
XCAT 2.0: A Component-Based Programming Model for Grid Web Services

Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu,
Aleksander Slominski, Dennis Gannon, Randall Bramley

Department of Computer Science, 150 S Woodlawn Avenue.
Indiana University, Bloomington, IN 47405. Phone: (812) 855-8305.

Abstract

The most important recent development in Grid systems is
the adoption of the web services model as a basic architec-
ture for Grid services. This paper describes a component
framework for building distributed Grid applications that
is consistent with that model. The framework, called XCAT,
is based on the U.S. Department of Energy Common Com-
ponent Architecture but with an implementation based on
the standard web services stack. Using this framework, it is
possible for an application programmer to build distributed
applications by composing software components running
on remote resources. The result is a transient, stateful web
service that represents the executing application instance.
This paper describes the basic architecture of XCAT and a
programming/scripting model for building the composed
application services.

Key Words: Computational Grids, Component Architec-
tures, Web Services

1 Introduction

A computational Grid [10] is a set of hardware and software
resources that provide seamless, dependable and pervasive
access to high-end computational capabilities. The Grid has
the potential to provide programmers with the capability
to explore a new generation of interesting applications
that can leverage teraflop computers and petabyte storage
systems interconnected by gigabit networks. Given the
heterogeneous nature of the computing environment on the
Grid, programmers have to be concerned with many low
level details. However, just as most computer users today
do not have to write programs, most end users of the Grid
should only utilize grid-enabled applications. The success
of the Grid will largely depend upon the development of
tools and applications that can exploit its potential, and
make it easy for the end user to use them.

A programming model for the Grid consists of tools,
conventions, protocols, language constructs and a set of
libraries that encapsulate a useful functionality. A high
level programming language paradigm that can shield the
users from the low level details of each resource is the
key to building effective applications for the Grid. The
abstractions provided by the programming model can
simplify development of complex Grid applications. The
design of a standard programming model will also result
in division of labor between users and developers of the
various parts of an application. Currently, there is no
consensus on what programming model is appropriate for
the Grid. Examples of various models currently in use
include MPI [29] for message passing, Condor [32] for
high throughput, and HPF [26] for data parallelism.

The software engineering benefits of component based
software are well known: they enable encapsulation and
facilitate in the modular construction of programs and
the reuse of existing components, resulting in improved
application productivity. Component architectures are well
suited for rapid prototyping of complex and distributed
applications. They provide a natural way to incorporate
existing scientific software code base as components to
build applications. These systems are of immense utility
to scientists who want to build applications by composing
existing software components which exploit specialized
computing and algorithmic resources. Component based
programming has gained widespread acceptance in both
the industry and academia. The Microsoft COM [20]
component frameworks have been fundamental to ap-
plication interoperability Windows based applications.
Now their web services oriented .NET framework is also
component based and is gaining widespread importance.
In the CORBA world, the Object Management Group has
released a specification for the Corba Component Model
(CCM) [25] and Java Beans [24, 6] and EJB [21] have been
popular component standards for Java based applications.

1

Component based models hold great promise to serve as
an effective programming model for the Grid. The end
user can be provided a rich palette of tools to program by
component assembly, rather than by component develop-
ment, and the lower level details can be handled by the
model developers. Our research with XCAT 2.0 (called
XCAT herewith) provides an implementation and design
of one such model. XCAT addresses Grid requirements by
providing a component based programming model (with a
scripting interface) that is supported in C++ and Java and a
rich set of services that application programmers can use.
Thus, the end user only needs to be concerned with user
domain problems.

The current trend in Grid middleware is to adopt the
emerging web services model. Each Grid service is defined
by a Web Service Description Language [2] document and
accessed through the protocol mentioned as the binding for
the service. This approach is being actively pursued by the
Global Grid Forum [12] through the Open Grid Services
Architecture (OGSA) project.

The CCA [3] project is an initiative by DOE laboratories
and universities to develop a common architecture for
building large scale scientific applications from well tested
software components. The primary emphasis of CCA
has been on building applications and components for
massively parallel supercomputers, but there is nothing in
the CCA semantics that prohibit it from working on the
Grid. Though originally intended to provide a source-level
platform, the CCA is now moving to defining a binary-level
platform. This will allow a compiled component to run on
any conforming implementation.

