
Design and Evaluation of Opal2: A Toolkit for Scientific Software as a Service

Sriram Krishnan, Luca Clementi, Jingyuan Ren, Philip Papadopoulos and Wilfred Li
San Diego Supercomputer Center

University of California, San Diego
La Jolla, CA 92093, USA

Email: {sriram, clem, jren, phil, wilfred}@sdsc.edu

Abstract—Grid computing provides mechanisms for making
large-scale computing environments available to the masses. In
recent times, with the advent of Cloud computing, the concepts
of Software as a Service (SaaS), where vendors provide key
software products as services over the internet that can be
accessed by users to perform complex tasks, and Service as
Software (SaS), where customizable and repeatable services
are packaged as software products that dynamically meet the
demands of individual users, have become increasingly popular.
Both SaaS and SaS models are highly applicable to scientific
software and users alike. Opal2 is a toolkit for wrapping
scientific applications as Web services on Grid and cloud
computing resources. It provides a mechanism for scientific
application developers to expose the functionality of their codes
via simple Web service APIs, abstracting out the details of the
back-end infrastructure. Services may be combined via cus-
tomized workflows for specific research areas and distributed
as virtual machine images. In this paper, we describe the overall
philosophy and architecture of the Opal2 framework, including
its new plug-in architecture and data handling capabilities. We
analyze its performance in typical cluster and Grid settings,
and in a cloud computing environment within virtual machines,
using Amazon’s Elastic Computing Cloud (EC2).

Keywords-Clouds; Service Oriented Architectures; Grid
Computing;

I. INTRODUCTION

In the mid 1990s the Globus team introduced the con-
cept of the computational Grid [1] as way to make large-
scale computing available to the masses. While there are
many positive outcomes of this research and indeed most
computationally-driven scientists assume richly-networked
infrastructures, there are key issues like reliability, ease-of-
use, access to data, and the lack of understanding of the
software environment on remote resources that make this
original view of the Grid problematic for many users. It is
simply too complicated for an individual code to be spread
across resources because the different execution environ-
ments are frequently uncertain, and overly heterogeneous.
Any code has to be ported and tested on every Grid endpoint
for the ensemble to work. However, many elements of Grid
infrastructure (GSI authentication [2], striped file transfer
across networks [3], Virtual organization [4] management,
and service-oriented architectures) are now used routinely
to enable collaborations and support authenticated access to
remote services.

Cloud computing, which is a successor to the Grid, has
two main branches from the system/programming viewpoint:
(1) a set of vendor-defined scalable key services that may
be directly consumed by end users, or composed by high
level service providers to build more customized solutions
(the Google model), and (2) access to a scalable virtual
machine hosting environment where the system configura-
tion (operating system level and up) are defined by the user
(the Amazon EC2 Model [5]). Each addresses a significant
subset of the early Grid paradigm but does not solve the
entire problem. However, both approaches make it possible
to have consistency of software on remote resources and
reduce porting costs. Google accomplishes this through a
fixed programming paradigm on production-level services
that they define. Amazon enables the user to define the entire
system environment, and deploy it on as many identical
instances as the pocketbook allows.

Service-oriented computing represent a significant step
forward in providing a real architecture for writing Grid-
based programs ([6], [7]). In the commercial (and academic)
space, Web services are now standard practice in making
very complex systems (like Google Maps or Search) callable
through a standard application programming interface (API).
Legacy codes may be frequently wrapped as Web services to
provide remote access to one-of-a-kind application services
that are available across the Internet. The Web service APIs
may also be viewed as a composition enabler for building
workflows or value added services. Service-based computing
forms an important capability, providing applications with
the desired dynamic scaling inside a cluster or a data center,
to enable service based composition to perform complex
tasks.

Technologies like Xen [8] and VMWare enable multiple
virtual machines to co-exist on a single physical multi-core
machine and present the illusion that there are multiple
physical machines. The commercial offerings from Ama-
zon (EC2) allow users to rent virtual machine space for
cents/hour. Not only do their virtual machines look and feel
like real hardware, but their contents can be completely
defined by the user. The revolution in virtualization is
increasing the availability of hardware while dramatically
reducing its cost for occasional use. It points to a radical shift
in the way infrastructure is built and where it is physically

located (local, remote, virtual and combinations).
We strongly believe in paradigms of Software as a Service

(SaaS - the Google model) and Service as Software (SaS -
the Amazon model) for scientific computing. Firstly, we be-
lieve that that SaaS paradigm for scientific software enables
us to (1) provide higher-level scientific services, focusing
on improving scientific pipelines and workflows, rather than
lower-level infrastructure services, and (2) build repeatable
solutions for scientific Grid software that can be leveraged
by multiple clients. Secondly, we believe that the SaS
paradigm enables us to package our scientific software tools
as deployable units (in our case, virtual machine images
and Rocks rolls [9]) which can be customized and used by
a far broader community of scientific software developers
and service providers.

