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Abstract

Sriram Krishnan

AN ARCHITECTURE FOR CHECKPOINTING AND MIGRATION OF

DISTRIBUTED COMPONENTS ON THE GRID

A computational Grid is a set of hardware and software resources that provide seamless,

dependable, and pervasive access to high-end computational capabilities. The Grid differs

from other computational resources such as traditional supercomputers and clusters by the

following key features: (1) coordination of resources that are not subject to centralized

control, (2) use of standard, open, general purpose protocols and interfaces, and (3) delivery

of non-trivial qualities of service despite unpredictable resource availabilities.

The Open Grid Services Architecture (OGSA) is the first effort to standardize Grid

functionality, based on concepts from the Web services community. However, the Web

services based OGSA presents a server-centric approach which is not very conducive to

the orchestration of complex distributed applications where the interactions are not always
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of the client-server type. We present a distributed component based approach for com-

posing complex applications on the Grid that is conformant with the Common Component

Architecture (CCA), while maintaining compatibility with Grid standards.

Because Grid resources are not subject to centralized control and are geographically

distributed, their availabilities may be very dynamic in nature. Migration of individual

components can be an effective strategy for dealing with dynamic resource availabilities.

However, migration of components that are part of a distributed application is complicated

due to the possible interactions between them during execution. We present an approach

for migration of distributed components, in the presence of communication between them.

Additionally, reliability of Grid resources is also very difficult to guarantee. Checkpoint-

ing applications and rolling back to a saved state is an effective form of fault tolerance for

dealing with failures of such resources. However, due to the distributed nature of the appli-

cations, the checkpoints generated need to be globally consistent. We present our approach

for checkpointing and restart of distributed components for fault tolerance purposes.
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1

Introduction

1.1 Motivation

A computational Grid [30] is a set of hardware and software resources that provide seam-

less, dependable, and pervasive access to high-end computational capabilities. By enabling

the use of teraflop computers and petabyte storage systems interconnected by gigabit net-

works, the Grid enables scientists to explore new avenues of research hitherto irrealizable

via conventional computing resources. The Grid differs from other computational resources

such as traditional supercomputers and clusters by the following key features [29]: (1) co-

ordination of resources that are not subject to centralized control, (2) use of standard, open,

general purpose protocols and interfaces, and (3) delivery of non-trivial qualities of service.

The Open Grid Services Architecture (OGSA) [31] is the first effort to standardize Grid

1



1. Introduction 2

functionality, based on concepts from the Web services community. Web services are inde-

pendent of programming languages & models, and system software, and have been adopted

in the industry as a standard for building enterprise applications. Adoption of a Web ser-

vices based framework for the Grid is useful for dynamic discovery and composition of

services required for the creation of distributed, dynamic virtual organizations for coordi-

nation of a decentralized set of resources. Additionally, due to the widespread adoption

of Web service technologies, standard protocols and tools are available for use to the Grid

community. Several Web services standards have been defined, e.g. SOAP [20] which pro-

vides an XML-based messaging protocol between service providers and requestors, Web

Services Description Language (WSDL) [22] which provides a way to describe and access

Web services, and Business Process Execution Language (BPEL) [23] which provides a

way to orchestrate long running Web-services based applications by composition in time of

simpler Web services.

The Open Grid Services Infrastructure (OGSI) refers to the basic infrastructure on

which OGSA is built. At its core is the Grid Service Specification [26], which defines

the Grid as an extensible set of Grid services that may be aggregated in various ways to

meet the needs of the virtual organizations. It defines standard mechanisms for creating,

naming, and discovering service instances, and provides location transparency and dynamic

service introspection. OGSI has recently evolved into the Web Service Resource Frame-

work (WSRF) [25], which provides an even tighter integration of Web service technologies
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with those of the Grid.

On the other hand, various researchers in industry, as well as in academia, have been

promoting the use of software components for orchestration of complex applications. A

software component is a unit of composition with contractually specified interfaces and

explicit context dependencies. A software component can be deployed independently and

can be subject to composition by third parties [53]. A component architecture is a system

defining the rules of linking components together. The software engineering benefits of

component based software are well known: they enable encapsulation, modular construc-

tion of applications and software reuse. Component systems have proven to be immensely

useful to scientists who wish to build complex distributed applications by composing ex-

isting software components, thereby shielding them from the underlying complexity of the

distributed set of resources.

Several component models have proven to be successful in various domains. Mi-

crosoft’s COM [45] and DCOM [46] frameworks have been fundamental to inter-operability

in Windows based applications. Their current Web services oriented .NET framework is

also component based and is gaining widespread acceptance. In the CORBA world, the

Object Management Group has released a specification for the CORBA Component Model

(CCM) [7], whereas Java Beans and Enterprise Java Beans (EJB) [47] have been popular

component standards for Java based applications. The Common Component Architecture
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(CCA) is an initiative by DOE laboratories and universities to develop a common architec-

ture for building large scale scientific applications from well-tested software components

that run on both parallel and distributed systems. Several implementations of CCA exist,

viz. XCAT [34], Ccaffeine [5], and SCIRun [38].

Component architectures such as CCA and CCM define standard mechanisms for com-

ponents to define services they provide, and the ones that they use. Components can be

composed with other peer components in such systems, by direct connections between

matching provides and uses sides. We refer to this as composition in space, since it al-

lows composing components distributed across space at the same time. Standard Grid and

Web services do not provide this style of composition, since they are traditionally accepted

to be self-contained entities. Hence, plain Web services are better suited for client-server

applications where a Web service client requests a service from a service provider, rather

than truly distributed ones where communication patterns between entities are more peer-

to-peer. Publish-subscribe systems such as WS-Notification [4] that provide asynchronous

communication between Web services enable direct communication between Web services;

however, these are not very suitable for third-party composition. We propose an approach

where distributed applications can be composed in space using CCA-based constructs,

while being consistent with Grid and Web service specifications. This preserves interop-

erability with Grid standards, while enabling orchestration of more complex applications

than the ones possible by standard Grid and Web services.
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In addition to this, as we state earlier, an important requirement for computational Grids

is the provision of non-trivial qualities of service to applications. Since the Grid resources

belong to different administrative domains and are geographically distributed, their avail-

abilities may be very dynamic. Additionally, reliability of such resources is also very diffi-

cult to guarantee.

The above problems are magnified if the applications running on the Grid are long

running, as well as distributed. In such a situation, it is highly desirable for an application

to be able to adapt to the dynamic Grid environment. Since resource availabilities may

change over the course of execution of long running applications, an application should be

able to store its state onto stable storage, and migrate to more suitable resources if need be.

Suitability of resources can be determined by resource quality as well as policies defined

by the resources and end users.

Resources can not only vary in their availabilities, but also fail during the course of

execution of the application. In such as situation, it is highly beneficial to checkpoint the

application state at regular intervals so that it can be restarted upon resource failure. Addi-

tionally, if the application is distributed with various components communicating with each

other, the checkpointing process is more complicated since it has to be globally consistent.

In other words, it should be a state that occurs in a failure-free, correct execution, without

loss of any messages sent from one component to another [11].

We propose a user-defined scheme for persistence of components which is leveraged
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by the framework to provide abilities to (1) migrate individual components if need be, and

(2) checkpoint the state of the entire application and restart upon failures.

1.2 Contributions

This dissertation addresses three key problems in Grid computing - programming mech-

anisms for orchestration of complex long running distributed applications, adaptability of

these applications to the inherently dynamic availabilities of Grid resources, and their abil-

ity to recover from resource failures.

In this dissertation, we propose that long running distributed applications on the Grid

should be orchestrated by composition of individual simpler components, both in space

and time. Components composed in space may be executing concurrently on separate Grid

resources. Component migration can be provided by the framework as a mechanism to deal

with variable resource availabilities, and distributed checkpointing and restart can be used

to provide basic fault tolerance and recovery from failures of Grid resources.

To justify the above statement with a proof-of-concept implementation, we present

XCAT3 [40], a framework for CCA-compatible components consistent with current Grid

standards, and address the above claims using the same. XCAT3 is preceded by its earlier

generations CCAT [9], and XCAT2 [34]. CCAT is our first implementation of a framework

for distributed CCA-based components, and uses Nexus [32] as a means for component
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communication. XCAT2 is the second generation that uses SOAP [20] for component

communications, and is consistent with Web service standards.

The key contributions of this dissertation are summarized in the following subsections.

1.2.1 A CCA Framework for the Grid

We have seen that Web and Grid service technologies enable orchestration of long running

applications using Workflow tools, which we refer to as composition in time. On the other

hand, standard component technologies viz. CCA, CCM, etc. enable creation of distributed

applications using direct component connections, which we call composition in space. It

follows that long running distributed applications on the Grid could be created effectively

by a combination of the above approaches. XCAT3 is framework where CCA-based com-

ponents are implemented in such a way that they are consistent with current Grid standards.

Composition in time is provided by Workflow tools and Jython scripts, while composition

in space is provided by CCA-defined constructs.

Mapping CCA components into OGSI-based Grid services is not trivial due to the se-

mantic differences between the two specifications. We present a novel way to map CCA

components as a set of Grid services, such that they can exploit all the desirable features

presented by Grid service standards such as multiple-level naming, dynamic service intro-

spection, and interoperability via standard protocols and interfaces.
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1.2.2 Component Migration

Scheduling long-running applications is a difficult task on the Grid, since resource avail-

abilities can be unpredictable over long periods of time. Rather than trying to schedule

a long-running application in advance, a more proactive approach may prove to be more

effective in such cases. Components can be scheduled on the best available machines, and

migrated to better resources as and when they become available. Migration can also be

triggered by violations of policies specified by the component writers and/or Grid resource

owners.

There are several other systems that provide migration for applications on the Grid,

e.g Condor [8]. However, most of them deal with single-process (non-distributed) applica-

tions. In XCAT3, a distributed application is composed of a set of components that may

be executing on Grid resources that are geographically distributed. Migrating a component

in this case is more complicated because it may be communicating with other components

that are part of the application. Hence, we need a mechanism to migrate components in the

presence of communication between them.

We use an approach where the user implements APIs to generate and re-load compo-

nent state during migration, while the framework implements algorithms that transfer this

state to/from stable storage, and migrate the component transparently in the presence of

connections. We choose a user-defined mechanism for component persistence primarily
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for reasons of portability and efficiency.

1.2.3 Distributed Checkpointing & Restart

Maintaining reliability of heterogeneous geographically distributed Grid resources is a non-

trivial task, especially since they may belong to different administrative domains. Relia-

bility of resources is especially critical for long-running distributed applications, since the

probability of failure increases with the number of resources and the length of the com-

putation. In such a scenario, an ability to checkpoint applications and restart them from a

particular checkpoint upon failure of Grid resources is desirable. Additionally, checkpoint-

ing can also be used for dynamic resource scheduling, e.g. if a high priority application

needs to preempt a long running lower priority one, the lower priority application can be

checkpointed and restarted later when the higher priority application has finished executing.

Distributed checkpointing and restart has been the topic of a lot of work over the past

twenty years. The theoretical background for the same is very solid, and has been shown

to work for various systems. However, the systems for which these have to be used en-

force certain modifications and enable some simplifications. Hence, we survey the existing

theoretical work and refashion it to work within the context of CCA and Grid services.

Our approach is that the framework first ensures that the distributed set of components

can produce a consistent global checkpoint. Subsequently, it triggers the checkpointing
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by invoking APIs implemented by the individual components to store their states. Dur-

ing restart, the states of the individual components are re-loaded from the latest consistent

global checkpoint.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 reviews the concepts and

systems that are relevant to our work. In particular, it describes software components and

relevant Grid specifications in detail. It also presents the existing algorithms and systems

that provide checkpointing for applications within our domain of interest. It also describes

systems that use migration of applications in order to deal with dynamic Grid environments.

Chapter 3 describes the XCAT3 framework in great detail. Specifically, it presents the

architecture of the framework and its conformance with the CCA and OGSI specifications,

and how it can be used to orchestrate complex distributed applications on the Grid via

composition of components in space and time. It concludes with a description of some

applications that have been implemented within the framework.

Chapter 4 introduces the concept of persistence for components within the XCAT3

framework, and uses the same to present component migration as a mechanism for dealing

with dynamic resource availabilities and policy violations. It also describes the algorithms

and programming APIs required for component migration.
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Chapter 5 presents the distributed checkpointing capability provided by the XCAT3

framework as a building block for fault tolerant long running applications. It discusses the

algorithms implemented for distributed checkpointing and restart of XCAT3 components,

and the programming APIs required for the same.

Chapter 6 introduces an application implemented to avail of the distributed check-

point/restart, and migration capabilities of the XCAT3 framework. It also analyzes the

performance of distributed checkpointing and component migration for the same applica-

tion.

Chapter 7 presents the conclusions for this dissertation, and outlines ideas for future

research.



2

Background and Related Work

In this chapter, we present the concepts and systems that are related to our work. First we

present the software systems that are being used in scientific computing and the Grid, and

also discuss some other similar systems that are being used in the business community.

Next we present some literature on providing persistence for applications. We describe the

implications of distributed applications to the process of checkpoint and restart, and discuss

the pros and cons of different software techniques that can be used for capturing application

state. We also present examples of some systems that provide this capability for distributed

and non-distributed applications.

12
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2.1 Software Components

Software components are binary units of independent production, acquisition, and deploy-

ment that interact to form a functioning system [53]. Component software enables practical

reuse of software units, and promotes modularity of requirements, architectures, designs,

and implementations. It encourages the move from the current huge monolithic systems to

modular structures that offer the benefits of enhanced adaptability, scalability, and main-

tainability. Component software thus promotes rapid application development by combin-

ing well-tested and newly developed software parts.

In this dissertation, we will generally assume the following characteristics for software

components, as suggested in [13]:

Independently deployable: A component can depend on other components for correct

operation, but it must be possible to install and upgrade it individually.

Reuseable by third-parties: As implied by the definition, a component must be reusable

in different applications, in order to enable rapid prototyping of applications.

Compose-able by third-parties: End users should be able to connect components de-

ployed by others. This process is called component composition or assembly. This enables

the end user to solve completely new problems from existing solutions.

Large Granularity: A component typically encapsulates more functionality than an ob-

ject. Indeed most components will be implemented internally as a set of objects.
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Inherently Distributed: A remote operation is an inherent characteristic of components.

This means that the local operation is a special case of the normal operation.

Software components need several key services and rules in order to function as de-

sired, which is provided by a component architecture. Component architectures define

interactions between the components and their environment, the roles of the components,

standard interfaces for tools, user-interfaces for end users and assemblers of components,

and mechanisms for serialization of data, establishing connections, and managing lifetimes.

A component framework is a software entity that supports components conforming to cer-

tain standard architectures, and allows instances of these components to be ’plugged’ in.

The framework establishes environmental conditions for the component instances and reg-

ulates the interactions between them. Thus a component framework can be thought of as a

dedicated and focussed architecture, usually around a few key mechanisms, and a fixed set

of policies for these mechanisms at the component level.

Software components have been used successfully for corporate enterprise, internet

and desktop based applications in the industry. Recently, it is being adopted in scientific

computing, as well as the Grid. The Open Grid Services Architecture (OGSA) and In-

frastructure (OGSI) define a Web-services based component model for distributed systems

integration on the Grid. In the following subsections, we present several component archi-

tectures that are relevant to our work. We begin with traditional component architectures

used in business and scientific computing, and then present the ones used on the Grid.
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2.1.1 Traditional Component Architectures

Before component architectures were adopted by the Grid community, they were success-

fully used in other domains. Indeed, the component architectures prevalent in the Grid

community draw from other standard component architectures used in enterprise and sci-

entific computing.

2.1.1.1 CORBA Component Model (CCM)

The Object Management Group (OMG) has defined CORBA as a distributed object archi-

tecture that is platform and language independent. The CORBA Component Model (CCM)

defines a component model that is built on CORBA technology. It defines the process

of designing, developing, packaging, deploying, and executing distributed heterogeneous

components.

CCM defines the concept of Ports for components. Ports define interfaces that are

provided or used by a component. Four different types of ports are defined by the CCM.

� Facets, which are interfaces provided by a component and used synchronously by

clients.

� Receptacles, which are interfaces synchronously used by components.