The central idea in CCA is to build applications by compo-
sition. The way two CCA components are composed is by
connecting together their ”ports”. Provides ports represent
functionality a component provides to other components.
Uses ports represent functionality a component may need.
Uses ports are essentially bindable references to provides
ports. After a uses port is connected to a provides port,
any functionality represented by the uses port is obtained
by invoking the connected provides port. 1Each port

1The CCA can be compared CORBA Component Model (CCM). Like
the CCM, the CCA also has the notion of ports. The CCA uses port is
analogous to the CCM receptacle, and the CCA provides port is analogous
to the CCM facet. Unlike the CCM, however, the CCA envisions connec-
tions as a dynamic, run-time activity. Ports can be added, removed, and
connected at run-time, and this is considered normal behavior. The CCM
does not allow the addition or removal of ports. CCM connections are
considered part of application assembly, and not something the end user
would usually do dynamically. While the CCA also supports connections
used in this manner, the more flexible nature of CCA ports and connections
allow it to also be used to build problem-solving environments (PSEs), in

Uses Port of
Type X

Provides Port of
Type X

Component A Component B

Figure 1. Example of a component connec-
tion using CCA. A uses port of type X can
be connected to a provides port of the same
type.

is identified by name. Figure 1 shows an example of a
connection between two components with compatible port
types.

In our previous work [4] we presented an implementation
of the CCA specification. It was primarily built as a re-
search vehicle to test the viability of the CCA specification
for distributed computing. The system was built using
HPC++ [11] and NexusRMI [5] as the underlying commu-
nication medium. The binary format of the communication
substrate did not lend itself to converting the components
as web services. We redesigned and implemented the
second version (now called XCAT 2.0) with SOAP [7] as
the communication protocol. XCAT focuses on leveraging
the advantages of both the component and web services
world. It implements all the layers of the Web Service
stack. Since the OGSA [1] specification is also based on
Web Services, we are interested in exploring the design
changes that need to be made so that XCAT components
can be OGSA compliant.

The XCAT system is an implementation of the CCA
specification. It has been implemented in both C++ and
Java and provides seamless interoperability between com-
ponents written in these two languages.

In this paper we present the following:

1. The design of the different layers of the Web Service
protocol stack in XCAT.

2. Description of the various XCAT services.

3. An XCAT based programming model for the Grid.

4. A discussion on XCAT with reference to the OGSA
model.

which the end-user directly manipulates component connections to solve
the particular problem at hand.

2 Web Services

A Web Service is an interface to application functionality
that is accessible using well known Internet standards and is
independent of any operating system or programming lan-
guage. The use of XML messaging systems for interacting
with web services is now widely considered as the de facto
standard. Web services represent a shift in paradigm from a
human-centric to an application-centric web. This does not
mean that humans are out of the loop, but just that the in-
teraction between application servers and web browsers can
now be automated to a much greater extent.

Stack Layer Example Technologies
Framework .NET, Sun ONE
Discovery UDDI
Description WSDL, RDF
Messaging SOAP
Transport HTTP, SMTP, FTP, BEEP

Figure 2. Different layers of the Web Service
stack and the example technologies for each
layer.

The various protocols composing a Web Service are com-
monly divided into a five-layer stack as shown in Fig-
ure 2. This stack is evolving with various groups working
on defining the standards.

1. Discovery: This layer serves as a registry that enables
web services to be published and discovered. The
most widely recognized mechanism for this purpose is
the Universal Description, Discovery, and Integration
(UDDI) [30] specification.

2. Description: Description of a Web Service includes
the available interface, network, transport and pack-
aging protocol that it supports. The Web Service
Description Language (WSDL) [2] is a widely ac-
cepted standard for this purpose. Resource Descrip-
tion Framework (RDF) [33] is another specification
that can be used, though it is less popular than WSDL.

