide seamless, dependable, and per-
vasive access to high-end computational capabilities. By
enabling the use of teraflop computers and petabyte storage
systems interconnected by gigabit networks, the Grid will
allow scientists to explore new avenues of research. The
success of the Grid depends largely upon the development
of tools and applications that can exploit its potential, and
make it easy for the end user to use them.

A programming model for the Grid consists of tools,
conventions, protocols, language constructs, and a set of
libraries that encapsulate important functionality. The ab-
stractions provided by the programming model can simplify

development of complex Grid applications. Until recently,
there has been no consensus on what programming model
is appropriate for the Grid. Examples of various models
currently in use include MPI [16] for message passing, and
GridRPC [27] for doing remote procedure calls.

The Open Grid Services Architecture (OGSA) [18] is the
first effort to standardize Grid functionality and produce a
Grid programming model consistent with trends in the com-
mercial sector. It integrates Grid and Web Services concepts
and technologies. The Open Grid Services Infrastructure
(OGSI) refers to the basic infrastructure on which OGSA
is built. At its core is the Grid Service Specification [15],
which defines standard interfaces and behaviors of a Grid
service in terms of Web Services technologies. OGSA and
OGSI come close to defining a component architecture for
the Grid.

A component architecture can be defined as a set of rules
for specifying the behavior and interfaces of component in-
stances and a framework that allows the component to be
composed into applications. A component is a software ob-
ject or process that satisfies the rules of the architecture. The
software engineering benefits of component based software
are well known: they enable encapsulation and facilitate the
modular construction of programs and the reuse of existing
components, resulting in improved application productivity.
Component architectures are well-suited for the rapid proto-
typing of complex distributed applications. These systems
are immensely useful to scientists who build applications
by composing existing software components which exploit
specialized computing and algorithmic resources, and hold
great promise as an effective programming model for the
Grid.

Various component models have been successful in in-
dustry, as well as in academia. Microsoft’s COM and
DCOM frameworks have been fundamental to interoper-
ability in Windows based applications. Their current Web
Services oriented .NET framework is also component based
and is gaining widespread importance. In the CORBA

world, the Object Management Group has released a spec-
ification for the CORBA Component Model (CCM) [4],
whereas Java Beans and Enterprise Java Beans (EJB) have
been popular component standards for Java based applica-
tions. The CCA [3] project, which is described here, is an
initiative by DOE laboratories and universities to develop a
common architecture for building large scale scientific ap-
plications from well-tested software components that run on
both parallel and distributed systems.

This paper presents three significant contributions to
Grid research. The first is the merging of the CCA with
the OGSI through our work with XCAT, which is our im-
plementation of the CCA specification. A unification of the
two models benefits both efforts, yet lets each group focus
on their particular needs. Since the two specifications are
evolving, our work on merging the two specifications has
focused on identifying OGSI concepts that directly map to
CCA features.

Perhaps the most important aspect of using a component
Grid architecture is the way components are composed to
construct the application. Our second contribution is our
classification of composition modalities based on their ex-
tents in space and time. We observe that distributed systems
may be composed in two ways:

� Composition in space: one component/service directly
invokes the services of another component through a
logical connection between the two.

� Composition in time: a workflow engine schedules
tasks that involve accessing remote services and re-
sponding to events.

We argue that both of these are important and they can
be accommodated in the XCAT framework.

Our third contribution is a messaging and notification
system that extends the model proposed by OGSI. We also
briefly describe how the OGSI factory service can be ex-
tended and used in applications.

2 A Brief Tour of Web Services

A Web Service is an interface to application function-
ality that is accessible using well-known Internet standards
and is independent of any operating system or programming
language. Web Services represent a shift in paradigm from
a human-centric to an application-centric web.

The various protocols composing a Web Service are
commonly divided into a five-layer stack as shown in Fig-
ure 1. This stack is evolving as various groups refine the
standards.

1. Transport: The transport layer refers to the technol-
ogy responsible for transferring messages between ap-
plications. The choices for this layer include HTTP,
SMTP, FTP, and BEEP [1].

Stack Layer Example Technologies
Framework .NET, Sun ONE
Discovery UDDI
Description WSDL, RDF
Messaging SOAP
Transport HTTP, SMTP, FTP, BEEP

Figure 1. Different layers of the Web Service
stack and the example technologies for each
layer.