In this paper, we present a realistic architecture for scien-
tific Software as a Service and Services as Software using the
Opal2 toolkit. We describe the design and implementation
of Opal2, and analyze its performance when it is used in
a typical cluster and national Grid setting, and when it is
used in a cloud computing environment (using EC2). The
rest of the paper is organized as follows. In Section II,
we provide the background and design goals for Opal2.
In Section III, we discuss the architecture of the Opal2
framework, and present implementation details. In Section
IV, we evaluate the Opal2 framework for its performance,
and present a typical usage scenario. We discuss our related
work in Section V and conclusions in Section VI.

II. BACKGROUND AND DESIGN GOALS

With the introduction of the Web Service Resource
Framework (WSRF) [10], Web services gained widespread
acceptance in Grid computing. Globus [11], which is the one
of the most popular middleware toolkits for Grid computing,
provided WSRF-based interfaces to common Grid services.
For instance, scientific jobs could be launched on Grid
resources using the WSRF-based Grid Resource Allocation
Management (GRAM) API [12].

Opal is not yet another API for resource allocation and
management. Instead it leverages APIs such as GRAM at
the back-end, to expose scientific applications as first class
Web services themselves, accessible via simple application-
oriented interfaces. We believe that a middleware-oriented
API such as GRAM is suitable for use only by Grid
systems developers - scientific application developers would
rather focus on the algorithms and appropriate scientific
interfaces to present to their end-users. Enabling access
to scientific applications and tools using a service-oriented
approach allows the developers of scientic tools to focus
on the domain science, and delegate the management of
the complex back-end resources to others who are more
proficient in Grid middleware.

The Opal toolkit (described in detail in [6]) provides a
mechanism to deploy scientific applications as Web services

without having to write a single line of code. Once deployed,
scientific applications are available for access through a
simple Web service API for launching jobs, monitoring
status, retrieving status, etc (via a standard WSDL). The
API abstracts out the complexity involved in submission
of computational jobs to Grid resources, since the client
simply submits command-line arguments and input files
during job launch. The toolkit provides management of
user data, including the creation of working directories,
input and output data staging, and persistent storage for job
information and metadata. GSI-based security is optionally
supported, for authentication and authorization. Opal also
provides an optional XML-based specification for command-
line arguments, which is used to generate automatic Web
forms for invocation via the “dashboard”, which also pro-
vides usage statistics.

Opal is a SourceForge project, and has been used for
providing production services and workflows at the National
Biomedical Computation Resource [13] and other projects
([14], [15], [16]). While we view Opal as a very successful
technology innovation, our prior work represents only a
first step and several improvements could be made. Based
upon experiences from production use and user feedback,
the following areas have been targeted for improvements in
Opal2.

Performance: The Opal toolkit was built on top of
version 1.2 of Apache Axis, and input files were trans-
ferred to the Opal server using a Base64 encoded binary
representation within a SOAP message. We discovered that
it was only realistic to transfer input files of the order of
tens of megabytes using this mechanism. Furthermore, Opal
didn’t provide a mechanism to do third-party transfers – all
input files had to transferred by the client to an Opal server
since it didn’t have the capability of fetching input files
from a remote URL. The ability to do third-party transfers
is especially useful in a workflow environment, where data
should ideally be transferred from one node of the workflow
directly to another, rather than being re-routed via the client.

Packaging: Even though the Opal toolkit is fairly easy to
deploy, it was highly desirable to be able to package Opal
and the application suite that it wraps as a set of Rocks
Rolls or virtual machine images. This would enable easy
deployment on Rocks clusters and virtual machines.

Configurability: Opal was quite configurable in terms of
the schedulers it supports at the back-end and the database it
uses for state management. However, once these parameters
were set, it was static for the entire Opal installation. It
was imperative to provide a mechanism to override static
properties of the system on a per-application basis, so that
different types of applications could be installed on the same
Opal server.