3. Messaging: This layer represents the process of mar-
shaling and unmarshaling of application data so that it
can moved over the network. Even though HTML has
been widely used for the Web, it is not a suitable format
for marshaling because it only describes the presenta-
tion of data, and not its semantics. XML, on the other
hand, has gained widespread acceptance for represent-
ing data for web services as it allows for a representa-
tion in accordance with the meaning of the data. SOAP
is a protocol that uses XML as its data format and is the
de facto standard for messaging in web services.

Framework Layer: Creation, Connection and Registry Service, Application
Manager

Service Discovery Layer: LDAP

Service Transport Layer:: HTTP

Service Description Layer: Subset of WSDL

Service Messaging Layer: XSOAP

Figure 3. Each layer of the Web Services stack
has a corresponding layer in each XCAT com-
ponent.

4. Transport: The transport layer is used to refer to the
technology that is used to transfer messages between
applications. The choices for this layer include HTTP,
SMTP, FTP and BEEP [14].

5. Framework: The framework layer provides hooks to
other Web Service layers so that applications can use
them to build distributed systems. Examples of such
frameworks include Microsoft’s .NET and Sun Open
Net Environment (ONE) [22].

2.1 XCAT and Web Services

Interoperability amongst different implementations of web
services is a key concern. Towards this goal, the research
community is working towards defining common wire for-
mats (XML), protocols (HTTP and SOAP-RPC) and meta-
data description (WSDL). With XCAT, we have worked to-
wards incorporating these standards in our implementation
and can expose each component as a Web Service. Figure 3
shows how each layer of the web services stack has a corre-
sponding layer in XCAT.

1. Framework: XCAT and the CCA provide the realiza-
tion of the web services framework layer. We describe
this in additional detail in Section 2.1.1.

2. Discovery: Web services need discovery mechanisms
similar to introspection in programming languages.
These mechanisms allow clients to examine web ser-
vices (XCAT components) and discover their proper-
ties. XCAT uses an LDAP based registry service (see
section 3.3) for the purpose of registering and discov-

ering component instances. We plan to use an UDDI
implementation in the near future.

3. Description: The interfaces to XCAT components
(called ports in the CCA world) are described using
XML documents conforming to a Schema. These doc-
uments are even used to generate the wrapper code that
shields the users from the low level details of the com-
munication substrate used by XCAT. The generated
code also handles the required conversion for seamless
interoperability between C++ and Java based compo-
nents. Every provides port in the XCAT implemen-
tation is a Web Service with one portType. The Web
Service is described by a schema that has a subset of
the features in WSDL. We are currently in the process
of moving to full fledged WSDL for this purpose.

4. Messaging: XCAT uses the XSOAP [27] communi-
cation system for messaging. It provides an elegant
model for communication between objects in different
address spaces. XSOAP (formerly called SoapRMI)
is an implementation of the Java RMI model in
Java (XSOAP-Java) and C++ (XSOAP-C++) that uses
SOAP as the communication protocol. XSOAP-Java
uses the dynamic proxy feature, introduced in Java 1.3,
to dynamically generate stubs and skeletons for every
remote method invocation. Since C++ does not have
introspection capabilities, XSOAP-C++ uses statically
generated stubs and skeletons. We are currently work-
ing on porting the Proteus Multiprotocol Library [16]
to XCAT. This will give us the option of using a mul-
titude of communication libraries that include SOAP,
JMS [28] and binary protocols.

5. Transport: Even though the SOAP protocol does not
mandate the use of a specific transport protocol, HTTP
is the most widely used. Thus, XSOAP also uses the
HTTP protocol for transferring messages between ap-
plications.

2.1.1 XCAT Framework

1. Framework Implementation: Every remote method
call is intercepted by the XCAT-Java framework be-
fore it invokes a method on the provides port. This
design allows for a security service to be interposed
between the provides port and the XCAT framework.
This security service can inspect the call and allow it to
go through if the security requirements have been met.
The framework makes extensive use of dynamic prox-
ies for every call. This obviates the need for generating
glue code for every port type.