� Event sinks, which are interfaces provided by a component and asynchronously used

by clients.
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� Event sources, which are interfaces asynchronously used by components.

These ports are used at deployment time and runtime to connect components together to

create complex distributed applications.

Every CCM component has a Home object that is responsible for lifetime management,

and is deployed within a container. CCM also defines an XML-based language for packag-

ing and deployment of components.

2.1.1.2 Enterprise Java Beans

The Enterprise Java Beans (EJB) architecture is a server-side component architecture for

the development and deployment of object-oriented distributed enterprise-level applica-

tions. The EJB architecture is three-tiered with the presentation logic in the first layer, the

business logic in the second tier, and other resources such as the database back-end on the

third tier. The EJBs are components in the second tier implementing the business logic.

Communication with EJBs is through Java Remote Method Invocation (RMI).

EJBs can be implemented by defining the following two interfaces and two classes:

� Remote Interface, which defines the Bean’s business methods.

� Home Interface, which defines the lifecycle methods for creation and removal of

beans.
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� Bean class, which implements the bean’s business methods. The Beans can be state-

ful (Entity beans) or stateless (Session beans).

� Primary Key, that provides a pointer into a database. This is used only by Entity

beans whose state have to be stored in the database.

The clients never interact with the bean class directly. Instead, they always use the

methods defined in the Remote and Home interfaces. Every bean exists inside a container

which is responsible for creation of new instances, storing state in databases, and other

management aspects. The container invokes callback methods on the bean instance when

appropriate state management events occur.

Unlike CCM, EJB does not define ports for direct connections between components.

This is because EJB was designed to be a server-side component architecture, and every

EJB component was envisioned to be a self-contained entity without any dependencies on

the outside world. An application developer can still provide this capability, but it would

be application-specific.

2.1.1.3 Distributed Component Object Model

The Distributed Component Object Model (DCOM) architecture is Microsoft’s distributed

component architecture that is robust and comprehensive, and enables tight coupling be-

tween the application and the operating system. The Component Object Model (COM)
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defines how components and their clients interact on the same machine. DCOM extends

COM by using a standard network protocol based on DCE RPC if the interprocess com-

munication needs to be across different machines.

A DCOM object supports a set of interfaces which other DCOM objects may use. The

interfaces are defined using the Microsoft Interface Definition Language (MIDL) which

is based on DCE IDL. The definitions are compiled to create proxies and stubs. When a

remote call is made, the proxy is responsible for marshalling the parameters and sending

the call across the network. On the remote side, the stub is responsible for unmarshalling

the parameters, making the local call on the correct DCOM object, and sending the results

back to the proxy. Every interface in DCOM extends from the IUnknown interface, which

forms the root of the interface hierarchy. The IUnknown interface can also be used to query

the component about what other interfaces it supports.

DCOM also supports the notion of connections between objects. These connections

can be made by a third party, and can be changed dynamically at run-time. DCOM objects

are deployed in binary packages called components, which also contain code to manage

lifetimes and registration.

DCOM has several benefits such as robustness, location independence, language neu-

trality, effective connection management, and an ability to scale. However, its proprietary

nature limits its portability and general applicability.
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2.1.1.4 Common Component Architecture

The Common Component Architecture (CCA) is a project sponsored by DOE with inputs

from several national labs and universities. The goal of CCA is to specify a component

architecture for high performance computing where the target architectures include work-

stations, distributed memory multiprocessors, clusters of symmetric multiprocessors, and

remote resources.

CCA uses the Scientific Interface Definition Language (SIDL) [17] to describe com-

ponent interfaces. Like CORBA IDL, SIDL is programming-language neutral. However,

it provides support for describing complex scientific data structures, e.g multi-dimensional

arrays.

Like CCM, CCA uses the concept of ports to define the communication model for all

component interactions. Components export functionality to other components via pro-

vides ports, while other components avail of this functionality via uses ports. Communi-

cation links between components are implemented by connecting uses ports to compatible

provides ports. Apart from the simple use of provides and uses ports, CCA also defines the

concept of collective ports in order to handle interactions among parallel components. Un-

like other component models, CCA allows addition of ports dynamically at runtime. This

ability makes it a suitable choice in the creation of Problem Solving Environments (PSE),

in which the end-user directly manipulates component connections to solve the particular
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problem at hand.

A CCA component interacts with the framework via a Services object. The Services

object contains information about provides and uses ports registered by a component, and

their connections. It also contains a ComponentID which can be used to uniquely identify a

component. CCA also defines a set of framework services that are available to an end-user

to create instances of components, and compose them together.

At present, CCA only defines the source level interactions between a component and

the framework. Interoperability between two components existing in different frameworks

is not currently addressed.

2.1.2 Component Architectures for the Grid

A key requirement for the Grid is interoperability between various services located in dif-

ferent administrative domains. Until recently, different Grid projects such as Legion [42],

Globus [41], Condor [8], etc. provided their functionalities in their own customary manner.

Needless to say, there was hardly any interoperability between the available software tools.

The Global Grid Forum [1] was then created as the organization responsible for coming up

with a standard mechanism to create and access services on the Grid. The consensus was

to use Web service technologies as a basis for a component model for the Grid.



2. Background and Related Work 21

2.1.2.1 Web Service Basics

The World Wide Web Consortium (W3C) defines a Web service as a software applica-

tion identified by a Uniform Resource Identifier (URI), whose interfaces and bindings are

capable of being defined, described, and discovered by XML artifacts and which can sup-

port direct interactions with other software applications using XML-based messages via

Internet-based protocols. A more general and descriptive definition can be found in [35],

where a Web service is defined as a platform and implementation independent software

component that can be

� described using a service description language,

� published to a registry of services,

� discovered through standard mechanisms,

� invoked through a declared API, usually over a network, and

� composed with other services.

The primary goal of Web services is interoperability. A requestor can access a Web

service by using standard well-defined mechanisms, irrespective of the language and the

environment that either of them uses. This feature makes the Web services approach ap-

pealing to modern enterprise and inter-organizational computing systems.

The description of a Web service includes the supported interface, network, transport

and packaging protocols. The Web Service Description Language (WSDL) [22] is a widely
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accepted standard for this purpose. The Resource Description Framework (RDF) [44] spec-

ification can also be used, though it is less popular than WSDL. The most widely recog-

nized mechanism for publishing and discovery Web services is the Universal Description,

Discovery, and Integration (UDDI) [2] specification.

Interaction between Web services is typically via the exchange of XML messages. The

de facto standard for messaging in Web services is SOAP [20], which provides an XML-

based messaging protocol between service providers and requestors. Most SOAP imple-

mentations use HTTP as the transport protocol since it is an internet standard. However,

others such as SMTP, FTP, or BEEP [3] could also be used.

Web service workflow tools enable composition of a set of Web services into ones that

are more useful. Workflow is defined as an organization of processes into a well-defined

flow of operations, and can be thought of as the composition of services over time to ac-

complish a specific goal. The current standard for Web services workflow is the Business

Process Execution Language for Web Services (BPEL) [23].

2.1.2.2 Open Grid Services Infrastructure

The Open Grid Services Architecture (OGSA) represents an evolution towards a Grid sys-

tem architecture based on Web services concepts and technologies. OGSA envisions the

Grid to be an integration of Grid services across distributed, heterogeneous, dynamic vir-

tual organizations. It defines a Grid service to be a potentially transient stateful service
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instance that can support reliable and secure invocation, lifetime management, notification,

policy management, credential management, and virtualization. At the core of OGSA is

the Open Grid Services Infrastructure (OGSI) which defines a component model for Grid

services to support the functionalities specified above.

The OGSI specification defines the following:

� A set of WSDL 1.1 extensions, viz. support for inheritance of port types, representa-

tion of service data (metadata and state data) associated with a service, etc.

� A set of operations for querying and updating the service data, and creation of de-

struction of a Grid service as part of the GridService port type.

� A Grid Service Handle (GSH), which is a URI serving as an immutable location-

independent name for a Grid service, a Grid Service Reference (GSR), which is a

precise description of how to access a Grid service across the network at any point in

time, and operations for mapping a GSH to a GSR.

� Mechanisms for requesting asynchronous notifications of changes to the service data

elements associated with a Grid service.

� A base format for fault messages, which is conformant with the WSDL fault message

model.

The Grid community has raised several concerns against the OGSI specification. One
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concern that most people have is that it is very monolithic and not very suitable for incre-

mental adoption. Another is that it does not work well with existing Web services tooling

because of the extensions made to WSDL 1.1, and the use of features of WSDL 2.0 (e.g

port type inheritance) which have still not been officially adopted.

However, several different implementations of OGSI do exist. One of the most popular

ones is the Globus Toolkit 3.x from Argonne National Labs. A lightweight implementation

of OGSI which we use in our work is GSX [27].

2.1.2.3 Web Service Resource Framework

The Web Service Resource Framework (WSRF) represents the refactoring of the function-

ality of OGSI to produce a framework of independently useful Web service standards, and

the alignment of the functionality of OGSI with current and emerging Web service stan-

dards, such as WS-Addressing [19].

WSRF suggests a WS-Resource [24] approach for modeling stateful Web services. A

WS-Resource is defined as a composition of a Web service and a stateful resource that is

(i) expressed as an association of an XML document with a defined type with a Web ser-

vice portType, and (ii) addressed and accessed according to the implied resource pattern,

which is the conventional use of WS-Addressing endpoint references (EPR). In the implied

resource pattern, a stateful resource identifier is encapsulated in an EPR and used to iden-

tify a stateful resource to be used in the execution of a Web service message exchange.
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WSRF allows WS-Resources to be declared, created, accessed, monitored for change, and

destroyed via conventional Web service mechanisms, but does not require that the Web ser-

vice component of a WS-Resource that provides access to the associated stateful resources

be implemented as a stateful message processor [25].

WSRF factors the OGSI specification into five independent specifications that define

the normative description of the WS-Resource approach. These are:

� WS-ResourceProperties, which defines a WS-Resource, and mechanisms for re-

trieving, changing, and deleting WS-Resource properties.

� WS-ResourceLifetime. which defines mechanisms for destruction, and extension of

lifetimes for WS-Resources.

� WS-RenewableReferences, which defines mechanisms needed to retrieve upgraded

versions of EPRs when needed.

� WS-ServiceGroup, which defines interfaces needed to access collections of Web

services.

� WS-BaseFaults, which defines the base format for faults in a Web service message

exchange.

Publish-subscribe systems such as WS-Notification [4] are built on top of WSRF, rather

than part of it. This enables individual specifications to be used separately, thus encourag-

ing incremental adoption of the specification.
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At the time of writing this dissertation, there are no stable implementations of WSRF

available for public use.

2.1.2.4 Discussion

The use of Web service technologies for the Grid goes a long way in solving problems

of interoperability. However, Web services also offer a server-centric model of comput-

ing. Web services are envisioned as self-contained entities exposed to the outside world.

Hence, none of the component models for the Grid provide ports for connections between

Grid services, as provided by CCA and CCM. This implies that Grid services can also be

composed in only one dimension, viz. time with the use of workflow tools. Recent Web

services publish-subscribe specifications help alleviate this problem a little bit by provid-

ing asynchronous communication mechanisms between services. However, synchronous

mechanisms required for direct communication between Grid services is still lacking. Also

lacking is an ability for third-party composition of Grid services.

2.2 Checkpointing Applications

Over the history of computer science, the topic of checkpointing has seen lots of research

and development in industry as well as academia. Some of the reasons that have motivated

checkpointing of applications in various systems are as follows:
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Fault Tolerance: With the ubiquitous availability of large supercomputers and Grid re-

sources, increasing amounts of computational power has been made available to the end

user. However, since most of the individual resources are built from commodity hardware,

the reliability of the whole system decreases proportional to the total number of individual

resources. In such a scenario, checkpointing and rollback recovery provides an effective

technique for tolerating transient resource failures, and for avoiding total loss of results.

Dynamic Resource Adaptation: Scheduling long running applications is a challenging

task since it is difficult to predict resource availabilities into the future. Additionally, Grid

systems span multiple administrative domains which may have their own resource policies,

viz. local jobs must get precedence over Grid jobs, Grid jobs may only run for a particular

length of time, etc. A combination of such policies, dynamic resource availabilities, and

similar policies for applications can necessitate migration of jobs from one resource to an-

other during execution. In such a situation, the state of the application can be checkpointed

and the application can be physically migrated to a resource that satisfies both resource and

application policies.

Logging: It might be beneficial to periodically dump the state of an application for post-

processing analysis or data-visualization purposes. Restarting an application from certain

checkpoints can also be beneficial for debugging purposes.
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2.2.1 Distributed Checkpointing

Checkpointing distributed applications is more complicated than checkpointing the ones

which are not distributed. When an application is distributed, the checkpointing algorithm

not only has to capture the state of all individual processes, but it also has to capture the

state of all the communication channels effectively. In other words, if a process records a

message as sent, then it has to be either recorded as received by a corresponding recipient

process, or the message should be accounted for in the state of the communication channel

between the two processes. Hence, a consistent global state is defined as one that occurs

in a failure-free, correct execution, without loss of any messages sent from one process

to another [11]. A consistent global checkpoint is a set of individual checkpoints that

constitute a consistent global state. A consistent global checkpoint is required to restart

execution of a distributed application correctly upon failure.

Distributed checkpointing can be broadly divided into two categories: uncoordinated,

and coordinated. A detailed exposition of these checkpointing techniques can be found in

[18]. We briefly summarize them below.

Uncoordinated Checkpointing: In this approach, each of the processes that are part of the

system determine their local checkpoints individually. During restart, these checkpoints

have to be searched in order to construct a consistent global checkpoint. The advantage

of this approach is that the individual processes can perform their checkpointing when it
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is most convenient, e.g. when the amount of state to be stored is very small. The disad-

vantages are that (1) there is a possibility of a domino effect which can cause the system to

rollback to the beginning of the computation, thus negating the very advantage of check-

pointing, (2) each of the processes has to maintain multiple checkpoints resulting in a large

storage overhead, and that (3) a process may take a checkpoint that need not ever contribute

to a consistent global checkpoint.

Coordinated Checkpointing: In this approach, the checkpointing is orchestrated such

that the set of individual checkpoints always results in a consistent global checkpoint. This

minimizes the storage overhead, since only a single global checkpoint needs to be main-

tained on stable storage. Additionally, this approach is also free from the domino effect.

Algorithms that use this approach are either blocking or non-blocking.

Blocking algorithms typically are multi-phase. In the first phase, all communication

between the processes is blocked. Subsequently, individual checkpoints (which now triv-

ially constitute a consistent global checkpoint since all communication channels are empty)

are taken. All communication between the processes can now resume. The primary dis-

advantage of blocking algorithms is the large latency involved in storing the checkpoints.

However, these have been successfully used in several systems such as LAM-MPI [49].

As the name suggests, non-blocking algorithms do not block communication between

the processes during checkpointing. They typically use a communication-induced approach

where each process is forced to take a checkpoint based on protocol-related information
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piggybacked on the application messages it receives from other processes [11]. The re-

ceiver of each application message uses the piggybacked information to determine if it has

to take a checkpoint. The checkpoint has to be taken before the application may process

the contents of the message, possibly incurring high overheads. One disadvantage of this

approach is that it is typically implemented at the messaging layer, and is tightly coupled

with it. Hence the modified messaging implementation might not interoperate with other

vanilla implementations (without checkpoint support).

2.2.2 Software Techniques

In practice, checkpointing for applications is implemented either at system-level or is user-

defined. System-level checkpointing is a technique which provides automatic, transparent

checkpointing of applications at the operating system or middleware level. The application

is seen as a black-box, and the checkpointing mechanism has no knowledge about any of

its characteristics. Typically, this involves capturing the complete process image of the

application. User-defined checkpointing is a technique that relies on programmer support

for capturing the application state. The approach is not transparent to the user, but is more

flexible due the same reason. While a detailed comparison between the two approaches can

be found in [50], we summarize some of the key differences:

Transparency: In user-defined checkpointing the programmer is responsible for specify-

ing what data should be included in the checkpoint, and where the checkpoints could be
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taken within the application code. On the other hand, system-level checkpointing is trans-

parent to the user and requires little or no programmer effort.