State management: Opal used JDBC to optionally con-
figure a database to persist the job state and metadata. If
the database wasn’t configured, all state was stored in hash

tables in memory. Because of this, all historic data would be
lost upon restarts of the Opal server. Furthermore, the Opal
dashboard was incapable of using the in-memory job state
to display usage statistics. Hence, it was desirable to provide
a mechanism to persist server state out of the box, without
having to install a real database system at the back-end, and
make it available to the dashboard.

Code Modularity: The Opal toolkit was an example of
prototypical software that was put into production use very
early due to its initial success. A re-design of software was
essential to keep the code base more manageable, so that
new features could be easily added.

We believe that we have addressed most of the above
requirements with Opal2. Furthermore, we feel that the
software architecture is flexible enough to enable us to
accommodate any further improvements in the future.

III. ARCHITECTURE AND IMPLEMENTATION

Figure 1 describes the overall services-oriented architec-
tural goals based on the Opal2 framework. Opal2 services
can be packaged as virtual machine images and/or Rocks
rolls [9]. Using virtual machine images, Opal2 can be easily
installed on a user’s desktop machine to leverage the pow-
erful multi-core machines that exist today. Opal2 services
can be accessed via a multitude of Web service clients,
including workflow tools such as Kepler [16], problem
solving environments such as Vision [17], and Web portals.

Rocks is an open-source Linux cluster distribution that
enables end users to easily build computational clusters and
Grid endpoints. With the use of Rocks rolls, Opal2 can
be installed on cluster and Grid resources in a traditional
supercomputer lab setting. The use of virtualization also
enables the deployment of the software stack on cloud
computing resources, such as the ones provided by the
Amazon Elastic Computing Cloud (EC2). Finally, with the
use of meta-schedulers such as CSF4 [18] and Condor [19],
jobs can be scheduled across multiple Grid and cluster
resources in a unified fashion.

Like earlier versions of Opal, Opal2 is still based on
Apache Axis 1.2, and can be deployed within a Apache
Tomcat container. Even though newer versions of the Axis
toolkit are available (in particular, Axis2), the Grid commu-
nity (e.g., the Globus toolkit) still uses older versions of the
software. Since we believe in commoditization of software,
we decided to use the same version of Axis, but work
on performance improvements within the given restrictions.
We discovered that we could significantly improve the
performance of Opal2 with the addition of the following
features:

Third-party transfers: In addition to the support for
Base64 encoded inputs as the default for backwards com-
patibility, Opal2 supports transfer of input files from remote
URLs. This is especially helpful in a scientific workflow
environment, where the results from one step do not have

Web Portals
Viz Tools Vision Kepler

App A App B

App C
Opal2

Metascheduler

App A App B

App C

Opal2

Compute and

Data Cloud

Cluster Resources

User’s Desktop

App A App B

App C

Opal2

Metascheduler

Local Resources

Figure 1. The Opal2 Architecture

!"#$%&'()*+,-#.()&

/0#01&2#)#+131)0&

415(,-61&2#)#+131)0&

7""$86#.()&/,""(-0&

98:1-)#01&

9/;<&

=(:&2#)#+1-5&

7""$86#.()&>?"1&

@(50+-1/;<&

A(-B&

C$(:,5&C472&

D4277&

'/AE&

/1-8#$&

@#-#$$1$&

2#"41F,61&

Figure 2. The Opal2 Plug-in Model

to be staged back from a remote execution resource to the
client, and then back to another execution resource. Now the
client only has to send the second service the location of the
outputs from the first service. Currently, we provide support
for HTTP and HTTPS URLs. The support of GridFTP [3]
URLs is planned.

MIME attachments: Opal2 provides a way to stage
input files using multi-part MIME attachments via SOAP
[20]. This significantly improves the performance for a
number of reasons. Firstly, data from input files need not be
encoded into Base64 binary format, which causes additional
overhead. Embedding this Base64 encoded binary file inside
the input SOAP body increases the parsing time and memory
footprint of the Apache Axis server, as demonstrated in
Section IV. Using MIME attachments results in significantly
improved performance results.

Other new features of Opal2 include availability of statis-
tics like activation and execution times through the Web
services API, and an Atom-based registry for services.

