
GSFL: A Workflow Framework for Grid Services

Sriram Krishnan,1,2 Patrick Wagstrom,1,3 Gregor von Laszewski1

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
2Indiana University, Bloomington, IN 47405

3Illinois Institute of Technology, Chicago, IL 60616

Abstract

TheOpen Grid Services Architecture(OGSA) is addressing the challenge of integrating services spread across dis-
tributed, heterogeneous, dynamic virtual organizations, using the concepts and technologies from both the Grid and
Web service communities. The Web service community has realized that Web services can reach their full potential
only if there exists a mechanism to describe the various interactions between the services and dynamically compose
new services out of existing ones. This situation is true in the case of Grid services as well. In this paper, we analyze
existing technologies that address workflow for Web services, and try to leverage them for Grid services, which have
different needs from standard Web services. We discuss these special needs and present theGrid Services Flow Lan-
guage(GSFL), which addresses them for Grid services within the OGSA framework.

KEY WORDS: Grid; OGSA; OGSI; Grid services; Web services; Workflow

1 Introduction

The Web services approach is rapidly gaining momentum in industry. The World Wide Web Consortium (W3C) [31]
defines a Web service as a software application identified by a URI [6], whose interfaces and bindings are capable
of being defined, described, and discovered by XML artifacts and which can support direct interactions with other
software applications using XML-based messages via Internet-based protocols. A more general and descriptive def-
inition can be found in [18], where a Web service is defined as aplatform and implementation independentsoftware
component that can be

• describedusing a service description language,
• publishedto a registry of services,
• discoveredthrough standard mechanisms,
• invokedthrough a declared API, usually over a network, and
• composedwith other services.

The goal of Web services is interoperability. It follows from the definitions that a requestor can access Web services
by usingstandardmechanisms. In the ideal world, any requestor can interface with any application that claims to be
a Web service irrespective of the language and the environment that either of them uses. This feature makes the Web
services approach appealing to modern enterprise and inter-organizational computing systems.

Grid computing involves the agglomeration of diverse resources in dynamic, distributed virtual organizations [15].
Grid technologiesare infrastructures that support the sharing and coordinated use of such diverse resources. Grid
technologies [13] are currently seeing widespread adoption in the scientific computing community. Apart from the
problems that are inherent in dealing with resources (i.e., algorithms and problem-solving techniques, resource man-
agement, security, instrumentation and performance analysis, network infrastructure, etc.), Grid technologies have to
solve problems similar to those addressed by Web services, namely description, discovery, communication, remote
invocation, and so forth. Recently, this fact has been recognized by the Grid community, resulting in the development
of the Open Grid Services Architecture (OGSA) [14].

1

OGSA is the result of lessons learned while developing the Globus ToolkitTM [17], which has become the de facto stan-
dard for Grid computing. OGSA uses the Web Services Description Language (WSDL) [9] to achieve self-describing
and discoverable services. It defines a set of standard interfaces that aGrid Servicemay export and that enable features
such as discovery, service lookup, lifetime management, notification, and credential management. In a similar vein
to Web services technology, Grid services can realize their full potential only if there is a mechanism to dynamically
compose new services out of existing ones. To create such a mechanism, we must not only describe the order in which
these services and their methods execute but also present a way in which such an agglomerate can export itself as a
service. In this context, we define the termworkflowas a set of rules that define the interactions between a set of
services in order to be composed into ameta-service.

In this paper we show the current state of workflow languages for Web services and how they relate to Grid services.
We point out some shortcomings of such languages in the context of the Grid. As a solution, we propose the Grid
Services Flow Language (GSFL), which we describe in detail. We present the research problems posed and the
approach we take towards them.

2 Technology Survey

The field of workflow languages for Web services has seen considerable activity in the recent past. Various methods
have been proposed as standards by the major Web services software providers. A thorough survey of all the existing
technologies is impossible, given the high rate of change in this field; instead, we focus on some of the larger projects
that are getting attention at this time.

2.1 Web Services Flow Language (WSFL)

Web Services Flow Language [20], which is under development by IBM, is one of the approaches to Web services
workflow. WSFL describes the composition of Web services by using aflow modeland aglobal model. The flow
model defines a series ofactivitiesthat represent the operations of the composite Web service, and specifies the order
in which these activities execute. It defines the flow of control and data between the various activities, usingcontrol-
Links anddataLinks, respectively. In most cases, the data flow closely follows the control flow; however, WSFL is
flexible enough to accommodate cases where this may not be true.