Portability: Transparent system-level checkpointing has proven to be hardly portable

across heterogeneous architectures. However, user-driven checkpoints are quite portable

since the user can store the checkpoints in a platform-independent format.

Checkpoint size: System-level checkpointing is oblivious to the details of the applica-

tion. Typically large amounts of unnecessary data may be stored since it is not possible

to determine the critical state of the application. This leads to large checkpoint sizes, and

large performance overheads for the checkpoint operation. However, user-defined check-

pointing relies on user support to store only the minimal checkpoint required for restart,

consequently reducing the checkpoint size and the performance overhead.

Flexibility: Rather than blindly checkpointing an application at regular intervals like system-

level checkpointing does, user-defined checkpointing stores application state at programmer-

defined logical states. This provides a higher degree of flexibility for the user, since these

checkpoints can also be used for other purposes such as job swapping across different plat-

forms, post-processing analysis, and visualization.

In summary, although system-level checkpointing is transparent to the user and easy

to use, it is less portable and flexible, and creates larger checkpoints as compared to user-

defined checkpointing. In the past, most of the checkpoint schemes were supposed to be
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transparent to the application and implemented at the system level. More recently, user-

level schemes have been explored in greater detail.

2.2.3 Example Systems

We now describe some software systems that provide checkpointing for applications in the

context of our discussions above.

2.2.3.1 Condor

Condor [8] is a distributed batch processing system developed at the University of Wiscon-

sin, that aims at delivering large amounts of processing capacity to consumers over long

periods of time by exploiting existing computing resources on the network. The goal of the

system is to provide a high throughput by scheduling jobs on idle workstations. However,

it is paramount that the owner of a workstation does not pay a penalty for adding his or

her workstation to the pool of Condor workstations. Hence, a job must have the ability to

immediately vacate a workstation if policies specified by the owner are violated (e.g a job

can be run only when the owner is not using the workstation). This calls for an ability to

migrate to another idle workstation or queue until one becomes idle.

In Condor, each customer is represented by a customer agent, which manages a queue

of application descriptions and sends resource requests to the Matchmaker. Each resource
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is represented by a resource agent, which implements the policies of the resource owner

and sends resource offers to the Matchmaker. The resource requests and offers are repre-

sented as ClassAds, which are analogous to classified advertisements in newspapers. The

Matchmaker is responsible for finding a match between a resource request and a resource

offer.

If and when any policies are violated during the execution of a job, Condor has the abil-

ity to migrate a job to another location. It does so by checkpointing the state of the process,

and then restarting the process on another machine with the same image. The checkpoint-

ing is transparent to the user, and is implemented at the user level with no modifications

to the kernel code. The checkpointing process is invoked by a signal, and at restart time,

things are set up such that it appears to the user code that the process has just returned from

the signal handler. The code contained in the signal handler, the code required to install

the handler, and the code to record information as the state of the process changes, are all

contained in the Condor checkpointing library.

The biggest advantage of using Condor for checkpoint and migration is that it is trans-

parent to the user. The user only has to re-link his or her code with the Condor check-

pointing libraries. This works fine for users who have access to the software, but can be a

hindrance to users of third party software. However, there are several disadvantages with

Condor’s approach to checkpoint and migration. The process image for a job may be huge,

and a lot of unnecessary information could be stored if checkpointing is done at the process
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level. Process images are also highly dependent on the architectures, and hence can not

be migrated across heterogeneous platforms. It also does not handle migration of a set of

communicating processes (using signals, sockets, pipes, files, or any other means). Despite

these shortcomings, a wide variety of real-world user code can be accommodated by this

approach.

2.2.3.2 CUMULVS

CUMULVS [39] is a middleware infrastructure developed at the Oak Ridge National Lab

(ORNL) for interacting with parallel scientific simulation programs, and supports online vi-

sualization and computational steering. It also provides a user-level mechanism that assists

in creation of checkpoints, and restart from saved checkpoints.

The user application selects the minimal program state necessary to restart or migrate

an application task. Application tasks can then be migrated across heterogeneous archi-

tectures to achieve load-balancing or to improve a task’s locality with a required resource.

CUMULVS is suitable for several scientific applications which need checkpointing only at

a coarse-grained level.

CUMULVS benefits from the advantages and disadvantages of user-defined check-

pointing described in Section 2.2.2 - greater portability and flexibility, smaller checkpoints,

and a greater level of programmer effort.

CUMULVS does not do anything special in order to handle distributed applications.
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Instead, it relies on the application writer to create a globally consistent checkpoint. This

increases the expertise required on the part of the application writer.

2.2.3.3 LAM-MPI

Possibly the maximum amount of work in implementing distributed checkpointing has been

in the context of parallel MPI or PVM based applications [52], [43], [49]. We illustrate this

using one such implementation.

The LAM implementation of MPI developed at Indiana University provides co-ordinated

checkpointing and recovery for MPI-based parallel applications. It uses a kernel-level pro-

cess checkpointing system to transparently checkpoint a parallel program. The checkpoint-

ing and restart capability can be used for fault tolerance in case of failures of nodes, and

also for re-scheduling an application for performance reasons.

A coordinated, blocking algorithm is used in LAM-MPI to capture a consistent global

checkpoint for a set of MPI processes. Presently, the focus of LAM-MPI is to checkpoint

and restart the complete set of processes upon failure. Migration of individual processes is

not handled.

Like Condor is for single-process jobs, the transparent checkpoint capability of LAM-

MPI for parallel processes hides the complexity of the system from the user. However,

unlike Condor, the checkpointing is done at the kernel level. This assumes that the target
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machines provide checkpointing at the kernel level. However, the codes need not be re-

compiled or re-linked to avail of this functionality. Similar to Condor, the process images

may be huge as a lot of unnecessary state might be saved.

2.2.3.4 Mobile Agents

Mobile agents [12] are programs that can migrate from host to host in a network. The

state of a running program is saved, transported to another host, and restored allowing the

program to continue where it left off. Mobile agents differ from typical process-migration

systems in the sense that they migrate of their own choice, whereas in a process-migration

system the system decides when and where to move the running process. Mobile agents

also differ from other types of mobile code such as applets, which are programs that are

downloaded to a remote location, then executed from beginning to end.

Mobile agents are a good choice for many applications as they improve latency and

bandwidth of client-server applications and reduce vulnerability to network disconnection.

They are very applicable to mobile devices and mobile users.

However, they do have several technical hurdles. Current systems can save on network

latency and bandwidth at the expense of higher load on the service machines, since the

agents are often written in a relatively slow interpreted language for portability and security

reasons. Additionally, the goal of mobile agent systems is to allow a program to move freely

across heterogeneous architectures. Hence, the code has to be compiled into some platform
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independent representation (such as Java bytecode). Another important concern in a mobile

agent system is security. Agent code should be protected from malicious machines, and

vice versa. This is a currently a topic of open research.

2.2.3.5 Cactus

Cactus [37] was originally developed as a framework for the numerical solution of Einstein

Equations. However, it has evolved into a general-purpose, open source, problem solving

environment that provides a unified modular and parallel computational framework for sci-

entists and engineers. Cactus has a central core (or flesh) that connects to application mod-

ules (or thorns) through an extensible interface. Thorns can implement custom-developed

scientific or engineering capabilities, as well as other computational capabilities, such as

data distribution and checkpointing.

Cactus uses the concept of Performance Contracts [55] to define an agreement between

a user and the provider of one or more resources. If a contract is found to be violated,

the Migration Logic Manager thorn instructs Cactus to checkpoint the application state

to stable storage. The Migration Module thorn communicates with the external Migrator

service, informing it of the current simulation location and the new target host and tells it

to restart the application on the new resources. The Migrator service stages all files to the

new location, and restarts the application from the saved checkpoint on the new resource

where the performance contracts are satisfied [6].
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The checkpointing is done at the user-level, and is hence architecturally independent

and has all the pros and cons of user-level checkpointing. There is no explicit support for

distributed applications. However, it is conceivable that a new thorn could be added in

order to create a globally consistent checkpoint for distributed applications.

2.2.3.6 Component Persistence

Some component architectures defined in Section 2.1.1 provide mechanisms to load and

store states into persistent storage. We discuss the ones provided by Enterprise Java Beans

and CORBA Component Model.

Persistence of EJBs can be either container-managed or bean-managed, which are anal-

ogous to system-level and user-defined checkpointing techniques respectively, as defined

in Section 2.2.2. Container-managed persistence is simplest to develop as it delegates the

responsibility of persistence to the EJB container. When the bean is deployed, the fields

that need to be stored are identified, and a mapping into the database is defined. The con-

tainer generates the logic necessary to store the bean’s state automatically. In addition,

the container makes callbacks to the bean so that it can complete any clean up or prepro-

cessing before a store or a load respectively. Bean-managed persistence is a little more

complicated as the persistence logic is the responsibility of the programmer. In addition,

it is not as database-independent as container-managed persistence. However, it provides

more flexibility on how state is managed between the bean and the database, and can better
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accommodate complex and unusual set of data.

Persistence of CCM components is similar to that of EJBs. CCM allows either self-

managed or container-managed persistence, which are analogous to EJB’s bean-managed

and container-managed persistence respectively. CCM uses the OMG Persistent State Def-

inition Language (PSDL) to define persistent state, and a Persistent State Service (PSS)

generates code that stores and retrieves state values when needed. The PSS may be imple-

mented on top of either a relational or object database, or may store data in a flat file.

Most existing component persistence mechanisms only handle storage of data, and not

of the execution stack. In addition, there is no formal notion of a consistent global state

which is required for distributed applications.

2.2.3.7 Discussion

As is evident from the above description, persistence for applications has been provided by

several software systems. However, the solutions are not general-purpose and are specific

to the particular software systems and programming models in which they are implemented.

Distributed checkpointing software does exist, e.g. for parallel MPI and PVM based ap-

plications. However, there is hardly any consensus or available software for distributed

checkpointing using other paradigms, e.g the ones that are component or Web services

based, especially on the Grid.

Recently, the Grid Checkpointing and Recovery (GridCPR) [28] group at the Global
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Grid Forum has been working on user-level APIs and associated services that will permit

checkpointing and restart of applications on heterogeneous Grid resources. However, they

have only concentrated on checkpointing and restart of single process jobs. Although this

is a good first step, APIs and protocols for capturing consistent global checkpoints are

imperative in order to handle complex Grid applications.



3

Distributed Components on the Grid

In this chapter, we present a detailed description of the XCAT3 framework, which forms a

basis for all the work introduced in this dissertation. We first present the design goals for

XCAT3, and then discuss its architecture in detail. We also describe how components can

be written and used within the framework, and conclude with a sample application that has

been implemented using our framework.

3.1 Design Goals

The primary functional goal of XCAT3 is to provide an ability to compose complex dis-

tributed applications on the Grid. We also wish to provide mechanisms inside XCAT3 to

support checkpoint and restart for distributed components for fault tolerance, and migra-

tion of individual components for adaptability to dynamic Grid environments. This leads

41
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to several architectural requirements, which we present in this section.

3.1.1 Composition of Complex Applications

We introduced the concept of composition in space and time in Chapter 1. In this subsec-

tion, we elucidate this further with an example, and present some of its implications.

Consider a situation where an engineering design team wishes to build a distributed

application that starts with a database query which provides initialization information to a

data analysis application, which in turn feeds the resulting data to a filtering service that

provides the required results. When this is implemented using standard Grid and Web

service technologies, a central workflow engine (e.g. one that supports BPEL [23]) inter-

mediates at each step of the application sequence and relays the messages from one service

to another. This approach is called composition in time, since a larger task is composed by

a set of smaller tasks executed sequentially over a period of time. This is shown in Figure

3.1.

The reason why the above approach is necessitated is twofold. First, philosophically,

Web services are self-contained entities with no external dependencies. Hence, they are

designed to provide certain operations independently, and are not meant to be connected

directly to other Web services. Second, in practice, no official bindings are defined for

outgoing Web service operations, i.e. the operations that the Web services need to invoke on



3. Distributed Components on the Grid 43

Data Filter
ServiceServiceQuery Service

Database

Workflow Engine

Data Analysis

Figure 3.1: Standard composition of Web services in time via a workflow engine.

other Web services in order to accomplish their task. This is despite the fact that WSDL 1.1

provides a mechanism to describe these outgoing operations, viz. solicit-response (output-

input), and notification (output-only). Hence, outgoing operations of Web services are

never used in practice. Consequently, outgoing operations of Web services can not be

connected directly to corresponding incoming operations, necessitating central mediation

of messages.

This approach has several disadvantages. If the data traffic between the services is

heavy, it is best not to require it to go through a central workflow engine. Furthermore,

if the logic that describes the interaction between the data analysis component and the

filtering service is complex and depends on application behavior, then putting it in the high

level workflow may not work since workflow specifications provide limited computational

capabilities.

What we really need for truly distributed applications is an ability to compose the ser-

vices together in such a way that we obviate the need for a central workflow engine. As
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Figure 3.2: Composition of components in space via direct connections.

shown in Figure 3.2, we replace the workflow engine with an Application Coordinator

(AC). The AC is only responsible for creating instances of the components if required, and

connecting them together. We call this approach composition in space, since the compo-

nents are distributed at different locations and are (possibly) executing concurrently.

Note that publish-subscribe systems may be used to provide asynchronous commu-

nication between Web services, thus providing limited composition in space. However,

asynchronous communication is typically used for notification of state changes, and is not

a very intuitive model for availing of functionalities provided by other Web services. Fur-

thermore, publish-subscribe systems don’t lend themselves very well to composition by

third parties; the logic of the publisher and subscriber is deeply embedded within the Web

services themselves.

The XCAT3 framework supports composition in space via its conformance to the CCA

specification. As prescribed by CCA, components can provide services via provides ports
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and use services via uses ports. Composition in space can be accomplished by connecting

the uses ports of components to compatible provides ports. Additionally, other publish-

subscribe mechanisms can be added for asynchronous communication between compo-

nents.

3.1.2 Conformance to Grid Standards

Since XCAT3 components execute on the Grid, it is desirable that they conform to Grid

standards. At the beginning of development of XCAT3, OGSA and OGSI were the upcom-

ing Grid standards. Conforming to OGSI presented the following benefits:

� Standardization of interfaces and protocols, thus enabling the components to be ac-

cessible by standard Grid clients.

� Multiple level naming, which is useful for checkpoint and restart, as well as for

migration for components. Since a GSH is location-independent, a component can

be easily located even if it is re-instantiated at another location.

� Leveraging useful Grid services (e.g. Registries) and specifications (e.g. BPEL)

being developed within the Grid/Web community.

However, mapping CCA concepts to OGSI is not an entirely trivial task. CCA compo-

nents and Grid services differ in their definitions of ports and port types. Within CCA, a

component can have multiple ports of the same type. This is because ports are envisioned
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to be stateful, e.g. a microscope can have multiple electron guns of the same type, which

can be represented as multiple instances of the same port type. However, in the Grid and

Web services world, ports are stateless. Multiple bindings for the same port type may ex-

ist, but they are semantically equivalent, i.e. they can be used interchangeably. Hence,

a mapping needs to be devised between CCA ports and their Grid service counterparts.

Additionally, Grid services have no concept of a ComponentID, which is used by CCA to

uniquely identify a component.

3.1.3 Other Grid Issues

Apart from conformance to CCA and OGSI, there are a few other architectural require-

ments that are necessitated by the distributed nature of the components.

� Deployment & Instantiation: Since the components will be executing on Grid re-

sources, there has to be a mechanism to deploy these components on the same. Fur-

thermore, once these components have been deployed, they need to be instantiated as

required. This also calls for suitable authentication and authorization mechanisms.

� Remote Invocations: Since the components are distributed, there needs to be a Re-

mote Method Invocation (RMI) mechanism to invoke methods across the Grid. Ad-

ditionally, these invocations may need to be secure if sensitive data is being passed

around.
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3.2 Architecture of XCAT3

The architecture of XCAT3 reflects the design goals presented in the previous section.

XCAT3 represents a framework that enables CCA-style distributed components to be ac-

cessed as Grid services. The prototype implementation of XCAT3 is in Java, although a

C++ version is planned in the future.

3.2.1 CCA Compatibility

The CCA specification, which defines interfaces for components and framework services,

is defined in the Scientific Interface Definition Language (SIDL). A framework that con-

forms to CCA provides implementations for the all the mandatory interfaces defined by the

specification.