The mantra of Opal2 is configurability. Almost every
feature of Opal2 is configurable on a per-application basis.
Figure 2 shows the “plug-in” architecture of the Opal2

Figure 3. Opal2 Application Configuration

implementation. With the help of a set of static properties
for the container, Opal2 pre-configures a set of environment
variables for the system. In particular, system properties can
be configured for the following entities:

State Management: State management for the Opal2
services is provided with the help of the Hibernate toolkit
[21]. Hibernate provides a powerful, high performance ob-
ject/relational persistence and query service. Through con-
figuration files, Hibernate can be connected to in-memory
databases, or other typical production databases (like Post-
greSQL, IBM DB2, MySQL, etc). Even if Opal2 is not
configured with a production database, by default it uses
HSQL, which is a 100% Java database that can persist its
state to a file system. Because of this feature, persistent
storage of usage statistics is still available for use by the
dashboard out of the box.

Resource Management: Resource management is pro-
vided by a set of job managers. Job managers currently
provided include Fork (simple process exec), Globus GRAM
[12] (both to a local cluster and remote Grid resources),
and the Distributed Resource Management Application API
(DRMAA) [22]. A job manager based on CSF4 [18] for
meta-scheduling jobs across distributed resources is cur-
rently under alpha-testing. In the future, job managers for
other systems like Apache Hadoop [23] may be targeted.

Application Support: The current version of Opal2 sup-
ports applications that are serial or parallel (SPMD, based
on MPI). We are working on adding support for applications
that require array job submission. In the future, we plan on
extending this to support other types of applications such as
parameter sweeps and MapReduce [24].

All the static properties of the Opal2 framework can
be reconfigured on a per-application basis using the ap-
plication configuration. Figure 3 shows the elements of a
typical application configuration. Boxes shown in gray are
optional, while clear boxes are required. The application
metadata consists of usage information, which describes
the command-line usage of the scientific application that
is wrapped. The textual description provides more details
about the application, and is optional. Both of the above
elements are meant for human consumption. The command-
line description of arguments in XML is optional, and is used
for validation of arguments and automatic interface genera-
tion. More details about the schema for the command-line
arguments, and automatic interface generation is available
elsewhere [25]. The Opal2 server configures a new service
for every application using this description, and can launch
an executable using the location of the application binary
provided. The application type (serial or parallel) can also be
specified within the configuration, and the job manager type
and Globus configuration can be customized per application.
Optionally, command-line arguments can be validated using
the XML description, by setting the appropriate flag.

The code-base of Opal2 has been redesigned to be highly
modular. In particular, the job managers are implemented
using the “factory” pattern. The factory pattern is an object-
oriented design pattern which relies on a library that encap-
sulates the creation of objects at run-time. The “OpalJob-
ManagerFactory” encapsulates the creation of job managers
based on the static container properties and application-
specific configuration. The Opal2 service implementation
simply uses a generic “OpalJobManager” interface to launch
and manage jobs, without having to deal with the intricacies
of the individual job managers. This technique has helped
us improve the manageability of the code, especially for
adding new job managers, with minimal changes the service
implementation. Similarly, the use of the Hibernate toolkit
abstracts out the state management, enabling a choice of
various database to be plugged in at the back-end.

IV. EXPERIENCES

In the following section, we discuss our experiences with
using Opal2 in a traditional cluster environment, which has
access to high speed networking, and in a cloud computing
environment on Amazon EC2 over commodity internet. We
conclude with a realistic use case scenario, running on
TeraGrid resources [26].

A. Local Cluster Environment

For the local cluster environment, we use a 4-node cluster
with dual CPU 3.06GHz Intel Xeons having 2GB RAM,
and Gigabit ethernet connection. The machines are running
Rocks version 4.1, with Linux kernel version 2.6.9-22, and
the Java(TM) 2 Runtime Environment, Standard Edition
(build 1.5.0 05-b05). We set up an Opal2 server on one of

the nodes within a Tomcat 5.0.30 container, and the client
is run on another node. The Opal2 server is set to use the
“Fork” job manager to launch jobs on the same node. In
all our tests, we only measure job submission time through
Opal2, and not the actual execution time for the scientific
application. This is because the only overhead caused by
Opal2 is the process of job submission via the WSDL API –
the actual job execution is independent of Opal, and depends
on the scientific application and its input parameters. We run
the tests 62 times, and average the results after dropping the
two extreme data points.