2. Messaging: This layer represents the marshaling and
unmarshaling of application data so that it can moved
over the network. Even though HTML has been
widely used for the Web, it is not a suitable format
for marshaling because it only describes the presenta-
tion of data, and not its semantics. XML, on the other
hand, has gained widespread acceptance for represent-
ing data for Web Services as it allows for a representa-
tion in accordance with the meaning of the data. SOAP
is a protocol that uses XML as its data format and is the
de facto standard for messaging in Web Services.

3. Description: The description of a Web Service in-
cludes the supported interface, network, transport and
packaging protocols. The Web Service Description
Language (WSDL) [11] is a widely accepted standard
for this purpose. The Resource Description Frame-
work (RDF) [24] specification can also be used, though
it is less popular than WSDL.

4. Discovery: This layer serves as a registry that enables
Web Services to be published and discovered. The
most widely recognized mechanism for this purpose is
the Universal Description, Discovery, and Integration
(UDDI) [2] specification.

5. Framework: The framework layer defines conven-
tions and higher-level services that are important for an
intended class of applications. These standards make
it easier for applications to interoperate. Examples of
such frameworks include Microsoft’s .NET and Sun
Open Net Environment (ONE) [26].

In WSDL terms, a Service is a collection of ports. Each
port is a named association between a binding and some
form of network address. A binding is an association of a
portType with a set of protocols and message formats. A
portType defines a set of operations, which are defined by
the operation name and the types of the input, output and
fault messages that are associated with the operation. A
WSDL description of a service is an XML document that
defines the types, messages, portTypes, bindings and ports
associated with a service.

3 The Open Grid Services Infrastructure

The Open Grid Service Infrastructure extends the Web
Service model by defining a special set of service proper-
ties and behaviors. First, it separates the service naming
and service reference. A Grid Service Reference (GSR) is
a precise description of how to reach a service instance on
the network. GSRs can be complete WSDL descriptions of
a service instance. A Grid Service Handle (GSH), on the
other hand, is an immutable name for a service. The idea is
that a GSR may change over time as a service is moved or
upgraded. Hence a GSH may be bound to different GSRs
over time, but the GSH can always be resolved to the official
version of the service instance.

The most important contribution of OGSI is the specifi-
cation and restriction of Grid Service behavior through the
definition of a family of standard ports. The most impor-
tant of these is the Grid Service port. This port provides
dynamic service introspection, which is a common feature
of component architectures. By invoking queries on the re-
quired Grid Service port, a client can discover information
such as the other portTypes the service supports, the life-
time of the service instance, and other service-specific in-
ternal state data that the service wishes to expose. The in-
formation is conveyed back to the client in the form of XML
fragments called Service Data Elements (SDEs). Each SDE
is described by a Service Data Descriptor (SDD), which de-
fines the schema and the content of the SDE.

Another important set of portTypes in OGSI involve no-
tification. A client service can subscribe to changes in the
service data of a source service by sending its GSH or GSR
to the source service, via its NotificationSource portType.
The notification source pushes SDEs back to the subscriber
when they have changed. This is accomplished by invoking
a DeliverNotification operation on the subscribing service.
This provides a basic form of service composition, but as
we will argue below, it is not sufficient for a wide range of
Grid applications.1

4 The Common Component Architecture

The CCA has primarily emphasized building applica-
tions and components for massively parallel supercomput-
ers, but its semantics do not preclude its applicability to the
Grid.

The central idea in CCA is to build applications by com-
ponent composition. Two CCA components are composed
by connecting together their ports. Provides ports represent
functionality a component provides to other components.
Semantically, these are similar to simple RPC Web Service

1The Global Grid Forum (GGF) OGSI working group is currently con-
sidering extensions to this notification model, so it may be changed by the
time this article appears.

Provides Port of Type XUses Port of Type X

Component A Component B

Connection between ports of compatible types

Figure 2. Example of a component connec-
tion using CCA. A uses port of type X can
be connected to a provides port of the same
type.

ports. Uses ports represent functionality a component may
need. Uses ports are essentially bindable references to pro-
vides ports. After a uses port is connected to a provides port,
any functionality represented by the uses port is obtained by
invoking the connected provides port.