Babel [10] is the standard software toolkit that parses interface definitions in SIDL,

and automatically generates appropriate glue code. This glue code mediates differences

among calling languages and supports efficient inter-language calls within the same mem-

ory address space. We use Babel for code generation, and implement the interfaces in Java.

However, at present, Babel does not have an ability to support remote procedure calls.

Hence, we have to modify the generated code to replace the in-process calls with remote

calls using the XSOAP [51] toolkit.

XSOAP (formerly called SoapRMI) is a lightweight implementation of Remote Method
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Invocation (RMI) that uses SOAP [20] as the communication protocol. Since CCA only

defines the source level interactions between the components and the framework, individual

frameworks can choose the component communication mechanisms that work best for their

cases. The choice of SOAP for XCAT3 was natural since it is the lingua franca for the Grid

and Web service technologies.

Some of the key CCA interfaces implemented within the XCAT3 framework are:

� Component: Every component has to implement the gov.cca.Component in-

terface. The only method that it contains is the setServices, which is used to

initialize the Services object. The Services object is used by a component for inter-

acting with the framework.

� Services: As mentioned above, every component contains a Services object which

it uses to interact with the framework and other components that are part of it. The

Services object is responsible for providing methods to register uses ports (reg-

isterUsesPort), add provides ports (addProvidesPort), fetch a previously

registered port (getPort) so that remote methods can be invoked, release the said

port (releasePort) to notify the framework that the port is no longer being used,

etc.

� ComponentID: The Services object contains a ComponentID that can be used to
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uniquely identify a component. The two operations that CCA defines are getInstan-

ceNamewhich returns the name of the component instance, and getSerializa-

tion which returns the unique framework-specific serialization of the Componen-

tID. However as we point out in Subsection 3.2.1.1, several additional methods have

to be added for it to be useful in a distributed environment.

� CCAException: CCA defines a set of exceptions that may occur during execution,

viz. PortNotDefined, PortAlreadyDefined, PortNotConnected, BadPortName, etc.

XCAT3 creates a Java Exception class for every CCA defined exception. All ex-

ceptions extend from the base gov.cca.CCAException. All exceptions thrown

during communication between components are caught and returned to the compo-

nent that initiated the communication. The exceptions are mapped to SOAP faults

on the wire and then to corresponding exceptions on receiving end of the initiating

component.

� Builder Service: CCA defines a Builder service for creation of component instances,

and composing them together. We describe the XCAT3 Builder service in detail in

Subsection 3.2.1.1.

3.2.1.1 XCAT3 Builder Service

The Builder service is a standard CCA interface for standard component creation and con-

nection. It defines methods for the same, but does not mandate how they are implemented.
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Some of the key operations provided by the Builder service are:

� createInstance: Components can be instantiated using the createInstance operation.

However, these components may have to be executed on remote Grid resources.

Hence, XCAT3 provides an ability to launch remote instances using the standard

Globus GRAM [15] protocol provided by the Java CoG kit [54]. On invocation of

the createInstance operation, the Builder service requests a remote instantiation us-

ing GRAM, and blocks until it receives the serialized form of the ComponentID from

the remote side. A ComponentID stub is created from the received information and

relayed back to the user, who can use it to refer to the component instance. Apart

from GRAM, the XCAT3 Builder service also supports component instantiation via

local process executions, and ssh.

� destroyInstance: As the name suggests, this operation can be used to terminate

execution of a component.

� connect: This operation can be used to connect a uses port of one component to

a compatible provides port of another. In XCAT3, a connect call results in a Con-

nectionID object being stored within the Services object of the component using the

connection. The ConnectionID object can be used to locate the component function-

ing as the provider, as well as the provides port that is part of the connection. In

addition, a reference count is incremented for the provides port inside the Services

object of the providing component. However, the CCA specification does not provide



3. Distributed Components on the Grid 51

standard operations for setting the ConnectionID and increasing the reference count.

This is because CCA was originally designed for non-distributed applications and all

connection information was supposed to be located centrally within the framework.

With the components being distributed, it is necessary for the connection state to be

stored in a distributed fashion for reasons of performance and scalability. Hence,

we extend the ComponentID in XCAT3 to create the XCATComponentID interface

which contains the required operations.

� disconnect: This operation enables a port connection to be broken. The Connec-

tionID object is removed from the using component, and the reference count is decre-

mented for the providing component. This operation enables dynamically changing

connection configurations to provide the flexibility desired in PSEs. Operations to

support removal of the ConnectionID object from the using component, and decre-

menting the reference count for the providing component are added to the XCAT-

ComponentID interface.

For rapid prototyping purposes, XCAT3 provides an interface to the Builder service

using Jython scripts. Jython is pure Java implementation of the Python scripting language,

and provides an almost seamless interface to code written in Java. Hence, exposing the

functionality of the Builder service which was originally written in Java via Jython was a

trivial task. The Jython API provided to the user closely mirrors the API provided by the

Builder service.
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XCAT3 does not provide a capability to stage executables to remote Grid resources.

Instead, it relies on components being installed and ready to use. However, it provides a

mechanism to package a component within XML deployment descriptors, which contain

information about how to instantiate the components. The descriptor contains the fully

qualified class name for the component, environment variables viz. standard output and

error, working directories, etc., the hosts on which the component may be deployed and the

protocols supported by those hosts, the port types supported by the component, etc. The

Jython scripting engine parses the descriptor to retrieve the deployment information, and

uses the Builder service to instantiate the component.

3.2.2 OGSI Compatibility

OGSI compatibility for XCAT3 is accomplished using Grid Service Extensions (GSX)

[27], which is a lightweight implementation of the OGSI specification built on top of the

XSOAP toolkit. GSX adds the portTypes prescribed by the OGSI specification, the pro-

vision to add Service Data Elements (SDE) to Grid services, and the GSH/GSR-based

multiple level naming to the XSOAP toolkit.

In order to make XCAT3 compatible with OGSI, all remote services are exposed as

Grid services. This includes framework services such as the Builder service, as well as the

components themselves. Additionally, the XCAT3 framework provides an implementation

for the OGSI Handle Resolver service which is responsible for mapping a GSH for a Grid
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service to the most recent GSR that can be used to access it.

We note from Subsection 3.1.2 that CCA ports and Web service ports are not exactly

equivalent due the state associated with the CCA ports. Consequently, a component can not

be represented as a Grid service with every provides port being a Web service port. Hence,

we model a component as a set of Grid services as follows.

Every provides port of a component is represented as a separate Grid service using

GSX. Thus, every provides port has a location independent GSH, as well as a specific GSR

that can be used to access it. The GSR is a WSDL document that the XSOAP toolkit

generates, and can be used by any standard Grid client to interact with the provides port.

Every uses port is a just a client-side stub, connected to either a provides port provided by

another component, or to a standard OGSI-compliant Grid service. When the uses port is

connected to a provides port or a Grid service, the ConnectionID object that is cached by

the using component contains the GSH for the remote provider. This makes the connection

information location independent as well, which means that the providing component or

Grid service could migrate to another resource and still remain accessible as long as its

GSR is updated with the Handle Resolver service.

Additionally, the ComponentID for every component is also exposed as a separate Grid

service. It contains Service Data Elements containing the names, GSHs, and GSRs for all

provides ports. Thus, any Grid client can obtain information about the ports supported by

a component by querying its ComponentID interface. The getSerializationmethod
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Figure 3.3: An XCAT3 Component as a set of Grid services

of the ComponentID, which is supposed to return a unique framework specific serialization

of the ComponentID, returns the GSH for the component. This GSH along with the Handle

Resolver service can be used by a client-side stub to access the component as long as it is

alive.

The OGSI specification uses a concept called ServiceGroups to group together a set of

Grid services that are related. The ComponentID is analogous to an OGSI ServiceGroup

in the sense that it groups together related services (provides ports) using Service Data

Elements.

All the Grid services that are part of the component share the same Component object,
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Figure 3.4: XCAT3 Software Stack

and can hence communicate with each other via mutual shared state. The modeling of an

XCAT3 component as a set of Grid services is illustrated in Figure 3.3.

3.2.3 Summary

Thus, we have described the architecture of XCAT3 which provides a CCA framework

consistent with Grid standards. The software stack is summarized in Figure 3.4.
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Figure 3.5: Simple uses-provides relation between components

3.3 Writing and Using XCAT3 Components

Implementing components in the XCAT3 framework consists of writing the port interfaces,

implementing the ports, and writing the components themselves. Jython scripts, along with

deployment descriptors for the components, can be used to subsequently compose them

meaningfully. We illustrate this process in this section.

As an example, we present a system with two components - ProvidesConversionCom-

ponent, which provides a simple function to convert temperature from Celsius to Fahrenheit

scales via a provides port ConversionPort, and UsesConversionComponent, which uses this

functionality provided via a uses port. To begin execution, the UsesConversionComponent

uses a GoPort, which is an especially designed CCA port for bootstrapping execution of

set of a components. Figure 3.5 illustrates the relation between the components. Although

this particular example is a trivial one, it depicts the steps involved in writing distributed

components.
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3.3.1 Port Interfaces

Ideally, the port interfaces should be defined in SIDL. However, since Babel currently does

not support distributed objects and remote methods, port interfaces are simply defined in

Java in XCAT3. Every port interface in XCAT3 extends from the XCATPort interface. The

XCATPort interface extends the Port interface generated by Babel from the CCA SIDL

specification, and also the XSoapGridServiceInterface provided by GSX for OGSI com-

patibility. The interface for ConversionPort in our simple example is shown below.

package samples.conversion;

import intf.ports.XCATPort;

/**
* The interface definition for the Convert Port
*/
public interface ConversionPort extends XCATPort {

/**
* Method to convert a value in celsius to centigrade
*/
public float centigradeToFahrenheit(float celcius);

}

3.3.2 Port Implementations

XCAT3 provides a basic implementation for a port via the BasicPortImpl class, which

all port implementations extend from. This class implements the methods present in the
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XCATPort interface that are inherited from the XSoapGridServiceInterface, so that the

component writer need not be concerned with implementing OGSI-specific methods.

The implementation for the ConversionPort is shown below. Note that the component

writer only implements the methods that are added via the definition of the port interface.

package samples.conversion;

import xcat.ports.BasicPortImpl;

/**
* This is the implementation of the ConversionPort.
*/

public class ConversionPortImpl extends BasicPortImpl
implements ConversionPort {

/**
* Default constructor.
* This has to throw java.lang.Exception because the
* superclass constructor throws it.
*/
public ConversionPortImpl() throws Exception {
super();

}

/**
* Method to convert a value in celcius to centigrade,
* which is the only method defined by the
* ConversionPort
*/
public float centigradeToFahrenheit(float celcius) {
float fahr = ( ( 9f / 5f ) * celcius ) + 32;
return fahr;

}
}
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The GoPort is also implemented in a similar fashion. It contains a go method, which

calls the startExecuting method on the UsesConversionComponent to bootstrap ex-

ecution.

3.3.3 Component Implementation

Every component has to implement the Component interface, and the setServices

method inside it. Within the setServices method, a component is expected to cre-

ate instances of provides ports and add them to the Services object using the addPro-

videsPortmethod, and also register uses ports using the registerUsesPortmethod.

When a provides port is added, the XCAT3 Services implementation makes it available to

the outside world as a Grid service transparently. We describe the implementation of the

UsesConversionComponent below.

The basic outline for the UsesConversionComponent is shown in the following code

snippet. Apart from a default constructor and the setServices method, the component

implementation contains a single method, startExecuting. As mentioned earlier, this

method is invoked by the go method of the GoPort in order to bootstrap execution.

package samples.conversion;

import gov.cca.Component;
import gov.cca.Services;
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import gov.cca.TypeMap;

/**
* The implementation of the UsesConversionComponent.
*/
public class UsesConversionComponent implements Component
{

// Every component contains an instance of the Services
// object
private Services usesCore;

// Instance of a GoPort for this component to bootstrap
// execution
private GoPortImpl goPort;

/**
* Default empty constructor required for instantiation
*/
public UsesConversionComponent() {
}

/**
* The only method defined by the Component interface
* @param cc the services object for this component
*/
public void setServices(Services cc)
throws gov.cca.CCAException {
// setServices() implementation goes here

}

/**
* This method represents whatever computation the
* component needs to do. It is invoked by the
* go method of the GoPort.
*/
public void startExecuting() {
// code to bootstrap component execution goes here

}
}
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The following code shows the part of the setServices method where the UsesConver-

sionComponent registers a uses port in order to avail of the conversion service provided by

the ProvidesConversionComponent. To register a uses port, the implementation provides

(1) a name for the port that will be used later to grab a reference to it, (2) a unique names-

pace for identifying the type of the port, and (3) a TypeMap object, which is a CCA defined

object for storing properties of a port. The classname for the port interface is stored as the

portClass property within the TypeMap.

public void setServices(Services cc)
throws gov.cca.CCAException {
...

// signify the interface name for the uses port
TypeMap uMap = usesCore.createTypeMap();
uMap.putString("portClass",

ConversionPort.class.getName());

// param[0] : name of port to register
// param[1] : unique namespace for the port
// param[2] : typeMap object for the port as defined above
usesCore.registerUsesPort("convertUsesPort",

"http://foo.bar/conversion",
uMap);

...
}

The UsesConversionComponent adds a GoPort as a provides port inside the setSer-

vices method as follows. To add a provides port, the implementation provides (1) a
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reference to the provides port implementation, (2) a name for the provides port which can

be used later to refer to it, (3) a unique namespace for identifying the type of the port, and

(4) a TypeMap object for storing port properties. The classname of the port interface is

stored as the portClass property within the TypeMap.

public void setServices(Services cc)
throws gov.cca.CCAException {
...

// create an instance of the GoPort
goPort = new GoPortImpl(this);

// signify the interface for the provides port
TypeMap pMap = usesCore.createTypeMap();
pMap.putString("portClass",

intf.ports.XCATGoPort.class.getName());

// param[0] : the instance of the port to add
// param[1] : name of port to register
// param[2] : unique namespace for the port
// param[3] : typeMap object for the port as defined above
usesCore.addProvidesPort(goPort,

"providesGoPort",
"http://foo.bar/go",
pMap);

...
}

The startExecuting method of the UsesConversionComponent is shown below. The

component grabs hold of the registered uses port via a getPort call. The use of the

getPort call is twofold. Firstly, it signifies to the framework that the port is being used.
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The framework can then make sure that the remote component that provides the service is

always available when the port is being used. Secondly, it makes sure that no two threads

in the same component are using the same uses port at the same time. If another thread has

a reference to the uses port, the call blocks until the other thread releases it. On completion

of the remote invocation, the component releases the port via a releasePort call. This

signifies to the framework that the port is no longer being used, and enables another thread

to use it, if need be.

/**
* This method represents whatever computation the
* component needs to do. It is invoked by the
* go method of the GoPort.
*/
public void startExecuting() {

// Get a reference to a usesConvert port so that
// remote methods may be invoked
ConversionPort usesPort = (ConversionPort)
usesCore.getPort("convertUsesPort");

// Make a call on the remote provides port
System.out.println("UsesConversionComponent: " +

"Celcius : 0, Fahrenheit: " +
usesPort.centigradeToFahrenheit(0f));

// Release the port when we are done using
usesCore.releasePort("convertUsesPort");

}
}
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The implementation of the ProvidesConversionComponent is similar to the UsesConver-

sionComponent shown above. The ProvidesConversionComponent adds a single provides

port - the ConversionPort, which provides the remote service desired by the UsesConver-

sionComponent. It does not need a GoPort since it is only a provider of a service which

responds to requests from users.

3.3.4 Component Execution

As we mention earlier, XCAT3 provides an XML-based deployment mechanism for com-

ponents. The XML descriptor for the UsesConversionComponent is shown below.