The global model defines how the activities of the composite Web service are mapped into the operations of the indi-
vidual Web services, using what are calledplugLinks. TheseplugLinkscan be used to connect WSDL operations with
similar, butdualsignatures. For example, a notification operation of a Web service can be connected to a one-way op-
eration of another Web service, while a solicit-response operation of a service can be connected to a request-response
operation of another service. While the flow model describes the orchestration of the various activities in the workflow,
the global model describes how these are implemented by the participating Web services.

WSFL identifies the services participating in the workflow by using alocator element, which supports the following
bindings:

• static, where a reference to a WSDL or WSFL definition is provided
• local, where the service implementation is local
• uddi, where the service implementation is looked up using the UDDI [29] API
• mobility, where the service provider is referenced in a message generated by some activity
• any, where the service provider is not restricted by the flow model

WSFL also supports lifecycle operations for the flow model of the composite Web services. It supports operations such
asspawn, call (a blocking spawn),suspend, resume, enquire, andterminate. The advantages of WSFL are its logi-
cal consistency with WSDL and the ability to define Web services that are recursively composed of other Web services.

Version 1.0 of WSFL was released by IBM in May 2001; however, not much has been written about WSFL since then.
No popular implementation of WSFL is available, although a few groups which are working on one [11].

2

2.2 XLANG: Web Services for Business Process Design

XLANG [26], a language under development by Microsoft Corporation, is used to model business processes as au-
tonomous agents. In WSDL the unit of action is an operation, that can be either on a stateless service (such as a stock
quote) or on a stateful (subservient) service where the interaction defines the beginning and end of the process. There
is a third model, however, in which business processes may beautonomous agents, such as a supply chain. In this
chain, input and output messages occur in a defined order, deemed aservice process. It is based onπ-calculus theory
for the connection and synchronizations of automatons.

XLANG defines the following set of operations as extensions to the standard WSDL operations to assist in this mod-
eling:

• Delaysallow a thread to stall for a specified time period or until another condition is met.
• Raiseis a method to raise exceptions for certain actions.
• Process controlcombines actions together with conditional and iterative statements.
• Correlationprovides a method for declaring longer running conversations.
• Transaction supportallows definition of rollback procedures if one action in the execution fails.
• Contractscreate agglomerate services by facilitating one-way bindings between ports.

Like many of these technologies XLANG is still evolving. Currently it lacks methods to add services dynamically to a
business process and also does not have a mechanism to export the methods of these services as part of the workflow.
These will be addressed in future revisions of the language. However, little has been written about XLANG since it’s
initial release in May 2001.

2.3 Web Services Conversation Language (WSCL)

Web Services Conversation Language [27] is a conversation language framework under development by the Hewlett-
Packard Company, for modeling the sequencing of the interactions or operations ofone interface. It fills the gap
between mere interface definition languages that do not specify any choreography and more complex process or flow
languages that describe complex global multi-party conversations and processes. The major elements of the WSCL
specification are as follows:

• document type descriptions, which reference the types of documents that the service can accept or transmit,
defined using XML schemas [12];
• interactions, which model the actions of a conversation between two participants;
• transitions, which specify the ordering relationships between the interactions; and
• conversations, which list all the interactions and transitions that make up a conversation.

The conversations are the public interfaces supported by a service. They add semantics to the WSDL for the service by
also specifying the possible ordering of the operations. WSCL does not, however, address the recursive composition
of Web services, which is what we aim to do for Grid services.

2.4 Other Related Work

The Web Services Choreography Interface (WSCI) [4], a language under development by Sun, Intalio, SAP, and
BEA. is aimed at application-to-application integration on a tighter level than that proposed by XLANG; however,
WSCI was proposed in June 2002, and is still fairly new at the time of writing this paper. The Business Process
Modeling Language (BPML) [3] is a metalanguage for modeling business processes. BPML provides an abstracted
execution model for collaborative and transactional business processes based on the concept of a transactional finite-
state machine. DAGMan [2] is a meta-scheduler for Condor [1] that manages dependencies between jobs. Despite the
fact that DAGMan does not deal with the workflow for Web services, the concept of using a directed acyclic graph to
represent a set of programs where the inputs, outputs, and the execution are interdependent can be applied to describe
the dependencies between the Web services. The XCAT Application Factories [16] address workflow issues for Grid-
based components within the Common Component Architecture (CCA) [5] framework. XCAT allows components to
be connected to each other dynamically, making it possible to build applications in ways not possible with the standard
Web services model.