The CCA can be compared to the CORBA Component
Model (CCM). Like the CCA, the CCM also has the no-
tion of ports. The CCA uses port is analogous to the CCM
receptacle, and the CCA provides port is analogous to the
CCM facet. Unlike the CCM, however, the CCA envisions
connections as a dynamic, run-time activity. Ports can be
added, removed, and connected at run-time, and this is con-
sidered normal behavior. The CCM does not allow the addi-
tion or removal of ports. CCM connections are considered
part of application assembly, and not something the end user
would usually do dynamically. While the CCA also sup-
ports connections used in this manner, the more flexible na-
ture of CCA ports and connections allow it to be used to
as part of Problem Solving Environments (PSEs), in which
the end-user directly manipulates component connections
to solve the particular problem at hand.

Each port is identified by name and is described by an
interface of operations. The interface can be described by
the Scientific Interface Definition Language (SIDL) [8], or
a simple Java interface, or by an XML specification such as
WSDL. Figure 2 shows an example of a connection between
two components with compatible port types.

Like OGSA, CCA provides a standard set of services and
ports. The most important of these are the component cre-
ation service, which allows one component instance to cre-
ate an instance of another component, and the connection
service, which allows the programmer to bind a uses port
in one component to a provides port in another component.
The CCA community is working on combining these two
services into a single service named the Builder Service.

5 XCAT: A Web Service-Based CCA Imple-
mentation

In our previous work [5] we presented an implementa-
tion of the CCA specification. It was primarily built as a
research vehicle to test the viability of CCA for distributed
computing. The system was built using HPC++ [20] and
NexusRMI [6] as the underlying communication layer. The
binary format of the communication substrate was ill-suited
for exposing components as Web Services. We redesigned
and implemented the second version (now called XCAT
2.0) with SOAP [9] as the communication protocol. XCAT
focuses on leveraging the advantages of both the component
and Web Services world. It has been implemented in both
C++ and Java, and it provides seamless interoperability be-
tween components written in these two languages.

Every provides port in the XCAT implementation is a
Web Service with one portType. The port interfaces are de-
scribed using XML documents conforming to a schema that
has a subset of the features in WSDL2. These documents
are also used to generate the wrapper code that shields the
users from the low-level details of the communication sub-
strate used by XCAT. The generated code also handles the
required conversion for seamless interoperability between
C++ and Java based components.

XCAT uses the XSOAP [28] communication system for
messaging, which provides an elegant model for communi-
cation between objects in different address spaces. XSOAP
(formerly called SoapRMI) is an implementation of the Java
RMI model in Java (XSOAP-Java) and C++ (XSOAP-C++)
that uses SOAP as the communication protocol. XSOAP-
Java uses the dynamic proxy feature, introduced in Java
1.3, to dynamically generate stubs and skeletons for every
remote method invocation. Since C++ does not have intro-
spection capabilities, XSOAP-C++ uses statically generated
stubs and skeletons. We are currently working on porting
the Proteus Multiprotocol Library [7] to XCAT. This will
give us the option of using a multitude of communication
libraries that include SOAP, JMS [25] and binary protocols.

XCAT provides a Creation service that encapsulates
the component instantiation mechanism, thus shielding the
component developers from the low-level, implementation-
specific details of the instantiation mechanisms. This ser-
vice allows:

1. Creating instances of components from a set of envi-
ronment values, such as executable location, host ma-
chine, and creation mechanism. A new component can
be created in the same address space as the creating
component or it may be instantiated in a different one
on another host, in which case Globus GRAM (via the

2We are currently in the process of moving to full fledged WSDL for
this purpose.

Java CoG Kit [31]), or ssh (if no queuing is desired,
and Globus is unavailable) can be used. Upon success-
ful instantiation of the component, the creation service
returns a ComponentID that serves as a handle for the
new component.

2. Deleting instances of components by using their Com-
ponentIDs.

XCAT also provides a Connection service which allows
instantiated components to establish communication links
with one another via their typed ports. By providing an ex-
ternal mechanism for connecting ports, the port types and
descriptions themselves can remain free of any connection
semantics. This service allows:

1. Connection and disconnection between ports. This fa-
cilitates dynamically changing the application compo-
sition.

2. Exporting the ports of another component as one’s
own. Using this feature, wrapper components can ex-
pose selected functionality of other components. This
allows a component to present a simplified interface
to the end-users, shielding them from the unnecessary
details.