<componentStaticInformation>
<componentInformation>
<name>User of Temperature Conversion Service</name>
<author>Sriram Krishnan</author>
<portList>
<usesPort>
<portName>convertUsesPort</portName>
<portType>http://foo.bar/conversion</portType>

</usesPort>
<providesPort>
<portName>providesGoPort</portName>
<portType>http://foo.bar/go</portType>

</providesPort>
</portList>
</componentInformation>
<executionEnv>
<hostName>k2.extreme.indiana.edu</hostName>
<hostName>rainier.extreme.indiana.edu</hostName>
<creationProto>ssh</creationProto>
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<creationProto>gram</creationProto>
<creationProto>local</creationProto>
<nameValuePair>
<name>className</name>
<value>samples.conversion.UsesConversionComponent</value>
</nameValuePair>
<nameValuePair>
<name>execDir</name>
<value>/u/srikrish/Projects/xcat3/src/java/scripts</value>
</nameValuePair>
<nameValuePair>
<name>execName</name>
<value>ContainerLauncher.sh</value>
</nameValuePair>
<nameValuePair>
<name>stdOut</name>
<value>/u/srikrish/Projects/xcat3/user.out</value>
</nameValuePair>
<nameValuePair>
<name>stdErr</name>
<value>/u/srikrish/Projects/xcat3/user.err</value>
</nameValuePair>
</executionEnv>
</componentStaticInformation>

The descriptor contains information describing the component itself within the compo-

nentInformation block, viz. the name, author, and portList. The portList contains a list

of uses ports inside the usesPort block and a list of provides ports inside the providesPort

block.

The descriptor also contains the execution environment for the component inside the

executionEnv block. The executionEnv provides the resources the components can be in-

stantiated on (list of hostName elements), and the protocols that can be used to instantiate
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them (list of creationProto elements). The rest of the execution environment is a array of

name-value pairs which contain enough information to instantiate a component on a par-

ticular resource. Some of the possible names are className, which represents the fully

qualified classname for the component, execDir, which represents the directory where the

component should be instantiated, and so on.

Jython scripts can be used to instantiate the components, connect the respective ports,

and bootstrap execution by invoking the go method on the GoPort of the UsesConversion-

Component. A script that does the same is shown below.

import cca

# code to read component XML descriptors
...

# create component wrappers
provides = cca.createComponentWrapper("provider",

providerXML)
uses = cca.createComponentWrapper("user",

userXML)

# assign a machine name
cca.setMachineName(uses,

"k2.extreme.indiana.edu")
cca.setMachineName(provides,

"rainier.extreme.indiana.edu")

# set a creation mechanism to Globus GRAM
cca.setCreationMechanism(uses,

"gram")
cca.setCreationMechanism(provides,

"gram")
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# create live instances
cca.createInstance(uses)
cca.createInstance(provides)

# connect their ports
cca.connectPorts(uses,

"convertUsesPort",
provides,
"convertProvidesPort")

# bootstrap execution of components
cca.go(uses)

3.3.5 Application Factories

Although it may be necessary to build some components from scratch occasionally, the

software engineering benefits of components are realized effectively when well-tested, pre-

packaged components can be re-used by third parties. We use Application Factories for

building reliable Grid applications by separating the process of deployment and hosting

from application execution [33].

As we have seen earlier, a distributed application is composed of a set of components.

The deployment information for a distributed application is captured within an Application

Deployment Descriptor (ADD). The ADD contains a list of components that are part of

the application, the deployment descriptors for the components (as described in subsection

3.3.4), the connection information between the uses and provides ports of the components,

and the operations contained by the provides ports that need to be exposed to the clients.
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Figure 3.6: Typical user interaction with an Application Factory

Some operations that may need to be exposed are the ones that bootstrap execution, set

parameters, etc.

Typical user interaction with an Application Factory is shown in Figure 3.6. The ADDs

for distributed applications are published into a secure directory service. Users authorize

themselves with this directory service, browse the applications that can be instantiated,

and select the ones that they may be interested in. The users then request the Application

Factory to instantiate a particular application by using its ADD. The Application Factory

instantiates the particular application on behalf of the user, if he/she is authorized to do

so. It may consult a Resource Broker to schedule the distributed application optimally on
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the resources that it can be deployed on. It also creates an Application Coordinator for the

application, which is a Grid service supporting the operations exposed by the components

via the ADD. The user can then interact with the distributed application via the Application

Coordinator, using standard Grid protocols and clients.

3.4 Sample Application

Our framework has been used in the past for several applications, such as the Linear Sys-

tems Analysis (LSA) and the Collision Risk Assessment System (CRASS) projects [21]

at Indiana University, a chemical engineering project for multi-scale simulations of cop-

per electrodeposition [16] at NCSA, the Grid-enabled earth system models project [57] at

NASA, etc. As an example, we present the NCSA chemical engineering application.

The aim of the chemical engineering application is to link a finite difference electri-

cal resistance code to multiple Monte Carlo electro-deposition simulations, running on

resources over the Grid. The number of Monte Carlo simulations may be dynamically var-

ied at runtime. The codes also exchange data after every iteration. It is also desirable that

the application writers (chemical engineers) make minimal modifications to their applica-

tion codes. Our framework lends itself very well to the needs of this application because

XCAT3 components can be launched on Grid resources, and can be composed dynamically

at runtime.
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Figure 3.7: Component interaction in the chemical engineering application

Since we wish to make minimal changes to the application codes, we wrap them inside

Application Managers. Application Managers execute the application codes as separate

processes, and interact with them using file-based mechanisms. This provides an effective

way to wrap legacy applications and make them grid-aware. Additionally, they expose

CCA ports to the outside world for transfer of data and control to the applications they

manage. The interactions between the managers for this application is shown in Figure 3.7.

As shown in Figure 3.7, a Master-Worker model is used to orchestrate this application.

A Master Manager manages the finite difference code, while a Worker Manager manages

every instance of the Monte Carlo code. The actual scientific codes are not modified, but

they are expected to write out data from every iteration into data files, which the managers

can read and transfer around as need be.



3. Distributed Components on the Grid 71

The Master Manager exposes a ProvidesMasterPort which accepts data from the Worker

Managers (which use matching uses ports) after every iteration of the Monte Carlo code.

On receiving data from all Worker Managers, the Master Manager combines them and

writes them into a file for the finite difference code to read and proceed with the next itera-

tion.

Every Worker Manager exposes a ProvidesWorkerPort which accepts data from the

Master Manager (which uses matching uses ports) after every iteration of the finite differ-

ence code. On receiving data on their provides ports, the Worker Managers write them into

files for the Monte Carlo codes to read, so that they can continue with their next iterations.

In addition to mediating control and data messages for the application codes, the Man-

agers can store the status information for the application as Service Data Elements (SDE).

Clients can query the Managers for these SDEs using standard OGSI mechanisms to re-

ceive information about application execution.



4

Component Persistence and Migration

In this chapter, we present a user-defined mechanism for component persistence within the

XCAT3 [40] framework. We describe the design goals, the architecture, and the program-

ming support for the same. We also discuss how this mechanism can be used to provide a

component migration capability, despite the presence of connections and communication

between distributed components.

4.1 Design Goals

In XCAT3, component persistence is provided for (1) adapting to dynamic availabilities

of Grid resources, and for (2) tolerance to their failures. We discuss the functional and

architectural requirements for component persistence in this section.

72
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4.1.1 Functional Requirements

Our motivation for providing component persistence is two-fold:

� Component Migration: Component migration is defined as relocation of an indi-

vidual component instance from one Grid resource to another during execution of a

set of distributed components.

� Distributed Checkpoint & Restart: Distributed checkpointing is defined as the pro-

cess of producing a consistent global checkpoint for a set of distributed components,

which can be used to restart execution upon failure of any of the individual nodes.

The restarted components may execute on the same resources if they are available

during restart, or may be relocated to other locations.

Although migration of components seems similar to restart, there are some subtle dif-

ferences.

� Component migration is performed typically for relocating a component instance to

a better resource for improving the performance of the application, or upon violations

of policies specified by the component writers or resource owners. On the other hand,

distributed checkpointing and restart is performed for fault tolerance purposes.

� Component migration involves relocating a component instance to another Grid re-

source. Restarting a distributed application may or may not involve relocation to

other Grid resources.
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� Distributed checkpointing requires cooperation from all components that are part

of the distributed application. All components need to store their states onto stable

storage in order to recover from failures. However during component migration, only

the state of the component that is being migrated needs to be stored. Cooperation is

required from only the components that are connected to the component that is being

migrated.

� Component migration typically does not result in any loss of computation. In other

words, components need not be rolled back to a globally consistent state from the past

for successful migration of another component. However, restarting a distributed set

of components involves rolling back the state of all the components to the most recent

consistent global checkpoint. All work done after the last checkpoint is lost.

We focus on component migration in this chapter, and discuss distributed checkpointing

and restart in Chapter 5. For component migration, we require not only a mechanism to

store and retrieve the state of an individual component that is being migrated, but also an

algorithm that enables the same, despite uses-provides connections between the component

being migrated and the other components that are part of the distributed application.

4.1.2 Architectural Requirements

The functional requirements described above impose the following architectural require-

ments on our framework.
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� Capturing Component State: The state of a component in the XCAT3 framework

consists of not only the state of the data encapsulated by the component, but also the

state of the control flow. This is because components in XCAT3 can have their own

threads of execution. This is unlike other traditional component architectures such

as Enterprise Java Beans (EJB) or CORBA Component Model (CCM) which only

provide mechanisms to capture the data encapsulated by the component. Hence, we

need to provide mechanisms within XCAT3 to capture both control and data states

for components.

� Portability: Grid resources are heterogeneous by definition since they span vari-

ous administrative domains. Hence, no assumptions can be made about their archi-

tectures. This implies that the component state has to be stored in a platform and

architecture independent manner, so that it remains portable across the Grid.

� Checkpoint Size: It is desirable that the checkpoint size is minimal, so that the

distributed checkpointing & restart, and migration implementations are efficient.

� Scalability: The architecture should scale well with the number of components that

are part of an application, and also with the number of applications themselves.

As we have seen in Chapter 2, user-defined checkpointing techniques are highly portable

and efficient with respect with checkpoint sizes, as compared to system-level techniques.

Hence, we employ a user-defined mechanism for component persistence within the XCAT3

framework.
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Figure 4.1: The big picture for component persistence and migration

4.2 Architecture

The major members of the architecture for component persistence and migration are the

Application Coordinator which is responsible for coordinating the persistence and migra-

tion of the components, a federation of Storage services which are responsible for storing

the states of the components into stable storage, the components themselves which are re-

sponsible for generating and re-loading their minimal states, and the framework which is

responsible for storing and retrieving these states to and from the Storage services.
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The interactions between the various members of the system are shown in Figure 4.1.

We describe each of them in detail in this section.

4.2.1 Application Coordinator

An Application Coordinator is created for every distributed application that is implemented

as a set of XCAT3 components. The primary role of the Application Coordinator is to

maintain locators for all the components that are part of the distributed application, and

provide operations that can be used by an end-user to migrate an individual component, or

perform distributed checkpointing and restart of the whole application.

The Application Coordinator encapsulates the following information about a set of

components:

� ApplicationID: Every application consisting of a set of components is assigned an

applicationID that can be used for identification purposes.

� ComponentInfo(s): A list of ComponentInfo objects, one for every component that

is part of the application, makes up the rest of the state of the Application Coordina-

tor.

Every ComponentInfo object contains enough information to locate a component, and

restart it, if need be. It encapsulates the following information:
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� Instance Name: This is the name assigned to a component by a user. This does

not have to unique; it is just a human-readable name for convenience purposes. This

is the name returned by the getInstanceName method of the ComponentID of the

component instance.

� Instance Handle: This is the unique GSH of the ComponentID Grid service that

represents the component. This handle, along with a Handle Resolver service, can

be used to communicate with a component, as long as it is alive. If a component has

to be restarted, the instance handle is reused.

� Creation Protocol: This is required for restarting a component instance upon failure.

During restart, the Application Coordinator tries to use the same creation protocol

used to instantiate the component for the first time, if possible.

� Location: This is the location that the component is executing on. During restart, the

Application Coordinator will try to instantiate the component on the same location,

if it is still available.

� Deployment Descriptor: This is the XML deployment information required to in-

stantiate a component during restart.

The connection information between the components need not be stored explicitly. This

is because all connection information is stored remotely by the components themselves (by

the components that use the connection). Furthermore, CCA connections are dynamic and

may change over the lifetime of the application. Replicating the connection information
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inside the Application Coordinator would require multiple updates whenever any connec-

tions are changed in order to maintain consistency. Hence, we just infer the connection

information by querying the components, as needed.

The Application Coordinator need not stay alive throughout the execution of the com-

ponents, since the components themselves do not need any of the functionality provided by

it. Instead, it can be passivated by storing all the information into stable storage, and sub-

sequently activated from stable storage as and when it is required using the applicationID

as the primary key, e.g when a component has to be migrated, or a distributed checkpoint

is desired.

4.2.2 Storage Services

Component states should not be stored locally on the Grid resources they are executing on,

because they might be irretrievable upon failure. Instead, it is desirable to store compo-

nent states into stable storage at other remote locations that are always available. Another

requirement is that this remote stable storage should scale well with the number of compo-

nents, and not be a bottleneck as the number of components increases. Although a scalable

and reliable persistent storage service is not the primary research focus of this disserta-

tion, we provide a proof-of-concept implementation of a federation of Storage services to

address these requirements.
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The federation of Storage services is comprised of a Master Storage service and a set

of Individual Storage services. The Master Storage service contains references for every

Individual Storage service. Whenever a client needs to store data into the Storage services,

it contacts the Master Storage service which assigns to it a reference to an Individual Stor-

age service from the available pool. Currently, it does so in a round-robin manner in order

to distribute network traffic among the Individual Storage services. The client uses this ref-

erence to send its data to the Individual Storage service, which stores it into stable storage.

After doing so, the Individual Storage service sends the client a unique storageID which

can be used to retrieve the data at a later time.

The Master Storage service does not maintain any metadata for locating the data ref-

erenced by the storageID. The client is expected to retain the reference to the Individual

Storage service and the storageID in order to access the stored data in the future.

4.2.3 Component and ComponentID

The component writer is expected to generate the minimal state required to restart a com-

ponent. However, the component writer can not be expected to generate framework specific

information, e.g. connections between uses and provides ports. The component writer can

also not be expected to write code to access the Storage services to load and store the states.

We follow an approach where the component writer writes code to generate local state
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specific to the component instance, while the rest of the work is done by the framework.

In order to help the component writer generate and load component state, the component

writer is provided with a MobileComponent interface that extends the regular CCA Com-

ponent interface. Inside this interface, methods to generate and load component states are

added with an assumption that the framework would invoke these as and when required,

when it is storing and loading component state into stable storage respectively.

Since the outside world interacts with a component using its ComponentID, we add

operations for loading and storing component state into a MobileComponentID interface,

which extends the CCA ComponentID interface. We also add other control operations

to the MobileComponentID which help in the process of migration, and checkpointing &

restart. The MobileComponentID implementation provided by the framework retrieves the

local component state by making a callback on the MobileComponent interface. Addi-

tionally, it also generates the state of the Services object, viz. the uses and provides ports

added, and their connection information. The above, along with the Service Data Elements

for the various Grid services that are part of the component constitute the complete state

of a component. This complete component state is encapsulated in a platform-independent

XML format, and the MobileComponentID implementation stores and loads it to and from

the Individual Storage services, as and when it is required.
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4.3 Programming Support

Since we follow a user-defined approach for component persistence, APIs are made avail-

able to the component writer to enable the same. In addition, some APIs are used by the

framework to coordinate component persistence and migration. The important APIs for the

same are described in this section.

4.3.1 MobileComponent

Every component that needs to be persistent and able to migrate has to implement the

MobileComponent interface. It contains the following methods.

� generateComponentState: This method is supposed to return a string encapsulating

the minimal state required to restart a component. It is invoked by the framework

when it needs to retrieve the local component state. This method is not expected to

return any connection information or Service Data Elements for the component, but

only the current state of data and control encapsulated by the component.

� setComponentState: This method is invoked by the framework when a component

is restarted, in order to load the state of the component from stable storage. The

framework passes as arguments the initialized Services object for the component

which contains all connection information, and the stringified local state returned by
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the component via its generateComponentState method. The component is

expected to use this information and only initialize its encapsulated data members.

� resumeExecution: This method is invoked on the component by the framework

to resume all threads of execution. This method is separate from the setCom-

ponentState for logical separation of data and control states of the component.

Additionally, during restart from a globally consistent checkpoint, we need to make

sure that all components have loaded their states before any threads are resumed.