We noticed that the Java heap size had no noticeable
impact on the performance when MIME attachments were
being used, since the attached file is streamed directly to disk
without storing it in memory. On the other hand, if the input
files are being transferred using the Base64-encoded binary
format, the entire input file is stored in the heap, causing
out of memory errors depending on the heap size. However,
during heavy concurrent loads, heap size does impact the
performance even if MIME attachments are used. Since we
were mostly interested in testing the performance of Opal
with MIME attachments, we ran our experiments with a
constant heap size of 512MB and the “-server” flag active,
which activates the usage of the Java HotSpot Server VM,
which is optimized for maximum program execution speed
for applications running in a server environment.

To compare the performance of Opal2 job submissions
with regular FTP transfers, we used the Globus 4.0.1 imple-
mentation of the FTP server (GridFTP [3]), which supports
vanilla FTP, as well as the ones with GSI authentication,
multiple streaming, and parallel data transfers. On the client
side, we used LFTP 3.0.6 [27] and the “globus-url-copy”
client provided by Globus.

Figure 4. Execution times for small files

Figures 4 and 5 show the results we obtain with different
input file sizes. LFTP performs slightly better than globus-
url-copy because it is optimized for batch execution, and has
a lower bootstrap time. As seen in the figures, Opal2 has a
fixed overhead due to SOAP, the creation of the working
directory, status updates in the database, and the execution

Figure 5. Data throughput comparison

of the application on the server. This overhead is observed
to be around 0.3s for a submission without input files in our
testing environment. When input files are small, the fixed
overhead is the main component of the overall response
time, lowering the observed throughput. When the input files
are large than 100MB, the Opal2 throughput is comparable
to FTP, because the fixed overhead becomes negligible as
compared to the overall response time. It can also be seen
that the performance of MIME attachments is significantly
better than the Base64 encoded binary format.

In Figure 5, we have also plotted the throughput for
disk writes. The throughput for small files is comparable
to that of RAM because of OS caching; however, when the
files are larger than 50MB, the effect of caching is almost
negligible. The Opal2 performance with MIME attachments
is practically the same as the disk throughput as the file
size grows. Thus, the improvement of Opal2 over earlier
versions is two-fold. Firstly, there is no upper-limit on file
size that was imposed by the use of the Base64 encoded
binary format (due to the fact that it was stored in mem-
ory). Secondly, the performance of MIME attachments is
significantly better than the Base64 encoded binary format
used by prior versions.

Finally, we perform some tests with security enabled, as
shown in Figure 6. We compare the performance of Opal2
with MIME attachments over HTTPS, GridFTP with and
without data encryption, and SCP, which uses OpenSSH
3.9p1 and encryption routines from OpenSSL 0.9.7a. We
observe that the performance of unencrypted GridFTP is
closest to disk throughput for large files, while that of the rest
(which use encryption) is much lower. This is because, the
main bottleneck happens to be the CPU-intensive encryption
and digest algorithms, that are provided by the cipher suite.
Note that we have not attempted to change the cipher suites
for these tests - changing the encryption routines could
possibly improve the overall performance.

Figure 6. Data throughputs with encryption

B. Cloud Computing Environment

We have created an Amazon Machine Image (AMI) for
Opal2 based on Rocks (v5), which wraps several NBCR
applications such as PDB2PQR and MEME. Users can
install a virtual machine on Amazon EC2 using our AMI,
and have their own instance of the NBCR software stack,
including the Opal2 Web services wrappers.

To test the feasibility of hosting scientific software on
cloud computing resources, we performed a set of tests on
Amazon EC2. The Opal2 server was installed on an Amazon
“small instance”, which provides 1.7GB of RAM with a
single EC2 compute unit, where one compute unit provides
the equivalent of a 1.0-1.2 GHz 32-bit 2007 Opteron or 2007
Xeon processor. This type of instance is the cheapest and
the smallest, and can be used for around $0.10 per hour.
The clients were running on the same test cluster as above,
at the University of California, San Diego.