2. ComponentID: The ComponentID represents a handle
to the component that can be shipped to different loca-
tions. XCAT uses the remote reference mechanisms

Creation
Service

Registry
Service

Connection
Service

Other Services

Jython Scripting Code to
Compose Applications

CCA Specification
Implementation

Globus
GRAM

LDAP

Grid
Event

Service

XCAT
Specific

Figure 4. Example of a typical XCAT process
that contains user code accessing different
services and the implementation of the CCA
specification. Each of the services is an in-
terface to a specific implementation.

provided by XSOAP to represent an ComponentID.
This handle can be stringified and stored in registries.
It can then be retrieved by interested parties and used
to invoke methods on the component. The Componen-
tID in this serialized form is represented as an XML
document that describes the component. This XML
document can be converted to a WSDL document us-
ing a tool provided by the XSOAP toolkit.

3. Exceptions: XCAT provides an exception model for
communication between components. All exceptions
thrown during the course of communication between
components are caught and returned to the component
that initiated the communication. The exceptions are
mapped to SOAP faults on the wire and mapped to
language specific exceptions before handing it to the
initiating component.

4. XCAT Services: The CCA specification is a light
weight specification for software components. It spec-
ifies the required behavior for components but does not
specify how the components are discovered, created or
connected. We have adopted a services based approach
for the above, which can easily be modified to con-
form to the OGSA specifications. The various parts of
an XCAT process are shown in Figure 4. The various
XCAT Services are described in Section 3.

3 XCAT Services

3.1 Creation Service

The Creation Service is a implementation-specific compo-
nent that allows a component to instantiate other compo-
nents. This service completely encapsulates the component

instantiation mechanism thus shielding the component de-
veloper from the low-level implementation-specific details
of the instantiation mechanism. The service exports a pro-
vides port (called CreationService) with the following func-
tionality:

1. Create instances of components: The createIn-
stance method accepts an Environment Ob-
ject and a timeout value as parameters. The envi-
ronment object encapsulates the instantiation specific
information such as executable location, host machine
to execute on, the mechanism to be used for instanti-
ation, command line parameters, process environment
variables such stdin, stdout and any other information
that the user deems as necessary. It is maintained as
a set of (name, value) pairs. Upon successful instan-
tiation of the component, the creation service returns
a ComponentID that serves as as handle for the new
component. The timeout parameter specifies the time
that the creation service waits for the component to be
created, after which it throws an exception.

2. Delete instances of components : The deleteIn-
stance method destroys the component specified by
a given ComponentID.

A new component can be created in the same address space
as the creating component or it may be instantiated in a dif-
ferent physical address space on a different host. The in-
stantiation mechanisms available for XCAT are :

1. GRAM: This uses the Grid Resource Allocation Man-
agement (GRAM) [17] protocol for component cre-
ation. The GRAM protocol is provided as a part of the
Globus toolkit [19], and we use the Java CoG kit [18]
client implementation for this purpose.

2. (R/S)SH: Components can be created using the RSH
and SSH protocols in which case the components will
be launched inside a shell after logging into the target
machine using (R/S)SH. This protocol is typically used
during the prototyping and debugging stage.

3. exec: Components are launched onto the local-host us-
ing a process exec mechanism. Here the component
runs in a separate address space from the launcher, but
on the same host.

4. proc: Components that use this mechanism are
launched in the same process as the creating compo-
nent. Future versions of XCAT will provide colloca-
tion optimization for calls between components in a
single address space.

3.2 Connection Service

The Connection Service is a framework-specific mechanism
by which instantiated components establish communication
links with one another via their typed ports. All the methods
use the ComponentID to uniquely identify a component. By
providing an external mechanism for connecting ports, the
port types and descriptions themselves can remain free of
any connection semantics. The following is a list of the
functionality provided by the service:

1. Connect and Disconnect: A component can use this
service to connect or disconnect its own ports to an-
other component. It can also connect two other com-
ponents for which it has the references.

2. Export: The Connection Service can also be used to
”export” ports of components for which a Componen-
tID is known, i.e., component A can provide provides
ports of component B as if they belonged to A. To
other components the

�

provides port will appear to be-
long to A, not to B. Moreover, if a component does
not wish to provide one of its ports to the entire world,
it can provide it to other components specifically on a
”need to know” basis.

3. Provides as Uses: The provideTo() method pro-
vides a provides port belonging to the same component
as a uses port belonging to another component.