3

Web Services Workflow Engine

Service 1 Service 2 Service 3

Initial Data In Final Data Out

S1 In S1 Out S2 In S3 InS2 Out S3 Out

invocation via standard methods

control and all data

no data is transferred via peer to peer methods

Figure 1: Web Services Workflow Model

3 Grid Workflow Requirements

As a result of the above survey and our analysis of Grid use cases, we have established a set of requirements for a
workflow specification for the Grid. In this section, we describe these requirements and discuss how existing Web
service technologies do not address all of them, despite providing invaluable techniques that we reuse.

Just as the Web service technologies aim to do, the Grid workflow specification should allow specific activities imple-
mented by individual services to be exported as activities of the workflow. It should also allow the exported activities
to trigger a chain of other activities. Current technologies such as WSFL address this issue effectively. Hence, we try
to incorporate these features presented by WSFL into the Grid Services Flow Language. Furthermore, the activities
exported in such a manner should also be described in the same manner as the service itself. In this sense, the specifica-
tion should be rich enough to describe the workflow such that the WSDL for the workflow entity (henceforth referred
to as aworkflow coordinator) can be auto-generated from the specification. The workflow coordinator must be able to
handle the methods that have been dynamically exported as a composition of the various activities of the workflow, in
such a way that clients can access them using the same standard tools that they use to deal with the individual services.
This is an important requirement for recursive composition of services.

Despite the fact that it is theoretically possible to define peer-to-peer interactions between Web services that are part
of the workflow in languages such as WSFL (viaplugLinks), it is not practically possible as solicit-response and no-
tification operations are not fully defined in WSDL 1.1. There are multiple interpretations of these operations in the
Web service community, and there is considerable debate about their removal in the forthcoming WSDL 1.2 [8] spec-
ification. As a result, and as has been pointed out by [16], existing Web services define their workflow in such a way
that the workflow engine has to intermediate at each step of the application sequence, as shown in Figure1. However,
the workflow engine does not end up being a bottleneck in business-to-business communication as there may only
be a moderate level of data transmission between the services. For Grid-based services, however, exchanging large
amounts of data is the norm. Having a central workflow engine relay the data between the services would be a bad idea
in this case. The workflow specification needs to be able to allow communication between the services, as depicted in
Figure2.

As we mentioned, OGSA adds extensions to WSDL in order to address Grid-specific needs. It addresses commu-
nication between Grid services by usingnotificationSourcesandnotificationSinks, which allow services to carry out

4

Grid Services Workflow Coordinator

Service 1 Service 2 Service 3

Initial Data In Final Data Out

control and small amounts of data

most of the data is transferred peer to peer via notifications

invocation via standard methods

Figure 2: Grid Services Workflow Model

asynchronous delivery of messages between each other. GSFL must provide a mechanism to connect notification-
Sources and notificationSinks, thus obviating the need for the workflow engine to mediate at every step. Additionally,
OGSA usesregistriesandfactoriesfor locating and creating Grid services, respectively. These must be appropriately
handled by GSFL.

It is conceivable that certain Grid services in the workflow will not be executing while others are. One reason may
be the fact that the services that need to execute earlier run for weeks; another reason may be or that the service that
executes later needs data from the former to bootstrap itself. The Grid workflow specification should be able to handle
these particular needs. Additionally, it should also be able to handle instantiation of the individual Grid services on a
per method or a per workflow instance basis. If the Grid services are instantiated on a per workflow instance basis, cer-
tain activities exported by the workflow may not function because a certain Grid service may have run to completion,
or may not have been instantiated yet. In such a case, certain ordering has to be imposed on the exported activities,
such as the one proposed by WSCL.

In the following section, we describe the Grid Services Flow Language and how we address the requirements specified.