Figure 7. Data throughput comparison on EC2

Figure 7 shows our performance results on our test
environment. The disk throughput on the small instance was
observed to be close to 45 MB/s. Since this is significantly
greater than the observed network bandwidth, the disk
throughput is not the bottleneck anymore. Using LFTP, we
observed a bandwidth of just under 1 MB/s. This can be
attributed to the TCP buffer size, and the fact that the

route to the Amazon data centers required about 20 hops.
Using 4 concurrent streams, we could achieve an aggregate
bandwidth of around 2.8MB/s, and around 4.9 MB/s with 8
data streams (data not shown in the figure). With Opal2 and
MIME attachments over plain HTTP, our performance was
practically similar to LFTP without multiple data streams.

Our preliminary testing with Opal2 services running over
HTTPS (not shown) proved that similar throughput can be
expected as the other tests shown in Figure 7. This is because
in the context of Amazon EC2, the bottleneck is the network
and not the CPU-intensive encryption and digest algorithms.
Since the network is the bottleneck, we also concluded that
there would be no benefit in testing the Opal2 overhead
on the larger EC2 instances, which provide better CPU and
disk performance. However, we note that the performance
of the scientific applications themselves may be significantly
improved on the larger instances.

Internal data transfer performance within EC2 infrastruc-
ture has been already discussed in other literature (e.g. [28],
[29]), and it is possible to expect close to 60 MB/s of
raw TCP throughput between instances running within the
same EC2 availability zone. In [29], the authors underline
that CPU-bounded serial applications are affected minimally
(10-15%) as compared to a typical HPC system; however,
tightly coupled MPI applications may degrade by as much
as 800%. This implies that not all scientific applications may
be ported on to the cloud. Serial or loosely coupled parallel
applications (e.g. parameter sweeps) will run without ma-
jor performance degradation on EC2, while tightly-coupled
parallel scientific applications such as NAMD (see Section
IV-C), where there is a need for a lot of data exchange
between various parallel threads, will perform poorly. How-
ever, certain parallel scientific algorithms could be run on
cloud resources if they are rewritten using paradigms such as
MapReduce [24], which exploits data locality and minimizes
data exchange.

C. Scientific Applications on the Grid

NAMD (NAnoscale Molecular Dynamics) [30] is a paral-
lel molecular dynamics code designed for high-performance
simulation of large bio-molecular systems. NAMD can scale
up to thousands of CPUs, and typically needs several input
files containing the description of the molecular structure
and the force field that will be used during for the simulation.

The input files to NAMD are typically several hundred
megabytes. Using an earlier version of Opal that relied on
Base64 encoded binary inputs is not acceptable, as seen
from the performance results in Section IV. However, the
availability of MIME attachments and its improved perfor-
mance enable the use of Opal2 for managing NAMD jobs.
Furthermore, a maximum bandwidth of 60 MB/s between
the EC2 instances is unacceptable for a high performance
parallel code such as NAMD. This necessitates the use
of supercomputing facilities with low latency and high

performance Myrinet or Infiniband connectivity, such as the
ones provided by the TeraGrid. Hence, we use the 868-node
NCSA TeraGrid cluster called Mercury to run the NAMD
simulations.

We use the factory pattern and the plug-in architecture
described in Section III to implement a new Globus job
manager for remote job submissions to the TeraGrid. In this
model, the Opal2 server resides on the NBCR cluster at
UCSD, while the NAMD jobs are run on remote TeraGrid
machines. While this requires an additional hop because
of the need to stage files from the Opal2 server and the
TeraGrid machine via GridFTP, it is necessary because
TeraGrid machines do not allow hosting long running Web
services. However, since the NAMD jobs are long-running
(order of days), the data transfer time is negligible with
respect to the overall execution time.

NAMD and other scientific applications such as
PDB2PQR are used in the Relaxed Complex Scheme (RCS)
to develop novel inhibitors for infectious diseases [31].
A computer aided drug discovery pipeline based on the
RCS method, which uses Opal2-based remote resources for
computationally intensive tasks and local Vision-based [17]
3D rendering capabilities for visualization of results, has
been developed. Using this setup, undergraduate students
having limited knowledge of HPC systems are able to
perform experiments using RCS and remote Grid resources.

V. RELATED WORK

There have been several efforts to provide Web ser-
vice wrappers for scientific applications. In particular, the
Generic Factory Service (GFac) [32] is a toolkit developed
at Indiana University. The goals of GFac and Opal2 are quite
similar. They use different approaches and software stacks
to provide similar functionality. GFac provides automatic
service generation using an XML-based application descrip-
tion language (called “serviceMap”), using the XSUL SOAP
libraries [33] for Web services support. Instead of creating
source code for the stubs, GFac uses an XSUL Message
Processor to intercept the SOAP calls for a particular Web
service and route it to a generic class that invokes the
scientific application using the information provided by the
serviceMap document. XSUL is a high-performance SOAP
implementation, but home-grown and non-standard in the
Grid community.