3.3 Naming/Registry Service

The Naming or Registry Service allows components to
register references to themselves, which can be retrieved
later. The Naming Service is currently based on the Java
RMI Registry API. The current interface definition for the
Naming Service provides the following features:

1. Bind and Rebind: Can be used to bind remote refer-
ences of components with the registry.

2. List and Lookup: This allows users to browse the cur-
rent bindings in the registry.

3. Unbind: To remove an existing binding.

Currently, we are working on incorporating authentication
and authorization for retrieving the references, and modify-
ing the implementation to conform to the JNDI API [23],
so that we can use hierarchical naming schemes, for greater
scalability.

3.4 Application Manager Service

The scriptable application manager is a generic XCAT
component, which can act as a controller for the actual

applications. The actual functionality of the manager is
defined by the script it loads and executes inside a Jython
interpreter, and this is the way it differs from other existing
XCAT components. This leads to the ability to change
the behavior of the manager at run time, and the ability
to manage various applications with minimal compilation.
The manager also has the capability of sprouting predefined
CCA ports at runtime, so that it can communicate with
other CCA components, and use the services provided by
them.

The application manager contains a Jython interpreter into
which the remote script gets downloaded. The manager ex-
ports a CCA provides port called the ScriptPort, which has
methods that are required to manage the applications. In
particular, it has a method runScript(), which down-
loads the script into the interpreter, and begins execution.
This returns an integer to the callee, identifying the script
execution. Using this identifier, the script in execution can
be killed using the killScript() method. The run-
Script() method can be blocking or non-blocking.
The application managers have been used successfully to
manage a variety of applications, e.g. the first generation
NCSA chemical engineering applications [9], the IU Xports
application [9], the NCSA Weather Research and Forecast-
ing (WRF) applications, and the next generation NCSA
chemical engineering application, which is described in sec-
tion ??.

4 Programming Model

To use a component architecture effectively, it is important
to be able to describe the various components that consti-
tute an application along with its interconnections. It should
be possible to create “metacomponents” which are them-
selves created by composing a number of components to-
gether. XCAT provides a Jython based programming model
for the end user to create components and orchestrate com-
putations. The programming model consists of a set of APIs
to facilitate user access the entire range of XCAT function-
ality via Jython scripts. In this section we present the pro-
gramming model and show an example of its usage. XCAT
also provides the conventional programming model of us-
ing Java based programs to create and control applications.
We describe both the approaches in this section.

4.1 Java Control Programs

The XCAT Services APIs can be used directly by the
user to write simple Java control programs. The user can
use the Creation Service to create components and get
references to running instances. The user can then use the
Connection Service interface to connect the provides and

uses ports of these components. The Naming Service can
be used to store and retrieve handles to running instances of
components. It is also possible to invoke specific methods
on the ports of various components.

Snippets from a sample java control program is shown in
Appendix A. The listed code shows how two components,
a printer and a generator can be created using the create-
Instance() method of the Creation Service, The “testOb-
jectUsesPort” of the generator is then connected with the
“testObjectProvidesPort” of the printer, using the connect()
method of the Connection Service. A uses port of type “Us-
esControl” is added dynamically using the registerUs-
esPort() method, and it is connected to the same pro-
vides port of the generator component. The start()
method is then invoked on the uses port, to start the exe-
cution of the components.

4.2 Jython Scripting

The above method (of using Java control programs) is only
suitable when we have a fixed set of components, which
are to be launched, and monitored. It is desirable to have
a more dynamic mechanism to create and manage compo-
nents on the fly, without the need for any recompilation. We
use Jython scripts for this purpose. Jython is a pure Java im-
plementation of the Python language. Since XCAT has an
implementation in Java, we can provide a Jython interface
to the XCAT libraries. The list of various features provided
by the scripting interface include the following:

1. Provide the name of the host on which the component
needs to be instantiated.

2. Set a creation mechanism that will be used to launch
the component on the Grid.

3. Get a handle to the various XCAT services.

4. Launch a component on the host using the requested
mechanism.

5. Connect and disconnect ports of different components.

6. Invoke methods on the ports of various components.

Apart from the above two ways to orchestrate computa-
tions (Java control programs and Jython scripts), applica-
tions specific GUIs can be easily written and layered on
top of the services provided by XCAT. We are also work-
ing on a workflow description for computations so that the
end user does not need to write any Java or Jython code,
but rather interact with the system, using a simple client,
e.g. a web browser. We are investigating techniques like
DAGMan [31] and WSFL [13] for the same.