Other features of XCAT that are important for its use as
a distributed computing framework are enumerated below.

1. Security: Every remote method call can be inter-
cepted by the XCAT-Java framework before it invokes
a method on the provides port. A security service can
thus be interposed between the provides port and the
XCAT framework. This security service can inspect
the call and allow its passage if the security require-
ments have been met. The current version uses SSL
with X.509 certificates and supports both authentica-
tion as well as a simple authorization model based on
access control lists. This has been discussed in detail
in [13].

2. ComponentID: The ComponentID represents a trans-
portable handle to the component. XCAT uses the re-
mote reference mechanisms provided by XSOAP to
represent a ComponentID. This handle can be stringi-
fied and published to a registry service. It can then
be discovered by interested parties and used to invoke
methods on the component. The ComponentID in this
serialized form is an XML document that describes the
component. This XML document can be converted to a
WSDL document using a tool provided by the XSOAP
toolkit.

3. Exceptions: XCAT provides an exception model for
communication between components. All exceptions
thrown during communication between components

are caught and returned to the component that initi-
ated the communication. The exceptions are mapped
to SOAP faults on the wire and then to corresponding
exceptions on receiving end of the initiating compo-
nent.

4. Events and Notification: XCAT-Java uses an event no-
tification system called XMessages [29], which is a
messaging middleware system designed for Grid ap-
plications that reliably delivers XML messages from
publishers to subscribers even if a subscriber moves to
a new location, or a publisher is restarted.

6 XCAT and OGSI

The CCA and OGSI specification share many design fea-
tures. However, there are also some differences. In this sec-
tion we discuss issues involved in mapping the requirements
of OGSI into the XCAT framework.

1. In the CCA world, a component can have more than
one instance of a port of the same type, where each in-
stance is unique. However, in the Web Services world,
if a service has several ports of the same type (with
possibly different bindings or addresses), the ports pro-
vide semantically equivalent behavior. As a result, the
same operation on different ports of the same type af-
fects the state of the service in exactly the same way.
This is not true for CCA components. Hence, each
provides port of an XCAT component is mapped to
a separate Web Service, so that they can be uniquely
identified and need not exhibit semantically equivalent
behavior.

Each XCAT component has a provides port with the
standard OGSI Grid Service functionality. SDEs con-
taining references to all provides ports of the compo-
nent are added to the Grid Service port, thus providing
a list of services (provides ports) that can be accessed.

2. The ComponentID of a CCA based component
uniquely identifies the component. It can be repre-
sented as a string and each CCA implementation can
convert it to its native format. For XCAT, the string
representation functions as the GSH, while the WSDL
document functions as the GSR. However, in XCAT,
the GSH does not refer to a particular provides port of
the component, but to the entire component. In OGSI,
the functionality for mapping a GSH to a GSR is pro-
vided by the HandleResolver service. By default,
this mapping is internal to XCAT and can be made
available as an optional service.

In the OGSI specification, a GSH is required to be an
URI. However, in CCA implementations there is no

restriction on the format of the string representation of
a ComponentID.

3. Most component specifications provide mechanisms
for managing the lifecycle of components. In OGSI,
lifecycle management is handled by the Create-
Service operation on a Factory service, and the
Destroy operation on the Grid Service port of the
service. In XCAT, this functionality is provided by
the Creation service, which can be easily modified to
invoke the CreateService operation on a Fac-
tory, and the Destroy operation on the compo-
nent’s Grid Service port.

4. OGSI messaging, in its current form, is based on a
very simple, point-to-point, non-reliable event push
model. Messages result only from changes in defined
service data. However, Grid Services may wish to
communicate more than just simple service data be-
tween themselves asynchronously. The use of XMes-
sages in XCAT-Java provides a network of reliable
message channels which store messages until they ex-
pire or they are explicitly removed from the system. It
is possible to retrieve historical messages as the chan-
nel uses a persistent store. A message can be an arbi-
trary XML fragment such as an OGSI SDE. In addi-
tion to having messages pushed to clients, a client can
pull messages from the channel in batches. This makes
the client more mobile and firewall-friendly. XCAT
provides a richer model for messaging and notification
than OGSI.