SoapLab [34] is another toolkit, that an application de-
scription language called ACD to provide automatic Web
service wrappers. When we began our work on Opal2,
SoapLab was built on a CORBA-based back-end, which is
fairly non-standard in the Grid community, thus introducing
a further entrance barrier for new adopters. Version 2 of
SoapLab released recently does not rely on CORBA, and
we plan on evaluating it in the future.

GFac and SoapLab also differ from Opal2 in the use of
different auto-generated WSDLs for every deployed appli-

cation. This results in different stubs on the client side for
every application. For greater simplicity, we have adopted
a generic WSDL API for all Opal2 services so that the
same client stubs may be used to access all Opal2 services.
Command-line arguments can still be described using op-
tional XML metadata in Opal2, thus providing additional
expressibility and type-validation, if need be.

The Otho toolkit [35] developed at the University of Inns-
bruck, provides semi-automatic transformation of existing
scientific applications deployed on Grid resources into Grid
application services. The generated output are service source
codes that are either automatically built and packaged into a
ready-to-deploy services or taken by developers for manual
refinement. However, the software is fairly prototypical, and
not available for public download.

VI. CONCLUSIONS

In this paper, we presented Opal2 as a toolkit for scientific
Software as a Service (SaaS), which enables the wrapping
of computational codes as Web services on Grid and cloud
computing resources. We also described packaging of the
Opal2 toolkit inside virtual machines and as Rocks rolls,
thus demonstrating one scenario of the Service as Software
(SaS) paradigm. We provided a detailed analysis of the
Opal2 architecture and implementation, and analyzed its
performance on traditional Grid resources, and cloud com-
puting environments (using Amazon’s EC2), and discussed
how Opal2 is being used to support complex computational
pipelines in drug discovery research. The use of service
orientation enables the creation of higher-level scientific
services and repeatable solutions for Grid computing that can
be used by multiple clients in complex scientific pipelines.
The packaging of scientific software as deployable units
enables customization and use by a broad community of
scientific users and developers.

In the near future, several improvements will be made
to the Opal2 framework. In particular, we plan on adding
support for more resource providers, e.g. for the use of
other meta-schedulers such as Condor [19]. We plan on
adding support for other application types, e.g. array and
MapReduce [24] jobs. We also plan on a public release of
the Rocks Rolls and virtual machine images of the NBCR
software stack (including the Opal2 services), and Python
and Perl client side libraries. Looking further ahead, we
anticipate better support of mature community standards for
Web services and the semantic Web. Complex high level
services require better semantic annotation to ensure auto-
mated service discovery, provenance, safe data typing, and
input/output validation. In particular, we are investigating
the recent W3C recommendation of Semantic Annotations
for WSDL (SAWSDL), which has been applied to bio-
informatics semantic Web services [36].

Our work on Opal2 has been supported by the National
Institutes of Health (NIH) through a National Center for

Research Resources program grant (P41RR08605).

REFERENCES

[1] I. Foster and C. Kesselman, The GRID: Blueprint for a New
Computing Infrastructure. Morgan-Kaufmann, 1998.

[2] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A
Security Architecture for Computational Grids,” in ACM
Conference on Computers and Security, 1998.

[3] W. Allcock, et al, “The Globus Striped GridFTP Framework
and Server,” in Super Computing 2005 (SC05), 2005.

[4] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,” in Intl.
Journal of Supercomputer Applications, vol. 15(3), 2001.

[5] “Amazon Elastic Comp. Cloud,” http://aws.amazon.com/ec2/.

[6] S. Krishnan, et al, “Opal: Simple Web Services Wrappers for
Scientific Applications,” in IEEE Intl. Conf. on Web Services
(ICWS), 2006.

[7] S. Krishnan, et al, “An End-to-end Web Services-based In-
frastructure for Biomedical Applications,” in 6th IEEE/ACM
International Workshop on Grid Computing, 2005.

[8] P. Barham, et al, “Xen and the Art of Virtualization,” in Proc.
Symposium on Operating Systems Principles, 2003.