5 XCAT and OGSA

The Open Grid Services Architecture (OGSA) specifica-
tion [1] represents an effort to develop a model that meets
the challenges of integrating services across a distributed
and heterogeneous environment. It builds on top of web
services with a set of conventions (interfaces and behav-
iors) that define the interaction of clients with OGSA ser-
vices. These conventions include a set of useful standard
interfaces to discover service metadata, control service life-
cycle (using GridService portType) and to create new ser-
vice instances (using Factory portType). In this section we
discuss some OGSA features with reference to XCAT.

1. Port Type: In XCAT the port type is represented as
a unique string that refers to the name of the XML
schema document that describes it. The OGSA port
type is identified by a QName, which is also a string.

2. GridService Port Type: This port type must be sup-
ported by every OGSA complaint service. This port
type contains methods used for service lifetime man-
agement and introspection. The XCAT framework cre-
ates a few services by default for every component,
creation and connection services for example. It will
be easy to add the requirement for a GridService port
type as a default service provided by every XCAT com-
ponent.

3. OGSA Services: The OGSA services are analogous
to the provides ports in the XCAT world. XCAT based
applications are composed by connecting compatible
uses and provides ports. Web services can be viewed as
unnamed provides ports and specialized factories can
be used to compose applications consisting of XCAT
components and OGSA services.

4. Introspection: Web services need discovery mech-
anisms similar to introspection in programming lan-
guages. These mechanisms allow clients to exam-
ine web services to discover their properties. In the
OGSA world this data is called service metadata. It can
be retrieved by invoking the findServiceData()
method on the GridService port type. XCAT provides
an API to retrieve meta information on ports that in-
cludes names, types and properties.

6 Sample Applications

The XCAT Science Portal [9] uses the XCAT implemen-
tation as the underlying model for launching distributed
applications on the grid. Some applications that use the
XCAT system are the IU Xports [9], the NCSA Weather
Research and Forecasting (WRF), GRAPPA [15], the
Collision Risk Assessment (CRASS) system [8], and the

XCAT Portal Master Manager Finite Difference

Worker ManagerWorker Manager Worker ManagerWorker Manager

Monte Carlo Monte CarloMonte CarloMonte Carlo

File Transfer
via

Port Calls

Figure 5. Chemical Engineering Code Linkage

Linear Systems Analysis (LSA) project [8].

The following subsection describes the NCSA Chemical
Engineering application, which describes a typical scenario
in which XCAT can be used.

6.1 The NCSA Chemical Engineering Application

The chemical engineers at NCSA aim to link a finite
difference electrical resistance code to multiple Monte
Carlo electro-deposition simulations, running on resources
over the grid. The number of Monte Carlo simulations
may be dynamically changed at runtime, i.e. there is a
need for the codes to be dynamically composed at runtime.
These codes also need to exchange data at every iteration.
The linkage system needs to be designed such that the
application writer has to make minimal changes to the
application code. In other words, it should be possible for
the chemical engineers to write the finite difference code,
and the Monte Carlo code, without any knowledge of the
fact that they will be executed on the grid.

The XCAT system lends itself very well to the needs of this
application because XCAT components can be launched
on the grid, and can be composed together dynamically at
runtime. We decided to use the concept of the application
manager service, as illustrated in Section 3.4, to wrap
up and manage them. We used application managers,
which are scriptable, and also specialized “Master/Worker”
application managers for our purposes.

As seen in Figure 5, the master application manager
manages the finite difference code, while there is a worker
application manager for each of the Monte Carlo simu-
lations. The actual scientific codes are not modified, but
they are assumed to exhibit behavior that is known to the

managers, e.g. they write out files after every iteration,
with data that has to be transferred between themselves,
and read data from predefined filenames for each iteration.
The master manager has a ProvidesMasterPort, which is
capable of accepting data sent to it by a worker manager
(which holds a corresponding uses port) after the end
of every iteration. On receiving data via the port call,
the master manager writes it out to a predefined file for
the executable to consume. Each worker manager has a
ProvidesWorkerPort, which can accept data sent to it by the
master manager at the end of each iteration. The worker
manager, as expected, writes the data out to a file, that the
executable expects.