5. OGSI has a Factory portType for instantiating services.
Using XCAT, we have implemented an extended ver-
sion of a distributed factory model for creating in-
stances of applications [19]. Our generic application
factory service takes a description of a connected net-
work of components as input and creates an applica-
tion coordinator component instance which, in turn,
creates and links together instances of the described
network of components. A reference to the new man-
ager instance is returned to the client of the factory ser-
vice.

Our current implementation does not conform to OGSI
in some small details. This is because the specification is
still being developed. However, we consider OGSI to be
important and will continue to work towards an implemen-
tation that fully merges it with the CCA standard.

7 Composition in Space: Component Assem-
bly

Using a component architecture requires describing the
various components that constitute an application along

Standard
 Grid
 Service

GSGS

Client
Grid Service

Component A Component B

Figure 3. Each XCAT component has one pro-
vides port that implements the OGSI Grid Ser-
vice Port Type. All other provides ports are
first-class Web service ports as well as CCA
ports. Components can be connected using
CCA connection primitives and XCAT uses
ports can be connected to conventional Web
Services.

with the interconnections between them. In this model
which we call, composition in space, component instances
are created on specified hosts and then connected together
as a distributed system. It is also possible to create meta-
components which are themselves created by composing a
number of components together.

To accomplish this kind of composition, the XCAT Ser-
vices APIs can be used directly by the user to write simple
Java programs that can use remote component instances.
The Java program can use the Creation Service to create
components and obtain references to running instances. The
program can then use the Connection Service to connect the
provides and uses ports of these components. The Naming
Service can be used to store and retrieve handles to running
instances of components. It is also possible to invoke spe-
cific methods on the ports of various components.

The above method (of using Java control programs) is
only suitable when we have a fixed set of components which
need to be launched and monitored. A more dynamic mech-
anism to create and manage components on the fly, without
the need for any recompilation, is desirable. We use Jython
scripts for this purpose. Jython is a pure Java implemen-
tation of the Python language. Since XCAT has an imple-
mentation in Java, we can provide a Jython interface to the
XCAT libraries.

Apart from the above two ways to orchestrate com-
putations (Java control programs and Jython scripts),
application-specific GUIs can be easily written and layered
on top of the services provided by XCAT.

As illustrated in Figure 3, we can combine component
instances together using the XCAT composition to form
composite Grid Services which may be accessed by any
Grid Service client.

8 Composition in Time: Workflow

One of the most compelling reasons for the acceptance
of the Web service technologies is their ability to combine
existing processes and services into new ones that are more
useful. Workflow can be defined as an organization of pro-
cesses into a well-defined flow of operations, and can be
thought of as the composition of services over time to ac-
complish a specific goal. This is one area that well surpasses
the current OGSI specification.

While the composition of components in space defines
how the components are logically connected at any point of
time, workflow systems define ways in which flow of con-
trol and data can be expressed. As an example, an activity X
in a workflow system may involve invoking operations P on
service A, Q on service B, and R on service C (in that order),
while service C may itself be composed of components D
and E in space. Thus, these compositions are orthogonal,
and can be applicable at the same time.

Currently, workflow systems for Grid and Web Services
are evoking a high degree of interest, with projects such
as WSFL [23], BPEL4WS [12], and GSFL [22] investigat-
ing the various aspects of workflow in their respective do-
mains. However, most workflow systems for Web Services
do not effectively address composition in space, because
WSDL 1.1 does not completely define outgoing operations,
i.e. where the Web Service itself is the caller. However,
XCAT combines the benefits of a standard component ar-
chitecture that uses component assembly as a mechanism
to provide composition in space, and that of a Web/Grid
Services architecture that uses a workflow specification to
provide composition in time. Hence, we can leverage and
apply the work done in component assembly and workflow
systems to design a meta-composition system that will pro-
vide both composition in space and time, which is not very
easily done if only one of these architectures is applicable.

9 XCAT Applications

The XCAT Science Portal [14] uses the XCAT imple-
mentation as the underlying model for launching distributed
applications on the grid. Some projects that use the XCAT
system are IU Xports [14], NCSA’s Weather Research
and Forecasting, (WRF) and Chemical Engineering [21],
GRAPPA [30], Collision Risk Assessment (CRASS) [10],
and Linear Systems Analysis (LSA) [10]. To illustrate the
use of XCAT for composition of components in state and
space, we show a typical scenario in Figure 4, which is
seen in applications mentioned above, such as CRASS and
Chemical Engineering.