[9] P. Papadopoulos, M. Katz, and G. Bruno, “NPACI Rocks:
Tools and Techniques for Easily Deploying Manageable
Linux Clusters,” in Concurrency and Computation: Practice
and Experience Special Issue, 2001.

[10] K. Czajkowski et al, “WS-Resource Framework,” http://www-
106.ibm.com/developerworks/library/ws-resource/ws-
wsrf.pdf, 2004.

[11] I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” 1997.

[12] K. Czajkowski, et al, “A Resource Management Architecture
for Metacomputing Systems,” in IPPS/SPDP 98, Workshop
on Job Scheduling Strategies for Parallel Processing, 1998.

[13] “The National Biomedical Computation Resource (NBCR),”
http://nbcr.net.

[14] “The MEME/MAST System - Motif Discovery and Search,”
http://meme.sdsc.edu/meme/.

[15] “PDB2PQR: An Automated Pipeline for the Setup, Execution,
and Analysis of Poisson-Boltzmann Electrostatics Calcula-
tions,” http://pdb2pqr.sourceforge.net/.

[16] I. Altintas, et al, “Kepler: An Extensible System for Design
and Execution of Scientific Workflows,” in 16th International
Conference on Scientific and Statistical Database Manage-
ment (SSDBM’04), 2004.

[17] M. Sanner, “A Component-based Software Environment for
Visualizing Large Macromolecular Assemblies,” Structure,
vol. 13, pp. 447–462, 2005.

[18] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, and
L. Huizhen, “CSF4: A WSRF compliant meta-scheduler,” The
2006 World Congress in Computer Science, Computer Engg,
and Applied Computing, GCA, vol. 6, pp. 61–67, 2006.

[19] J. Basney, M. Livny, and T. Tannenbaum, “High Throughput
Computing with Condor,” in HPCU news, vol. 1(2), 1997.

[20] “SOAP Messages with Attachments,”
http://www.w3.org/TR/SOAP-attachments.

[21] C. Bauer and G. King, Hibernate in Action. Manning Pub.,
2004.

[22] “Distributed Resource Management Application API (DR-
MAA),” http://www.drmaa.org/.

[23] “Apache Hadoop,” http://hadoop.apache.org/.

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI’04: Sixth Symposium
on Operating System Design and Implementation, 2004.

[25] L. Clementi, et al, “Providing Dynamic Virtualized Access to
Grid Resources via the Web 2.0 Paradigm,” in International
Workshop on Grid Computing Environments, 2007.

[26] “The TeraGrid Project,” http://www.teragrid.org/.

[27] “LFTP: A Command-line FTP Client,” http://lftp.yar.ru/.

[28] D. Nurmi, et al, “Eucalyptus: A Technical Report on an Elas-
tic Utility Computing Architecture Linking Your Programs
to Useful Systems,” Aug 2008, UCSB Computer Science
Technical Report Number 2008-10.

[29] E. Walker, “Benchmarking Amazon EC2 for High-
Performance Scientific Computing,” ;login: The USENIX
Magazine, vol. 33, no. 5, Oct 2008.

[30] “NAMD: Scalable Molecular Dynamics,”
http://www.ks.uiuc.edu/Research/namd/.

[31] L.S. Cheng, et al, “Ensemble-based virtual screening reveals
potential novel antiviral compounds for avian influenza neu-
raminidase,” J. Med. Chem., vol. 51, pp. 3878–3894, 2008.

[32] G. Kandaswamy, et al, “Building Web Services For Scientific
Grid Applications,” in IBM Journal of Research and Devel-
opment, 2005.

[33] “WS/XSUL2: Web and XML Ser-
vices Utility Library (Version 2),”
http://www.extreme.indiana.edu/xgws/xsul/index.html.

[34] “SoapLab Web Services,” http://www.ebi.ac.uk/soaplab/.

[35] J. Hofer and T. Fahringer, “The Otho Toolkit–Synthesizing
tailor-made scientific grid application wrapper services,” Mul-
tiagent and Grid Systems, vol. 3, no. 3, pp. 281–298, 2007.

[36] P. M. K. Gordon and C. W. Sensen., “Creating Bioinformatics
Semantic Web Services from Existing Web Services: A Real-
World Application of SAWSDL,” in Int. Conf. Web Service
(ICWS), 2008.