4 GSFL Overview

The Grid Services Flow Language is an XML-based language that allows the specification of workflow descriptions
for Grid services in the OGSA framework. It has been defined by using XML schemas. A simplified architecture is
shown in Figure3. It has the following important features, which we expand in the following subsections.

• Service Providers, which are the list of services taking part in the workflow;
• Activity Model, which describes the list of important activities in the workflow;
• Composition Model, which describes the interactions between the individual services; and
• Lifecycle Model, which describes the lifecycle for the various activities and the services that are part of the

workflow.

5

GSFL DEFINITION Name, Target Namespace, Scope

IMPORTS List of Imports : Namespace, Location

SERVICE PROVIDERS

ACTIVITY MODEL

List of Providers : Name, Type, Locator

List of Activities : Name, Source

COMPOSITION MODEL

NOTIFICATION
MODEL

Notification Links

Exported Activities Activity Info

CONTROL MODEL DATA MODEL
Control In

Control Links

Data In, Data Out

Data Links

EXPORT MODEL

LIFECYCLE MODEL

Service Lifecycle
Precedence Links

Activity Lifecycle
Precedence Links

Figure 3: Architecture of the GSFL

4.1 Service Providers

All the services that are part of the workflow have to be specified in the list ofserviceProviders. The service providers
are identified throughout the GSFL document by a uniquename, which is specified as part of the definition. The
definition also contains thetypeof the service provider, which is the type of the Grid service, as specified by its WSDL
specification. Service providers can be located by using thelocatorelement, which allows looking up service providers
in a number of ways. Services can be locatedstatically, via a static URL that points to an already running service.
They can also be started up by usingfactories, the handle to which is available in the GSFL document. Services can
also be looked up usingregistries.

4.2 Activity Model

TheactivityModellists all the operations belonging to the individual service providers, that play a role in the workflow.
It contains a list of activities each of which has anamefor identification purposes and asource, which is a reference
to an operation in a Web service defined by anendPointTypeelement. The endPointType element contains the names
of the operation, portName, and serviceName for a particular operation.

4.3 Composition Model

ThecompositionModeldescribes how the different Grid services are composed to form a new Grid service. It describes
the control and data flow between various operations of the services, and also the direct communication between them
in a peer-to-peer fashion. It consists of an export model and a notification model.

6

4.3.1 Export Model

TheexportModelcontains the list of activities that must be exported as operations of the workflow process. Any client
can invoke these operations on the workflow instance by using standard mechanisms. Since the workflow instance can
also be viewed as a standard Grid service, it can be used recursively as part of another workflow process. For each
activity exported, the control and data flow are described by thecontrolModeland thedataModel, respectively.

ThecontrolModeldescribes the chain of activities that are invoked when the exported activity is invoked by a client.
Each controlModel element contains an attributecontrolIn that references the first activity to be executed when the
exported activity is invoked. Each controlModel also contains a series ofcontrolLinks, which is a precedence list of
all activities that need to be successively invoked as part of this exported activity.

ThedataModeldescribes the flow of data that occurs when an exported activity is invoked. This flow may not neces-
sarily mirror the flow of control between the various activities. Each dataModel element contains an attributedataInTo
(shown as “Data In” in Figure3) which signifies the activity that will receive the data provided as input to the exported
activity. A dataOutFromattribute (shown as “Data Out” in the figure) designates the activity from which the data is
returned to the caller.

The GSFL document provides enough information in the dataModel and the controlModel to not only dynamically
generate the WSDL for the activities exported but also support the invocation of such exported activities dynamically,
as we will explain in Section5.

4.3.2 Notification Model

ThenotificationModelsolves the problem of the workflow engine mediating at every step of an activity. As mentioned
before, OGSA services communicate with each other using notificationSources and notificationSinks. The notifica-
tionModel provides a mechanism to link such sources to sinks and vice versa, along with a particulartopic, using
notificationLinks. The services can now communicate large amounts of data among each other, without having the
need to go through the workflow engine. Users can still use the control and data models to communicate control mes-
sages and small amounts of data between each other, but the use of notification messages is the recommended form of
communication for large amounts of data.