As shown in the figure, the whole application is steered
by an Application Coordinator, which is responsible for the

 Component
Worker

Component

Visualizer
Component

Application Coordinator Persistent Event Channel

2. Master/Worker
Simulation Complete

3. Receive end of
simulation event

4. Launch vis−
ualizer with data
obtained from
simulation

Component composition in space Composition in Time

1. Launch Master/Workers

 Worker

Master Component

Figure 4. A scenario illustrating component
composition in space and time using XCAT.

composition of the other XCAT components. The Appli-
cation Coordinator first launches a Master component and
a set of Worker components, and makes appropriate con-
nections between them. The Application Coordinator then
subscribes to the Event Channel in order to receive a Simu-
lation Complete Event from the Master component. When
the simulation is complete, the Master sends the data from
the simulation as an asynchronous event to the Event Chan-
nel. The Event Channel stores this data in persistent storage
(for possible future use), and then relays it to the Applica-
tion Coordinator. On receiving this event from the channel,
the Coordinator spawns a local Visualizer, sending it the
data just received. The Visualizer then visualizes the results
from the simulation. Thus, XCAT enables composition in
space (Master and Worker components), as well as in time
(Master/Worker and Visualizer components), so as to allow
orchestration of complex distributed applications.

10 Conclusions

We have presented a distributed software component ar-
chitecture, XCAT, for Grid computing that is compatible
with the Common Component Architecture specification
(CCA). We also discuss our work on merging this speci-
fication with the Open Grid Service Infrastructure (OGSI).
The two specifications are still evolving and we plan to con-
tinue working towards building a system that unifies the two
models.

CCA components have two types of ports. One type of
port, which is called a provides port, is identical to a Web
Service port. The other type, called a uses port, is an ex-
ternal reference from one component to a provides port on
another component that can be bound at runtime. XCAT
can also make use of an XML-based messaging system that

provides a simple way for components to publish or sub-
scribe to messages. This message system is substantially
richer than the current OGSI notification scheme.

We have argued that the process of building distributed
applications can be accomplished by either composing a
collection of concurrently running components by linking
their uses and provides ports (composition in space), or by
scheduling the workflow between components and synchro-
nizing activities based on the publication of application spe-
cific events (composition in time). There will be many cases
when both schemes can be used together, and XCAT pro-
vides a mechanism to do so.

References

[1] The Blocks Extensible Exchange Pro-
tocol Core (BEEP), March 2001.
http://www.ietf.org/rfc/rfc3080.txt.

[2] Universal Description Discovery and Integration of
Business for the Web (UDDI), September 2000.
http://www.uddi.org/specification.html.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolinski.
Toward a Common Component Architecture for High-
Performance Scientific Computing. In Proceedings of
the 8th IEEE International Symposium on High Per-
formance Distributed Computation, August 1999.

[4] D. Bartlett. CORBA Component
Model (CCM): Introducing next genera-
tion CORBA, April 2001. http://www-
106.ibm.com/developerworks/webservices/library/co-
cjct6.

[5] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govin-
daraju, N. Mukhi, B. Temko, and M. Yechuri. A Com-
ponent Based Services Architecture for Building Dis-
tributed Applications. In Proceedings of Ninth IEEE
International Symposium on High Performance Dis-
tributed Computing Conference, August 2000.

[6] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian,
E. Akman, and D. Gannon. Java RMI Performance
and Object Model Interoperability: Experiments with
Java/HPC++. Concurrency and Experience, 1998.

[7] K. Chiu, M. Govindaraju, and D. Gannon. The Pro-
teus Multiprotocol Library. In Proceedings of Super-
computing 2002, November 2002.

[8] N. Elliott, S. Kohn, and B. Smolinski. Language Inter-
operability for High-Performance Parallel Scientific

Components. In Proceedings of International Sympo-
sium on Computing in Object-Oriented Parallel Envi-
ronments (ISCOPE 1999), September 29 - October 2
1999. San Francisco, CA.

[9] D. Box et al. Simple Object Access Protocol 1.1, May
2000. http://www.w3.org/TR/SOAP.