This is because these threads can affect the state of other components via port calls,

and may have unforeseen consequences if they do so before the states of the remote

components are loaded consistently from the global checkpoint. We will describe

this in further detail in Chapter 5 when we describe the distributed checkpointing

and restart algorithms.

4.3.2 MobileComponentID

Every MobileComponent contains an implementation of the MobileComponentID inter-

face, that is provided by the framework. The MobileComponentID interface functions as

the entry point into the component during distributed checkpoint and restart, and compo-

nent migration. We describe some of the operations provided by the MobileComponentID

for component persistence and migration in this subsection.

The following methods are invoked on the MobileComponentID of a component whose
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state needs to be stored, or which is being migrated/restarted.

� freezeComponent: This method is a request by the Application Coordinator to

freeze execution of the component, which is required before its state can be saved.

In some cases, this requirement can be somewhat relaxed, and the component needs

to only freeze its outgoing calls, i.e. calls made via its uses ports. This may enable

the component to continue with its local execution without affecting the state of any

external components, which may be sufficient for most purposes. Once the compo-

nent does either of the above, it sends a notification to the Application Coordinator

that the component is frozen.

� unfreezeComponent: This is a notification by the Application Coordinator that the

component can proceed with its execution, usually after its state has been stored.

� storeComponentState: This is a request by the Application Coordinator to store the

state of the component with an Individual Storage service. The MobileComponentID

implementation then generates the complete state of the component, and stores the

same with the Individual Storage service. It then sends a confirmation message to the

Application Coordinator, along with the storageID returned by the Individual Storage

service.

� loadComponentState: This method is invoked by the Application Coordinator on

restart or migration of a component. The MobileComponentID implementation re-

trieves the complete component state from the Individual Storage service using the
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storageID, and loads the component with it. As we have mentioned before, this state

contains the local state of the component, the state of the Services object, and the

Service Data Elements associated with the various Grid services. When the Services

object is set, all the provides and uses ports are initialized. The GSH’s for the pro-

vides ports are reused, and fresh references to them are registered with the Handle

Resolver service.

� resumeExecution: This method is a notification by the Application Coordinator that

the component can resume all threads of execution. The MobileComponentID im-

plementation simply forwards this notification to the MobileComponent implemen-

tation.

The following methods are invoked on the MobileComponentID of a component that is

connected via a uses port to a component being migrated.

� requestMigration: If a component has to migrate to another location, it can only do

so if the other components that are using the services provided by its provides ports

hold off on their requests during the migration process. The Application Coordinator

requests a component to stop using a particular uses port momentarily using this

method. The MobileComponentID implementation waits till the uses port is released,

if it is being used, and then notifies the Application Coordinator that it has its approval

for migrating the provider component. Further getPort calls for that particular

uses port block until a confirmation is received that the migration is complete.
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� confirmMigration: This is a notification that the provider component for a particular

uses port is indeed migrating.

� migrationComplete: This method is used by the Application Coordinator to notify

the component that the provider component for a particular uses port has completed

its migration, and that the uses port is now available for further use. All getPort

calls can now proceed as expected.

4.3.3 Application Coordinator

As we have seen before, the Application Coordinator is used to load and store component

states, migrate components, and restart components from a checkpointed state. We look at

some of the operations provided by the Application Coordinator in this subsection.

Since an application within the XCAT3 framework is comprised of a set of distributed

components, checkpointing and storing/loading states for individual components does not

make sense. Instead, only globally consistent states for components should be stored, in

order for them to be able to restart correctly. We look at this in more detail in Chapter 5.

However, in this subsection, we describe the support provided by the Application Coor-

dinator to migrate individual components, and load and store its own state from/to stable

storage.
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The migrateComponent method is provided by the Application Coordinator to mi-

grate a particular component to another Grid resource. The algorithm used by this method

is described in Section 4.4. In short, it makes sure that all remote calls to a migrating com-

ponent are blocked while a component is migrating. When the migration is complete, all

calls may be resumed.

The following methods are provided by the Application Coordinator to store and load

itself into stable storage:

� storeInDatabase: This method enables storing the state of the Application Coordi-

nator into a database, for future use. The state of the Application Coordinator consists

of an applicationID and a list of ComponentInfo objects, as described in Subsection

4.2.1.

� loadFromDatabase: This method can be used the load the state of the Application

Coordinator from a database. The Application Coordinator initializes itself with the

stored information, and can then be used for individual component migration, or

checkpointing and restart of a distributed set of components.

4.4 Component Migration

In this section, we explain how the component persistence mechanisms described above

can be used to provide migration for individual components on the Grid.
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Migration is more complicated for a distributed application, as opposed to a non-

distributed one. For a non-distributed application, migration would involve storing the state

of the application, re-instantiating it on another resource, and loading the state back to the

one that is stored. However, for a distributed application, migrating an individual member

of the application is more complicated because it may be communicating with other mem-

bers of the application. Hence, in order to migrate an individual member of a distributed

application, all communication with that member must be stalled during the migration pro-

cess. Furthermore, all other members communicating with the migrated member must be

able to rediscover the latter after the migration is complete in order for the communica-

tion to resume. We describe how this is done for migration of components in the XCAT3

framework below.

4.4.1 Migration Algorithm

In short, in order to migrate an individual XCAT3 component to another resource, all com-

munication with that component is halted, the component is migrated, the migrated com-

ponent is rediscovered by the other components, and all communication to the component

is resumed. The detailed algorithm, as shown in Figure 4.2, is as follows.

1. An end-user initiates migration of a component by invoking the migrateCompo-

nent method on the Application Coordinator.
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2. Using the references for all the components that are part of the distributed appli-

cation, the Application Coordinator infers the connection graph for the same. The

various components that are part of the application constitute the nodes of the con-

nection graph, while the uses-provides connections between them represent directed

edges.

3. For every component that is connected to the component being migrated, the Ap-

plication Coordinator sends a requestMigration message to the appropriate

MobileComponentID. It also sends the name of the uses port that is connected to the

component being migrated.

4. The components that are connected to the component being migrated receive the

requestMigration message via their MobileComponentIDs. On receipt of this

message, they wait until the uses ports mentioned are released by the component via

the releasePort call, if they are being used. Once the uses ports are released, the

components send a migrationApproval message to the Application Coordina-

tor. All further getPort requests for the above mentioned uses ports block until

further notice.

5. On receiving migrationApproval messages from all connection users, the Ap-

plication Coordinator sends a confirmMigrationmessage to all the above com-

ponents.
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6. The Application Coordinator is now ready to migrate the individual component.

However, before migration, the said component has to be frozen. To do so, the

Application Coordinator sends a freezeComponent request to the MobileCom-

ponentID of the component.

7. On receipt of the freezeComponent request, the MobileComponentID imple-

mentation waits till all remote invocations are complete. It can do so by waiting till

all ports being used are released via the releasePort method. All further get-

Ports are blocked. After all ports are eventually released, the MobileComponentID

implementation sends a componentFrozen message to the Application Coordi-

nator.

8. After receiving the componentFrozen message from the component, the Appli-

cation Coordinator contacts the Master Storage service to receive a reference to an

Individual Storage service. Subsequently, it sends a storeComponentState re-

quest to the MobileComponentID implementation, along with the reference to the

Individual Storage service.

9. The MobileComponentID receives the storeComponentState request from the

Application Coordinator and stores the complete state of the component into the

Individual Storage service referenced by the message. Then it sends the storageID to

the Application Coordinator as part of the componentStateStoredmessage.
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10. After the component state is stored, the Application Coordinator destroys the execut-

ing instance of the component, and re-instantiates it on the target Grid resource using

its stored XML deployment descriptor. It then sends a loadComponentState

state message to the MobileComponentID, along with the storageID and a reference

for the Individual Storage service to be used.

11. On receiving the loadComponentState message, the MobileComponentID im-

plementation loads the state of the component from the appropriate Individual Stor-

age service, and sends a confirmation to the Application Coordinator. New references

for the provides ports are registered with the Handle Resolver service.

12. The Application Coordinator then sends the resumeExecution message to the

MobileComponentID, which resumes all threads of execution for the component.

13. For every component that is connected to the component being migrated, the Appli-

cation Coordinator sends a migrationCompletemessage to the MobileCompo-

nentID.

14. On receiving the migrationComplete message, the MobileComponentID un-

blocks all the blocked getPort invocations for the concerned uses ports. Addition-

ally, it uses the Handle Resolver service to retrieve the latest Grid Service References

for the provides ports of the migrated component, that are being used. This will en-

able further communication with the migrated component.
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15. The migrateComponent method is now complete, and control is returned to the

end-user.

4.4.2 Discussion

In theory, there is no upper bound on the worst case performance of the migration algorithm

because the Application Coordinator can wait indefinitely for components to stop using

their uses ports. However, in practice, since the component persistence mechanisms are

user-defined, the user can be expected to exhibit good programming discipline and not hold

on indefinitely to a uses port that is obtained via a getPort invocation. If the components

are loosely coupled, which is most often the case for distributed Grid applications, then the

Application Coordinator would not wait very long for all uses ports to be released. Hence,

in practice, most of the time is spent in the physical migration of the component - storing

component state, re-instantiating on another Grid resource, and loading back the state. We

discuss the performance of the migration algorithm for a typical application in Chapter 6.

When we presented the migration algorithm above, we did not discuss the implications

of failures during the migration process. This is because we use a distributed checkpoint-

ing and restart mechanism to recover from failures of individual components, which will

be described in Chapter 5. If any component fails during the migration process, we abort

the migration of the component and restart the whole application from a globally consis-

tent checkpoint. However, it is possible that the Application Coordinator fails during the



4. Component Persistence and Migration 94

migration process. To deal with this situation, the Application Coordinator can write the

progress of the migration algorithm into stable storage and restart from it, if need be. The

Application Coordinator is typically executing on a local workstation, rather than a Grid

resource. This means that in the unlikely event of its failure during the migration algorithm,

it can be restarted quickly. The components communicating with the Application Coordi-

nator can keep retrying to send their messages, under the assumption that the Application

Coordinator would be re-instantiated promptly.

We do not attempt to prove the correctness of the migration algorithm, since it is trivial.

It is obvious that by blocking all communication to and from a component that is being

migrated, we reduce the problem of migrating a component in a distributed application to

one of a single component without any connections to any other component, as long as the

communications can be resumed once the migration is complete. However, an important

assumption we make in the algorithm is that no Grid clients may affect the state of a mi-

grating component while it is being migrated. This is typically true as users would only

query for component status during execution, and this does not cause any state changes.



5

Distributed Checkpointing and Restart

In this chapter, we present an approach for distributed checkpointing and restart for compo-

nents within the XCAT3 framework. The distributed checkpointing and restart mechanisms

use the concepts of component persistence presented in Chapter 4. We first describe the de-

sign goals, the architecture and the programming support, and then present the algorithms

for checkpointing and restart for distributed components.

5.1 Design Goals

The primary functional goal of the distributed checkpointing and restart mechanisms in

XCAT3 is to provide an ability to recover from failures during execution of long running

applications. The goal is to produce consistent global checkpoints periodically, which can

then be used to restart the execution of the components upon failures.

95
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Failures can be broadly defined as deviation from normal program behavior. In dis-

tributed systems, these can be divided into node failures or link failures. Node failures are

the ones in which the executing processes, that are part of the distributed system, fail to ex-

ecute correctly. This might be caused by the process itself, or the resource that the process

is executing on. Link failures are the ones in which the communication link between the

executing processes deviates from normal behavior.

A node can exhibit stopping failure by stopping its execution in the middle of a compu-

tation. This is also referred to sometimes as crash failure, since it is typically caused by a

node crashing. On the other hand, a node can also exhibit Byzantine failure wherein it dis-

plays random behavior, but continues its execution. This random behavior could possibly

be malicious. On the other hand, links can fail by dropping messages sent on them.

During the execution of distributed components on the Grid, we can encounter both

node and link failures. Stopping node failures could result from crashes of components or

Grid resources, while Byzantine failures could result from several reasons, viz. program-

mer errors, resources being hacked, etc. Link failures could occur if communication links

between the components crash. However, in this work, we do not handle Byzantine node

failures, and link failures. Henceforth, whenever we use the term “failure”, we imply stop-

ping failures of nodes - the component processes or the computational resources that they

are executing on.
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In Chapter 4, we identified several design goals for component persistence: (1) mech-

anisms to capture component state, (2) portability, (3) checkpoint size, and (4) scalability.

Apart from the above which are key design issues for distributed checkpointing and restart

as well, some of the other goals are as follows:

� Consistent Global State: Since an application implemented using the XCAT3 frame-

work consists of a set of distributed components, checkpointing the application calls

for implementation of algorithms that produce consistent global checkpoints. Check-

pointing components individually is not of great use because a set of individual

checkpoints need not constitute a consistent global checkpoint. Additionally, the

checkpoints generated by the implementation should have enough information to

restart the application upon failures. This includes the data encapsulated by the com-

ponent, as well as the state of the control flow.

Furthermore, the checkpointing algorithm itself should be resistant to failures. In

other words, it should ensure that any failures during the checkpointing process do

not result in partial checkpoints that are not globally consistent.

� Interoperability: We wish to remain interoperable with standard Grid and Web ser-

vice clients. However, we also do not wish to be tied in to any particular implemen-

tation of the messaging and transport layers. Hence, our algorithms and techniques

should work at a higher level of abstraction, and make no assumptions or changes to

any standard protocols and/or semantics.
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Figure 5.1: The big picture for distributed checkpointing and restart

� Checkpoint Availability: The checkpoints of components must not be stored on the

Grid resources that they are executing on. The most common cause of failure of a

distributed application is failure of the resource on which it is executing on. Since

Grid resources belong to different administrative domains, it is not realistic to assume

that resources that fail will be brought back up promptly. This necessitates storing

the checkpoints at reliable remote locations that are highly available.
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5.2 Architecture

The architecture for distributed checkpointing and restart is basically the same as the one

described in Chapter 4 for component persistence and migration. The various members of

the architecture and their interactions are shown in Figure 5.1.

It consists of the Application Coordinator which is responsible for providing an imple-

mentation for the distributed checkpointing and restart algorithms, the federation of Storage

services for storing and retrieving component states, the components themselves which are

responsible for generating and loading their local states whenever they are notified to do

so, and the framework which is responsible for participating in the above algorithms by

reacting to control messages and loading/storing these states from/to the Storage services.

As described in Chapter 4, the Application Coordinator maintains information about

the set of components that constitute a distributed application within XCAT3. It contains

enough information to locate the various components, and re-instantiate them if need be.

In addition to the applicationID for an application and the list of ComponentInfo’s for the

various components, the Application Coordinator also needs to store the locations of the

various checkpoints into stable storage. This is somewhat unlike the case for component

migration, where the stored component state is only useful immediately when a component

is migrated to another location. As far as distributed checkpointing is concerned, it should

be possible to locate a consistent global checkpoint at any point of time, so that it could be
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used to restart execution upon failure.

The roles of the Storage Service and the components are similar to their roles in the

migration of individual components. The Master Storage service is responsible for keeping

track of Individual Storage services, and schedule storage requests on them. The Individ-

ual Storage services are responsible for storing component states and allowing access to

them, if need be. The components participate in the distributed checkpointing and restart

algorithms by interacting with the Application Coordinator and the Storage services, as we

shall see in Sections 5.4 and 5.5.

5.3 Programming Support

As usual, we provide APIs for the component writer and the end-user to avail of the check-

pointing and restart capabilities. Furthermore, some APIs are added inside the framework

for supporting these capabilities. In this section, we present the important APIs that enable

distributed checkpointing and restart.

In Chapter 4, we presented the operations added to the MobileComponent and Mobile-

ComponentID interfaces for component persistence and migration. These operations can

be used even during distributed checkpointing and restart.

� MobileComponent: A component writer generates the minimal state required to

restart a component using the generateComponentStatemethod, and accepts
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the same via the setComponentState method upon restart. Control threads are

started up via the resumeExecution method after the states of all components

are set, as we shall see from the restart algorithm in Section 5.5.

� MobileComponentID: The freezeComponent method is used for freezing all

outgoing communication for a component during distributed checkpointing. The

unfreezeComponentmethod is used for enabling all outgoing communication to

proceed after distributed checkpointing is complete. The storeComponentState

method is used for generating and storing component state with the Individual Stor-

age services, while the loadComponentState method is used for the converse.