Furthermore, these managers monitor the state of the exe-
cution, and can send events about the status to a well known
event channel. The overall control over the application man-
agers is via a Jython script, which launches these managers
(and hence, the applications) on the grid resources, using
the XCAT creation service, and connects the ports together,
to bootstrap the simulation. In summary, the chemical en-
gineers were able to successfully achieve the linkages dy-
namically, and run the simulations on the grid, without mak-
ing changes to the scientific codes themselves to make them
grid-enabled.

7 Future Work

XCAT provides a default set of services to each component.
We plan to add authentication, authorization, factory, and
scheduling services. Furthermore, we will make XCAT an
OGSA compliant system.
XCAT can also be used to connect components that run in
the same address space. In such cases it is important to pro-
vide collocation optimization for efficient communication
within the process. We plan to add this feature to the next
version of XCAT.

With the availability of WSDL parsers, it is now possible
to represent remote references to ports and components us-
ing WSDL documents. WSDL will also provide a way of
representing various protocols that can be used for commu-
nication between components. We will use the Proteus li-
brary [16] to achieve multiprotocol communication between
components.

8 Conclusions

We have presented XCAT as a component based, language-
interoperable and scriptable framework that can serve as an
effective programming model for the Grid. In XCAT, ports
can be dynamically added and deleted, allowing component

connections and application configurations to be changed
at run-time. Thus, complex scientific applications can be
made up of simpler components, which can be composed
to achieve the desired result. Every XCAT component has
access to a set of services by default that include the cre-
ation, connection and registry services. The creation service
offers a multitude of mechanisms for component creation,
which include GRAM, SSH and local instantiations. The
connection service allows a component to export ports of a
sub-component as its own, apart from its basic functional-
ity which is to connect ports between components. XCAT
provides a Jython based scripting interface that facilitates
application development. We have also presented a typi-
cal application for which the XCAT system is applicable,
demonstrating the use of the concept of application man-
agers. We have presented a case for XCAT as the model
for handling transient and stateful Grid web services, which
involve a high degree of interaction between each other.

References

[1] Argonne National Lab. The Open Grid
Services Architecture, visited 03-03-02.
http://www.globus.org/ogsa/.

[2] Ariba, IBM, Microsoft. Web Services Description
Language (WSDL) Version 1.1, visited 02-01-02.
http://www.w3.org/TR/wsdl.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolinski.
Toward a Common Component Architecture for High-
Performance Scientific Computing. In Proceedings of
the 8th IEEE International Symposium on High Per-
formance Distributed Computation, August 1999.

[4] Randall Bramley, Kenneth Chiu, Shridhar Diwan,
Dennis Gannon, Madhusudhan Govindaraju, Nirmal
Mukhi, Benjamin Temko, and Madhuri Yechuri. A
component based services architecture for building
distributed applications. In Proceedings of Ninth IEEE
International Symposium on High Performance Dis-
tributed Computing Conference, Pittsburgh, August 1-
4 2000.

[5] Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree
Balasubramanian, Esra Akman, and Dennis Gannon.
Java RMI performance and object model interoper-
ability: Experiments with Java/HPC++. Concurrency
and Experience, 1998. Presented at 1998 ACM Work-
shop on Java for High-Performance Network Comput-
ing.

[6] Robert Englander. Developing Java Beans. O’Reilly,
1997.

[7] D. Box et al. Simple Object Access Pro-
tocol 1.1. Technical report, W3C, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

[8] D. Gannon et al. Programming the Grid: Distributed
Software Components, P2P and Grid Web Services
for Scientific Applications. In Special Issue of the
Journal of Cluster Computing. Submitted, 2002.

[9] S. Krishnan et al. The XCAT Science Portal. In Pro-
ceedings of SuperComputing 2001, Denver, CO, 2001,
November 2000.