[10] D. Gannon et al. Programming the Grid: Distributed
Software Components, P2P and Grid Web Services for
Scientific Applications. In Special Issue on Grid Com-
puting, Journal of Cluster Computing, July 2002.

[11] E. Christensen et al. Web Services Descrip-
tion Language (WSDL) 1.1, March 2001.
http://www.w3.org/TR/wsdl.

[12] F. Curbera et al. Business Process Execution Lan-
guage for Web Services, Version 1.0, July 2002.
http://www-106.ibm.com/developerworks/library/ws-
bpel.

[13] L. Ramakrishnan et al. An Authorization Framework
for a Grid Based Common Component Architecture.
In Proceedings of the 3rd International Workshop on
Grid Computing, November 2002.

[14] S. Krishnan et al. The XCAT Science Portal. In Pro-
ceedings of Supercomputing 2001, November 2001.

[15] S. Tuecke et al. Grid Service Specification, October
2002. http://www.gridforum.org/ogsi-wg/drafts/draft-
ggf-ogsi-gridservice-04 2002-10-04.pdf.

[16] I. Foster and N. Karonis. A Grid-Enabled MPI: Mes-
sage Passing in Heterogeneous Distributed Comput-
ing Systems. In Proceedings of Supercomputing 1998,
November 1998.

[17] I. Foster and C. Kesselman. The GRID: Blueprint for
a New Computing Infrastructure. Morgan-Kaufmann,
1998.

[18] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
Services for Distributed System Integration. Com-
puter 35(6), 2002.

[19] D. Gannon, R. Ananthakrishnan, S. Krishnan,
M. Govindaraju, L. Ramakrishnan, and A. Slominski.
Grid Computing: Making the Global Infrastructure a
Reality, chapter 9, Grid Web Services and Application
Factories. Wiley, 2003.

[20] D. Gannon, P. Beckman, E. Johnson, and T. Green.
Compilation Issues on Distributed Memory Systems,
chapter 3 HPC++ and the HPC++Lib Toolkit.
Springer-Verlag, 1997.

[21] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski,
D. Gannon, and R. Bramley. XCAT 2.0: Design and
Implementation of Component based Web Services.
Technical report, Department of Computer Science,
Indiana University, June 2002. TR562.

[22] S. Krishnan, P. Wagstrom, and G. von Laszewski.
GSFL: A Workflow Framework for Grid Services.
In Argonne National Laboratory, Preprint ANL/MCS-
P980-0802, August 2002.

[23] F. Leymann. Web Services Flow Language
(WSFL 1.0), May 2001. www-4.ibm.com/-
software/solutions/webservices/pdf/WSFL.pdf.

[24] F. Manola and E. Miller. RDF Primer, January 2003.
http://www.w3.org/TR/rdf-primer.

[25] Sun Microsystems. Java Messaging Service, March
2003. http://java.sun.com/products/jms.

[26] SUN Microsystems. Sun Open Net Environment,
March 2003. http://www.sun.com/sunone.

[27] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra,
C. Lee, and H. Casanova. GridRPC : A Remote
Procedure Call API for Grid Computing, July 2002.
www.gridforum.org/Meetings/ggf5/pdf/APM11.pdf.

[28] A. Slominski, M. Govindaraju, D. Gannon, and
R. Bramley. Design of an XML based Interoperable
RMI System : SoapRMI C++/Java 1.1. In Proceed-
ings of the International Conference on Parallel and
Distributed Processing Techniques and Applications,
Las Vegas, Pages 1661-1667, June 25-28 2001.

[29] A. Slominski, Y. Simmhan, A. Rossi, M. Far-
rallee, and D. Gannon. XEvents/XMessages:
Application Events and Messaging
Framework for Grid, October 2002.
http://www.extreme.indiana.edu/xgws/papers/xevents-
xmessages tr.

[30] Indiana University. Grid Access Por-
tal for Physics Applications, March 2003.
http://iuatlas.physics.indiana.edu/grappa.

[31] G. von Laszewski, J. Gawor, S. Krishnan, and K. Jack-
son. Grid Computing: Making the Global Infras-
tructure a Reality, chapter 25, Commodity Grid Kits
- Middleware for Building Grid Computing Environ-
ments. Wiley, 2003.