The resumeExecutionmethod resumes control threads for a component on restart

by invoking its namesake method of the MobileComponent interface.

The requestMigration, confirmMigration, and migrationCom-

plete methods of the MobileComponentID are not used in distributed checkpoint-

ing or restart. These methods involve stalling and resuming communication for a

particular uses port during migration of a connected provider component. In the case

of migration, only the state of the migrating component needs to be stored. However

during distributed checkpointing, the state of all components needs to be captured

for a consistent global checkpoint. This implies that in this case all components (and

all their uses ports) need to be frozen. This functionality is already provided by the

freezeComponent and unfreezeComponent methods, which is hence used
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in lieu of the former set of methods.

The Application Coordinator serves as the entry point for the checkpointing and restart

process, and provides the methods required for the same. The checkpointComponents

method can be used to create a consistent global checkpoint for an application. It is respon-

sible for ensuring that all the individual checkpoints are correctly stored into the Storage

services, and also for storing locations for these checkpoints into stable storage so that they

can always be accessible if need be. The restartFromCheckpoint method can then be

used to restart execution of the application from the most recent global checkpoint. This

method is responsible for re-instantiating all the components, loading their states from the

Storage services using the stored locations of the checkpoints, and resuming their execution

threads. We present the algorithms for these methods in Section 5.4 and 5.5 respectively.

5.4 Distributed Checkpointing

In this section, we present the distributed checkpointing algorithm implemented in the

XCAT3 framework in order to generate a consistent global checkpoint.

As we have seen before in Chapter 2, there are several possible approaches that can

be taken for producing consistent global checkpoints. The checkpointing algorithm could

be uncoordinated or coordinated. We prefer the coordinated checkpointing approach so

as to minimize storage overhead, and to be free from the domino effect that can occur in
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uncoordinated checkpointing. Even with coordinated checkpointing, we could use either

blocking or non-blocking algorithms. However, our goal is to use standard commodity im-

plementations for communicational purposes, and not make any changes to the underlying

messaging layer. This helps us preserve interoperability with other standard implementa-

tions used on the Grid, and also enables us not to be tied in intrinsically with any such

implementations. This means that we could switch the messaging and transport layers

easily, if need be. This rules out the use of non-blocking algorithms which are typically

communication-induced, and involve changes to the messaging implementation. Hence,

we use a coordinated blocking algorithm to create consistent global checkpoints.

5.4.1 Checkpointing Algorithm

In short, in order to create a consistent global checkpoint, all components are first frozen,

the individual checkpoints are taken, and all the components are then un-frozen. This is

typically how a coordinated blocking checkpointing algorithm works. The detailed algo-

rithm, as shown in Figure 5.2, is as follows.

1. An end-user initiates the distributed checkpointing process by invoking the check-

pointComponentsmethod on the Application Coordinator.

2. The Application Coordinator retrieves the references for all components that are part

of the distributed application.
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Figure 5.2: The distributed checkpointing algorithm
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3. For every component that is part of the distributed application, the Application Coor-

dinator sends a freezeComponent request to the appropriate MobileComponen-

tID.

4. On receipt of the freezeComponent request, the MobileComponentID imple-

mentation waits until all remote invocations are complete. It does so by waiting until

all uses ports in use are released via a releasePort invocation. Subsequently, all

getPort calls block until further notice. After all ports are released, the Mobile-

ComponentID implementation sends a componentFrozen message to the Appli-

cation Coordinator.

5. On receiving componentFrozen messages from every component that is part of

an application, the Application Coordinator can infer that all communication between

the components is stalled, and that individual checkpoints can now be taken. Sub-

sequently, for every component, it contacts the Master Storage service to receive a

reference for an Individual Storage service, and sends these references to their Mo-

bileComponentID interfaces by invoking the storeComponentStatemethod.

6. On invocation of the storeComponentState method, each of the MobileCom-

ponentID implementations generate and store the complete state of the components

into the Individual Storage services referenced by the messages. They return to the
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Application Coordinator the storageID’s received from the Individual Storage ser-

vices.

7. On receiving the storageID’s from every MobileComponentID implementation, the

Application Coordinator stores a list of � instanceHandle, individualStorageServiceURL,

storageID � tuples into stable storage, which can be used to locate the checkpoints if

need be. It also removes prior checkpoints and tuples referring to them, if they exist.

We have to ensure that this step either completes successfully in its entirety, or not

at all. This is because we don’t want a situation where we end up with locators for a

set of checkpoints referring to a combination of old and new ones. Hence, this step

is performed atomically using transaction support provided by a MySQL database.

8. The Application Coordinator then sends unfreezeComponent messages to ev-

ery MobileComponentID implementation signifying the end of the checkpointing

process. All blocked getPort calls can now proceed as expected.

9. The checkpointComponents method is now complete, and control is returned

to the user.

5.4.2 Discussion

In theory, just like the migration algorithm, there is no upper bound on the worst case per-

formance of the distributed checkpointing algorithm because the Application Coordinator
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can wait indefinitely for components to stop communicating with each other. However, as

it is with component migration, the component persistence mechanisms are user-defined.

Hence, the components can be expected to react to the control signals as expected, and stop

communicating with other components within a reasonable period of time. In practice,

most of the time will be spent in generation and storage of the checkpoints.

The distributed checkpointing algorithm is implemented in parallel - new threads are

created for every component that is part of the application, and the checkpoints are stored

with the Storage services by the components independently. Hence, in theory, increasing

the number of components should not affect the performance of the application as long the

checkpoint sizes remain the same. However, in practice, there may be a few minor over-

heads for every additional component, viz. thread creation, extra handle resolutions, etc.

The above statement is true as long as the Storage services scale well with the increasing

number of components.

In addition, the performance of the algorithm also depends on the size of the check-

points. In specific, the checkpoint time would depend on the time taken by the component

with the largest checkpoint size to store its checkpoint, and is expected to be linear with

respect to it. We discuss the performance of this algorithm for a typical application in detail

in Chapter 6.

We do not attempt to formally prove the correctness of our distributed checkpointing
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algorithm since it is just a flavor of coordinated blocking distributed checkpointing algo-

rithms. Coordinated blocking distributed checkpointing algorithms are well known to be

correct in the distributed systems community. However, we present two key arguments

towards its correctness:

� Consistency: By blocking all communication between the components that are part

of the application, we reduce the problem of distributed checkpointing to that of in-

dividual checkpointing of the set of components since the message channels between

the components are now empty. The assumption here is that state changes can only be

made via method invocations over uses-provides connections. Grid clients accessing

the components via standard mechanisms may not be allowed to affect component

states during the checkpointing process. Hence, the set of individual checkpoints

now constitute a consistent global checkpoint which can be used for restarting the

application.

� Atomicity: We have to ensure that we never end up with a global checkpoint that

contains a combination of new, as well as old checkpoints. We ensure that this does

not happen in our system by atomically updating the information about the global

checkpoint using transaction support provided by a MySQL database. Thus, either

the global checkpoint contains all new checkpoints, or all old ones if the transaction

fails, but never a combination of both.

As we have mentioned before, we do not deal with link failures during checkpointing
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or during component execution. However, this can be dealt with at the messaging level

by providing reliable communication mechanisms between uses and provides ports in the

presence of failures, e.g. by using upcoming Web service standards such as WS-Reliable

Messaging [36].

5.5 Restarting from Failures

In this section, we present the algorithm implemented in the XCAT3 framework for restart

of distributed components from a consistent global checkpoint.

During restart, it is not sufficient to restart only failed components from the global

checkpoint. This is because other components may have communicated with the failed

component after a distributed checkpoint was taken. In this case, restarting only the failed

component from the most recent checkpoint would create inconsistencies because the restarted

component would have no information about the messages that were sent to it after the

checkpoint was taken. Hence, it is necessary to roll back the states of all components to

ones from the most recent global checkpoint; not just the ones that have failed.

Furthermore, when we restart all components from the global checkpoint, we have to

ensure that all components have their states set from the checkpoint before any execution

threads are resumed. If there are some components whose states have not been set from the

global checkpoint before some of the execution threads are resumed, the resumed threads
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Figure 5.3: The distributed restart algorithm

might cause inconsistencies if they interact with other components whose states have not

yet been set. Hence, the restart algorithm should initially set the states of all the compo-

nents before resuming execution of the control threads of any of them. This is the reason

for separate setComponentState and resumeExecution methods in the Mobile-

Component and MobileComponentID interfaces.

5.5.1 Restart Algorithm

In short, in order to create a consistent global checkpoint, all the individual components

are first instantiated with empty states, the states are then loaded from a consistent global
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checkpoint, and the control threads are started subsequently. The detailed algorithm, as

shown in Figure 5.3, is as follows.

1. An end-user initiates the restart process by invoking the restartFromCheck-

point method on the Application Coordinator.

2. The Application Coordinator retrieves handles for all components that are part of

the system. It destroys instances of all components, if they are still alive. This

has to be done because it is not practical to easily roll back the control and data

of processes that are in the middle of their execution. It is much easier to destroy

executing threads, and restart them from the global checkpoint.

3. Using the XML deployment descriptors for the components, the Application Coor-

dinator re-instantiates every component with the help of the Builder service. Since

re-instantiated components signify the same component instances, the GSH’s for the

MobileComponentID’s of the component instances are reused.

The setServicesmethod is not called for a component that is re-instantiated.

The Services object will be set when the component state is loaded from a checkpoint.

At the end of this step, the states of all the components are empty.

4. For every component, the Application Coordinator sends a loadComponentState

message to the appropriate MobileComponentID along with the location of the Indi-

vidual Storage service and storageID needed to retrieve the component state.
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5. On receipt of the loadComponentState message, the MobileComponentID im-

plementations load the state of the component from the Individual Storage service.

The Services objects are initialized, and all ports are initialized using their original

GSH’s. New references for the ports are registered with the Handle Resolver service.

The MobileComponentID implementations send a confirmation to the Application

Coordinator once this is complete.

6. After the Application Coordinator receives confirmation from all components that

their states have been loaded, it sends a resumeExecution message to every

MobileComponentID implementation.

7. On receipt of the resumeExecution message, the MobileComponentID imple-

mentation forwards it to the component which can now resume all threads of execu-

tion. Whenever these threads use a getPort call for the first time to gain access to a

uses port, a fresh reference for the remote provides port is retrieved from the Handle

Resolver service and all communication can proceed seamlessly.

8. The restart process is now complete, and control is returned back to the user.

5.5.2 Discussion

The performance of the restart implementation is not as important as that of the distributed

checkpointing. This is because the distributed checkpointing has to be performed when the
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components are executing, while application restart is performed when one or more com-

ponents have already failed. Hence, the distributed checkpointing implementation affects

the performance of a running application, while the restart implementation does not. How-

ever, if all components are instantiated in parallel, the performance should be theoretically

independent of the number of components. However, there may be a few minor overheads,

viz. thread creation, handle resolution, etc. In addition, the performance would also depend

on the size of the checkpoints. In specific, it would depend on the time taken to load and

initialize the largest checkpoint from the Storage services, since all the loads would happen

in parallel.

We do not attempt to formally prove the correctness of the restart algorithm. However,

two key arguments in favor of its correctness are:

� The restart algorithm uses the consistent global checkpoints produced by our dis-

tributed checkpointing algorithm, whose correctness we have substantiated earlier.

Hence, if the states of the components are correctly set from these checkpoints, they

should exhibit correct behavior.

� Control threads are resumed only after every component has loaded its state from

the global checkpoint. This ensures that a component whose state has already been

loaded from the global checkpoint does not start communicating prematurely with a

component whose state is yet to be loaded.
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In our current implementation of the XCAT3 framework, we do not provide any mech-

anism to monitor components in execution. We advocate the use of third party monitoring

tools such as Autopilot [48] in order to learn about component failures. Distributed check-

pointing and restart, with the help of monitoring tools, can be used to provide fault tolerance

for a distributed Grid applications upon stopping failures of components or Grid resources.



6

Performance Analysis

In this chapter, we present a sample application that we use to analyze the performance

of the component migration and distributed checkpointing capabilities. We describe the

application in detail, and show how it uses the user-defined mechanisms for component

persistence presented by the XCAT3 [40] framework. We also look at the performance of

the migration and checkpointing implementations under various constraints.

6.1 Sample Application

In this section, we describe the application we use for our performance tests. We describe

the flow of control and interactions between the various components, and the implementa-

tion details for providing component persistence.

115
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Figure 6.1: The big picture for the Master-Worker application

6.1.1 Overview

The sample application is modeled after the chemical engineering application described in

Chapter 3. It is an implementation of a Master-Worker simulation implemented within the

XCAT3 framework. The architecture of the application is shown in Figure 6.1.

The application consists of a single Master component, and a number of Worker com-

ponents. The Master component contains a MasterPort, which is a provides port that is

responsible for receiving a work packet from a user, and processed results from the Work-

ers. The work packet and the processed results are represented as an array of integers. The

Worker component contains a WorkerPort, which is a provides port that is responsible for

receiving work packets from the Master, also as an array of integers. In addition, the Master

component contains a set of uses ports to connect to each of the Workers’ WorkerPorts, and
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every Worker component contains a single uses port to connect to the Master’s MasterPort.

The application can be scripted to vary the number of components, as well as the size of

data being processed, dynamically at run-time.

The interactions between the Master and Worker components, as shown in Figure 6.2,

is as follows:

1. The Master component receives a work packet from the user via its MasterPort to

bootstrap execution.
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2. The Master component proceeds to start processing received data. Since this is a

simulation of an actual application, the processing is modeled by putting the Master

component to sleep for a period of time.

3. After finishing the processing, the Master component splits the processed data equally

for the Workers to process.

4. The Master component sends a work packet to every Worker component using its

connections to their WorkerPorts.

5. On receiving the work packets from the Master component, the Worker Components

start processing it. This is also modeled by putting the Worker components to sleep

for a length of time.

6. After finishing the processing, the Worker components send back the processed re-

sults to the Master component via its MasterPort.

7. The Master component receives all the processed results from the Worker compo-

nents, and combines them together.

8. If further processing needs to be done, the Master component iterates by going to

Step 2. If not, the processing is complete.

It can be observed from the component interactions that the Master component and

the set of Worker components could never be processing the data at the same time. If
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the Master component is processing the data, all data resides with it. If all the Worker

components are processing the data, all data resides with them. However, it is possible

that the data is distributed among the Master and Worker components when (a) all Worker

Components have not received data from the Master component after the latter has finished

processing, and when (b) the Master component has received processed results from one

or more of the Worker components, but not from all of them since they may not finish

processing at the same time. We will use the above observations to model the state of the

application in Subsection 6.1.2. Furthermore, we shall also see how the distribution of data

among the Master and Worker components affects the performance of the migration and

checkpointing algorithms.

6.1.2 Component Persistence

In order to store the states of the Master and Worker components, we make a distinction

between a super-state and the actual physical state. We define a super-state as a logical

block of execution in a component. Hence a super-state could be thought of as the state

of the control thread of a component. Within a super-state, the physical state may vary

depending on the state of the internal data structures at any point of execution.

From Figure 6.2, we infer that the Master component has the following super-states:

� INITIALIZED, where it has received its work packet from the user. It is also aware
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of all the Worker components and has connections to each of them via its uses ports.

� PROCESSING DATA, where it is processing the data received from either the user

or the Worker components

� SENDING DATA, where it has finished processing and is sending its processed re-

sults to the Worker components. It could have sent work packets to zero or more

Worker components in this super-state.

� RECEIVING DATA, where it has finished sending work packets to the Worker

components and is waiting to receive processed results from them. It could have

received the processed results from zero or more Worker components in this super-

state.

Similarly, the Worker component has the following super-states:

� INITIALIZED, where it has been initialized with connections to the Master com-

ponent via its uses port.

� PROCESSING DATA, where it is processing a work packet received from the Mas-

ter component.

Unlike the Master component, the Worker component does not need SENDING DATA

and RECEIVING DATA super-states. This is because all data is sent and received to/from
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the Master component using a single port invocation. Once these invocations are com-

plete, the super-states can be switched immediately. However, the Master component inter-

acts with multiple Worker components. Hence, it may have finished sending or receiving

data to/from only a subset of all the Worker components. This necessitates the SEND-

ING DATA and RECEIVING DATA super-states.