[10] Ian Foster and Carl Kesselman. The GRID: Blueprint
for a New Computing Infrastructure. Morgan-
Kaufmann, 1998.

[11] D. Gannon, P. Beckman, E. Johnson, and T. Green.
Compilation Issues on Distributed Memory Systems,
chapter 3 HPC++ and the HPC++Lib Toolkit.
Springer-Verlag, 1997.

[12] GGF. Global Grid Forum, 06-01-02.
http://www.gridforum.org/.

[13] IBM. Web Services Flow Language (WSFL)
Version 1.0, visited 02-01-02. www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[14] IETF. The Blocks Extensible Ex-
change Protocol Core, Visited 05-20-02.
http://www.ietf.org/rfc/rfc3080.txt.

[15] Indiana University. Grid Access Portal
for Physics Applications, visited 03-03-02.
http://iuatlas.physics.indiana.edu/grappa/.

[16] Kenneth Chiu and Madhusudhan Govindaraju and
Dennis Gannon. The Proteus Multiprotocol Library,
2002.

[17] Argonne National Lab. GRAM, visited 01-03-02.
http://www.globus.org/gram.

[18] Argonne National Lab. Java Cog Toolkit, visited 01-
03-02. http://www.globus.org/cog.

[19] Argonne National Lab. Globus, visited 1-02-01.
http://www.globus.org.

[20] Microsoft. COM, visited 4-1-2000.
http://www.microsoft.com/com.

[21] Sun Microsystems. EJB, visited 02-01-02.
http://java.sun.com/products/ejb/index.html.

[22] SUN Microsystems. Sun Open
Net Environment, visited 04-15-02.
http://wwws.sun.com/software/sunone/.

[23] SUN Microsystems. JNDI, visited 3-7-2002.
http://java.sun.com/products/jndi/.

[24] SUN Microsystems. Java Beans, visited 4-15-00.
http://java.sun.com/beans/.

[25] OMG. Corba Component Model, visited 1-11-2000.
http://www.omg.org/cgi-bin/doc?orbos/97-06-12.

[26] Rice University. High Performance
Fortran (HPF), visited 03-01-02.
http://www.crpc.rice.edu/HPFF/home.html.

[27] A. Slominski, M. Govindaraju, D. Gannon, and
R. Bramley. Design of an XML based Interoperable
RMI System : SoapRMI C++/Java 1.1. In Proceed-
ings of the International Conference on Parallel and
Distributed Processing Techniques and Applications,
Las Vegas, Pages 1661-1667, June 25-28 2001.

[28] Sun Microsystems. Java Messaging Service, 04-20-
02. http://java.sun.com/products/jms/.

[29] The MPI Forum. MPI Documents, visited 03-03-02.
http://www.mpi-forum.org/docs/docs.html.

[30] UDDI.org. Universal Description Discovery and
Integration of Business for the Web, 04-12-02.
http://www.uddi.org/specification.html.

[31] University of Wisconsin. DAGMan : Di-
rected Acyclic Graph Manager, visited 03-01-02.
http://www.cs.wisc.edu/condor/dagman/.

[32] University of Wisconsin. The Con-
dor Project Homepage, visited 03-01-02.
http://www.cs.wisc.edu/condor/.

[33] W3C. Resource Description Framework, 06-01-02.
http://www.w3.org/RDF/.

A Snippet of Java code to create and connect components

....
// create the components using the Creation Service
ComponentID printerCompID =
creationService.createInstance(envPrinterComponent);

ComponentID generatorCompID =
creationService.createInstance(envObjectComponent);

// connect ports using the Connection Service
connectionService.connect(generatorCompID,

‘‘testObjectUsesPort",
printerCompID,
"testObjectProvidesPort");

// register a uses port to invoke method on
services.registerUsesPort
(new PortInfoImpl("controlUsesPort", WSDL_DESCRIPTION));

// connect the uses port just registered, to the remote component
connectionService.connect(this.componentID,

"controlUsesPort",
generatorCompID,
"controlProvidesPort");

// get a reference to the uses port
UsesControl control =
(UsesControl) services.getPort("controlUsesPort");

// start the execution of the generator component
// this will bootstrap the execution of the components
control.start();