In order to modularize the code, and make it usable for generating and loading states, we

map every super-state into a corresponding method inside the components, e.g. PROCESS-

ING DATA is mapped to the processData method, SENDING DATA is mapped to the

sendDataToWorkers method, and so on. In the Master component, all of these meth-

ods, except the one representing the final super-state (i.e. RECEIVING DATA), invoke

the methods representing the next super-states as their final statements. The method repre-

senting the final super-state, RECEIVING DATA, simply returns when it is done, causing

every other method preceding it to complete as well. This signifies the end of an exchange

between the Master and the Worker components. A single control thread keeps continually

invoking the method representing the first super-state, processData, until all processing

is complete. On the other hand, for the Worker component, a control thread is started when

it receives a work packet from the Master component. This thread simply invokes with the

method corresponding to the PROCESSING DATA super-state (i.e. processData), and

terminates when the processing is complete to go back to its INITIALIZED super-state.

The above modularization is done so that the component executions can be resumed
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easily from a particular super-state during re-instantiation. After the physical state has

been set, the execution can be re-instantiated by simply invoking the method representing

the appropriate super-state.

In order to store the state of the components correctly, we have to implement the gen-

erateComponentState method of the MobileComponent interface. Both the Master

and Worker components have implementations that generate the component state in XML

format. Depending on the super-states, different physical states are generated. If the Master

component is in super-state PROCESSING DATA, then the state generated contains the ar-

ray of integers being processed. If it is SENDING DATA, then the state generated contains

the data not yet sent to the Worker components, and so on for the rest of its super-states,

and also for those of the Worker components. The only other thing to ensure is that the

physical state returned is consistent, i.e. they do not change during the execution of the

generateComponentState method, and if they do, they do so atomically. Hence,

access to all data members should be thread-safe. If any of these data members need to be

modified, they need to be done inside synchronized blocks.

Note that while conversion of an integer array into serialized XML form, every entry

is represented as <value>i</value>, which is about 25 characters and 50 bytes long.

Hence, the checkpoint size in bytes is a little over 50 times the number of integers being

processed. This is a very naive implementation, and a BASE64 encoded format could be

used for decreasing the checkpoint size.
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The setComponentState and resumeExecution methods of the MobileCom-

ponent interface have to be implemented for restarting from a checkpoint. Both the Master

and the Worker components have implementations of the setComponentStatemethod

that read in the physical states in XML format and set the appropriate data members from

it. The resumeExecutionmethods use the control information that is part of the super-

state to resume control threads from appropriate locations, e.g. if the super-state retrieved

by the Master component is SENDING DATA, then it resumes the execution thread such

that it proceeds sending data to the rest of the Worker components, i.e. by invoking the

sendDataToWorkersmethod.

6.2 Component Migration

In this section, we discuss the performance of the component migration algorithm under

various conditions. For the Worker components and the Storage services, we use an 8-node

Linux cluster. Each of the cluster nodes is a dual processor system with 2.8GHz Intel Xeon

processors and 2GB of memory running Redhat Linux 8.0 (OS version: 2.4.26) and are

connected via 1Gb/s ethernet. The version of Java used is Sun’s JDK 1.4.2 04. For the

Master component, we use a Dell Optiplex GX270 with 2.8GHz Pentium 4 processor, 2GB

of memory running Gentoo Linux (OS version: 2.6.8), and connected to the ethernet via a

1Gb/s interface. The version of Java used is the same as above.



6. Performance Analysis 124

The storage services are made up by eight Individual Storage services, which for the

purposes of this experiment store the component states in memory, but simulate a data

write time of 10MB/s and a read time of 100MB/s to and from persistent storage. A simple

non-parallel implementation of a GSX Handle Resolver service is used to map a GSH to a

GSR, and is also run on one of the nodes of the 8-node cluster.

6.2.1 Performance

We first measure the performance of migrating a Worker component when it is processing

data. In this case, all the data is distributed evenly among the Worker components, who are

processing it independently from each other.

Figure 6.3 shows the performance of the migration of a Worker component against the

total number of Workers, keeping the data size constant. We can observe that the perfor-

mance of the algorithm is practically constant, and seems independent of the number of

Workers. This is so because a Worker component is connected only to the Master compo-

nent, and to no other Worker. Hence, increasing the number of Workers has no effect on its

migration performance. Increasing the data size per Worker increases the migration time

as expected, because of the additional time required to generate and store the checkpoints

for the larger data size.
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Figure 6.3: Migration of a Worker component when it is processing data

We now measure the performance of migrating the Master component when it is pro-

cessing data, i.e. when it is in super-state PROCESSING DATA. In this case, the Master

component contains all the data in the system, which equals the product of the number of

Worker components and the data size per Worker.

Figure 6.4 shows the performance of the migration of the Master component against

the number of Workers that are part of the application, keeping the data size per Worker

constant. It can observed that the migration time is not independent of the number of

Workers anymore, and grows linearly with the number of Workers. This is because of two

reasons - minor overheards such as handle resolution for every Worker component, and

more importantly the increase in the data being processed by the Master component as the
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Figure 6.4: Migration of the Master component when it is processing data

number of Workers increase.

It can also be observed that the slopes of the graphs increase with increasing data sizes

per Worker component, e.g. in the case where the data size per worker is 2K integers the

migration time increases by about 150ms per additional component, and in the case where

the data size per worker is 4K integers the migration time increases by about 215ms per

additional component. This is because the data being processed by the Master component

at this super-state increases linearly with the number of Worker components. Hence, the

slopes of the graphs also increase with the data sizes per Worker component. The slopes of

the graphs would be constant and independent of the data sizes per Worker component, if

the data being processed by the Master component increased at a constant rate independent



6. Performance Analysis 127

of the number of Workers.

The migration time includes the time to generate and store component state, time to

reinstantiate the component, and the time to load the state back from the Storage services.

Component instantiation time is around 3s with our setup, and is constant irrespective of the

data sizes and number of components. In the above experiment, for data size 8K integers

per Worker and 16 Worker components, the observed checkpoint size is about 8.2MB. It

takes about 2.6s to generate and store the component state with the Storage service using

an XSOAP invocation. In addition, it takes around 3.6s to retrieve the stored state from

the Storage service, and parse and convert it into the actual component state. The times

to generate, load, retrieve, and parse component states grow with the data sizes. This

performance is slow due to (a) conversion of component state to and from XML, and (b)

the use of XSOAP for transferring large messages. Since it takes more time to parse XML

than to generate it, the time to generate and store the component state is lesser than the time

to retrieve and set it.

6.3 Distributed Checkpointing

In this section, we discuss the performance of the distributed checkpointing algorithm under

various conditions. All the components, as well as the storage services, execute under the

same environment that is described in Section 6.2.
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Figure 6.5: Distributed Checkpointing - Workers are processing data

6.3.1 Performance

We measure the performance when the Worker components are processing all the data, and

also when the Master Component is processing all the data. In the former case, the times

taken by the Worker components to store their states should be fairly even and parallel, and

no component should dominate the storage time. In the latter case, the time taken to store

the Master component state dominates the time taken to store the Worker states, and hence

is not perfectly parallel.

Figure 6.5 shows the performance of the checkpointing algorithm against the number

of Workers, when the Workers are processing the data and the data size per Worker is
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constant. In theory, the performance of the checkpointing algorithm should be independent

of the number of Workers for the same data sizes. However, it can be seen from the figure

that there is an overhead of about 40ms per additional Worker component, independent

of the data sizes. One of the reasons is that a single handle resolution, which has to be

performed for every additional component, takes about 25-30ms. As we have mentioned

earlier, we use an existing simple implementation of a Handle Resolver service provided

by the GSX toolkit. Parallelizing the Handle Resolver service should reduce the slope of

the graph, resulting in only minor overheads for every additional component. The slope of

the graphs is independent of the data sizes per Worker because the checkpoints are being

transferred in parallel to the Storage services. However, as expected, larger data sizes result

in slower performance.

Figure 6.6 illustrates the performance of the checkpointing algorithm against the num-

ber of Workers, when the data size per Worker is constant and the Master component is

processing all data. In this case, we notice that the slopes of the graphs are not independent

of the number of Workers, e.g. in the case where the data size per Worker is 2K integers,

the checkpoint time increases by about 75ms with every additional Worker component,

whereas in the case where the data size per Worker is 4K integers, the checkpoint time

increases by 110ms for every additional Worker component. This is so because increasing

the number of Workers increases the data being processed by the Master component, since
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Figure 6.6: Distributed Checkpointing - Master is processing data

it equals the product of the number of Workers and the data size per Worker. This is in addi-

tion to the constant overhead per additional Worker component that we observed in Figure

6.5. Also, as we can observe from the graphs, the time to checkpoint components is signif-

icantly lower than the time to migrate them. This is because checkpointing only involves

storage of component states into the Storage services, and does not involve reinstantiation

and retrieval of state.

Thus, from the graphs we can observe that the checkpointing performance is better if the

data is evenly distributed among the components. This is because the generation and stor-

age of component states can then be easily parallelized. The performance of the algorithm

is directly proportional to the time required to generate and store the largest checkpoint in
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the system. On the other hand, even though increasing the number of components should

theoretically not affect the performance of the algorithm for the same checkpoint size, we

observe that there are a few minor overheads that get added for every additional component.

The above statement assumes that the federation of Storage services can handle concurrent

requests from different components scalably. If this is not true, increasing the number of

components would deteriorate the performance of the algorithm considerably.



7

Conclusions and Future Work

In this dissertation, we addressed three key problems in Grid computing - programming

mechanisms for orchestration of complex long running distributed applications, adaptabil-

ity of these applications to the inherently dynamic availabilities of Grid resources, and their

ability to recover from resource failures.

We proposed that long running distributed applications on the Grid should be orches-

trated by composition of individual simpler components, both in space and time. We also

proposed component migration as a mechanism to deal with variable resource availabil-

ities, and distributed checkpointing and restart as a mechanism for providing basic fault

tolerance and recovery from failures of Grid resources.

To substantiate the above claims, we presented XCAT3 [40], a framework for CCA-

compatible components consistent with current Grid standards, which enables orchestra-

tion of complex distributed applications on the Grid. We also presented the architecture

132
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for persistence of components within the XCAT3 framework, and showed how it can be

used for providing component migration. We also discussed the distributed checkpointing

and restart capabilities that are useful for fault tolerance purposes. We analyzed the perfor-

mance of both of the above capabilities with the help of a sample application, and showed

that it scales well with respect to the number of components as well as the checkpoint sizes.

7.1 Contributions

We made the following key contributions in this dissertation.

� A CCA framework for the Grid: The XCAT3 framework is an implementation of

the Common Component Architecture (CCA) specification such that it is consistent

with the Open Grid Services Infrastructure (OGSI). It uses a novel way to map CCA

components to a set of Grid services, that are accessible via standard Grid mecha-

nisms. Conforming to the CCA specification enables the use of standard component

composition techniques for creating distributed applications (composition in space),

whereas conforming to the Web services based OGSI specification enables exploita-

tion of desirable features for the Grid, such as multiple level naming, dynamic service

introspection, interoperability, and the use of Web services based workflow tools for

composition in time.
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� Component migration: The XCAT3 framework provides a capability to migrate

individual components across Grid resources, despite connections to and from them.

Typical XCAT3 based applications consist of a set of distributed components, with

direct uses-provides connections between them. The framework not only provides

user-defined mechanisms for component persistence, but also provides an algorithm

for migrating individual components even if they may be communicating with other

components that are part of the application. We use user-defined mechanisms for

components, as opposed to the ones that are system-level, for reasons of portability

and smaller checkpoint sizes.

� Distributed checkpointing and restart: The XCAT3 framework also provides a

capability for distributed checkpointing of a set of components, which can then be

used for restart upon failures. The framework implements a coordinated blocking

algorithm for producing a consistent global checkpoint for a distributed application,

using the aforementioned component persistence mechanisms. The global check-

point can be retrieved from stable storage to restart an application, if need be. The

only failures we handle are stopping failures of nodes. We do not address Byzantine

failures of nodes, or link failures.

Complex long running distributed applications can be implemented effectively using

the composition capabilities of the XCAT3 framework. The component migration and

checkpointing capabilities can be then used for adapting to dynamic Grid environments.
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7.2 Future Work

The work done in this dissertation can spin off further research is several directions. We

divide these into three main categories, viz. the framework, component migration, and fault

tolerance.

7.2.1 Framework Issues

Some of the future work for the XCAT3 framework are as follows:

� WSRF compatibility: The Web Service Resource Framework (WSRF) has recently

superseded the Open Grid Services Infrastructure as the next de facto standard for the

Grid. However, at the time of writing this dissertation, WSRF is still under active re-

vision, and no stable implementations are available for use. We plan to be compatible

with WSRF once it is more stable and widely accepted.

� Use of alternate protocols: Although SOAP is the standard protocol used in Grid

computing, it is well known to be extremely inefficient. The Proteus multi-protocol

library [14] allows exposing an endpoint via multiple protocols. Thus, we could still

use SOAP as the basic protocol for interoperability, but switch to more efficient ones

if they are supported on both the client and the server sides. We plan to use Proteus

in future versions of XCAT3 for enabling high performance communication between

components, if need be.



7. Conclusions and Future Work 136

� Asynchronous communication: At present, the communication between compo-

nents is via uses-provides connections between them. This is synchronous in nature.

We plan to add asynchronous communication between components as an additional

feature, by using implementations of popular Web services based publish-subscribe

systems such as Web Services Notification [4].

7.2.2 Component Migration

In XCAT3, we address how to migrate individual components if required. However, we do

not attempt to answer why and where these components should migrate. This is part of our

future work.

� Policies: Migration can be triggered by violations of policies specified by either the

component writer or the resource provider. Several projects use policy based resource

scheduling, e.g. Condor uses ClassAds for specification of application and resource

policies, while Cactus uses Performance Contracts for specification of application

requirements. If these policies are violated during execution of an application, it

is migrated to another resource where these policies are no longer violated. In the

future, we plan to use a similar mechanism for specification and evaluation of policies

for the XCAT3 framework.

� Co-scheduling: Since an application in the XCAT3 framework is distributed, mi-

grating one component may have an adverse effect on other components that are
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communicating with it. Hence, the said policies would have be evaluated for the

whole application, and not just for individual components. The framework has to

ensure that the components are scheduled such that all the policies are satisfied si-

multaneously. If any of them fails to be satisfied during execution, the affected com-

ponent needs to be migrated such that the all the other policies remain satisfied after

migration.

7.2.3 Fault Tolerance

In our dissertation, we presented an approach to distributed checkpointing and restart. In

the future, we plan to evaluate optimizations during checkpointing, fault monitoring in

order to restart applications automatically, and strategies to deal with link failures.

� Checkpoint optimizations: Currently when component states are stored with the

Individual Storage services, the complete states of the components are generated and

transferred to them. We plan to investigate techniques that may be applicable in order

to reduce the time required to generate and transfer these checkpoints, e.g. incremen-

tal checkpointing. Since we use a user-defined approach to component persistence,

we also plan to evaluate the effects of these techniques on programmer overhead.
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We also plan on investigating techniques to optimize the transfer of state to the

Storage services. At this point, the Individual Storage services are chosen in a round-

robin fashion. The location of the components could be used to find the closest In-

dividual Storage service from a component for faster loads and stores. Additionally,

better algorithms can be chosen for improving the load-balancing between the Stor-

age services.

� Fault monitoring: In XCAT3 we only provide an ability to recover from faults by

restarting an application. We do not provide a capability to detect these faults, as

they occur. We plan to use one of the several available tools in order to do so, e.g

Autopilot [48], Network Weather Service [56], etc. If the faults are detected reliably

as and when they occur, the applications can be restarted promptly upon failures.

� Link failures: In this dissertation, we do not handle link failures. However, we could

use a reliable messaging layer in order to ensure that messages between components

are reliably delivered even in the presence of link failures. The Web Services Reliable

Messaging (WSRM) [36] is an upcoming specification for reliable delivery of Web

services based messages in the presence of failures. We plan to investigate WSRM

for reliable port invocations between components.
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