The composition model is illustrated by a simple example shown in Figure4. Two services, A and B, constitute the
workflow. The notification model consists of a single notification link A→ B, which connects the notification source
of service A to the notification sink of service B. The export model consists of a couple of activities that are exported,
one of which is shown in detail in the figure. One of the exported activities is implemented by operationsP andR of
service A, and operationQ of service B. The control model of the exported activity consists of control linksP→Q and
Q→ R. OperationP of service A serves as the controlIn for the exported activity. The data model consists of a single
data linkP→ Q. This may possibly be because operationR may not need any data to be invoked. This is an example
where the data links need not necessarily be the same as the control links. OperationP serves as the dataInTo, while
operationQ serves as the dataOutFrom for the exported activity. Thus, invocation of the exported activity will trigger
the set of operations described above, following the flow of control and data described by the different types of links.

4.4 Lifecycle Model

The lifecycleModeladdresses the order in which the services and the activities execute. TheserviceLifecycleModel
contains a list of precedence links describing the order in which the services execute. Hence, all services need not be
instantiated at startup but can be started once the preceding services have stopped executing.

The lifecycleModel uses thescopeattribute for the workflow, which can be one ofsessionor application. Session
scope means that no state will be maintained between calls to the workflow engine. All calls to the engine are legal.
Services are instantiated for each call by using the serviceLifecycleModel, and these services will be alive when calls
to them are made.

7

Exported Port

Service
A

Service
B

N
otification
S

ource

N
otification

S
ink

Control Link

Notification
Link

Data Link

P

R

Q

Figure 4: The Composition Model in action

Application scope means that state will be maintained in the workflow engine between calls. Services are instantiated
only once per instance of the workflow, by using the serviceLifecycleModel. Hence, not all calls to the workflow
engine may be valid, because the services that implement these activities may not be alive. Hence, we add anactiv-
ityLifecycleModel, which describes the order in which they can be invoked. In other words, some activities can be
invoked only if certain other activities have already been successfully invoked; for example acheckoutoperation in an
online shopping system may be invoked only after one or morebuyoperations. Following the activityLifecycleModel
will ensure that all the services will be alive when calls to them are made in the proper order.

We believe this design addresses the requirements for workflow for Grid services. We now discuss some of the issues
involved in the implementation of a GSFL engine.

5 Implementation Details

As a basis for the prototypical development of GSFL we have selected the OGSI Technology Preview [21]. This is a
Java-based implementation of the current Grid Services Specification [28] using Apache Tomcat [22] and Apache Axis
[23]. Tomcat is the servlet container that is used in the official Reference Implementation for the Java Servlet [25] and
JavaServer Pages [24] technologies, while Axis is an implementation of the Simple Object Access Protocol (SOAP)
[7] submission to W3C. In the following subsections, we describe a few important parts of the GSFL implementation.

5.1 GSFL Parsing

We use Castor [30] for parsing the GSFL schema and generating Java bindings for the same. Castor is an open source
data binding framework for Java, and it can be used to generate the source for Java classes representing an XML
schema. It also provides methods to unmarshal XML documents conforming to a particular schema into correspond-
ing Java objects, and vice versa. Using Castor, we auto-generate the Java bindings for our XML schema, thus obviating

8

Client

Servlet Hosting Environment

OGSA/Axis WebApp

GSFL Provider/Intercepter

GSFL Coordinator

Target
Service

Target
Service

Target
Service

Client sends request for dynamically
exported method

Hosting environment receives request

WebApp determines processing service by URL

GSFL Provider maps call to generic
coordinator function

GSFL coordinator issues request
to target service(s)

Target service(s)
perform(s) action

Figure 5: GSFL Control Flow

the need for us to write code to do the same. This significantly reduced our code development time.

Although Castor maps the GSFL schema into appropriate Java classes, it has no understanding of the semantics
associated with the elements of the schema; for example Castor has no idea that theImport type in the GSFL schema
has enough information (namespace & location) to import another GSFL document. Castor will only map a type such
as Import to a Java class having the fields - namespace & location, with the appropriate getter and setter methods.
Hence, we had to add a wrapper around the Castor generated classes so that such situations can be handled. This
strategy was much easier than writing all of the above code ourselves.

5.2 WSDL Auto-generation

Apart from using Castor for the Java bindings for the GSFL document, we use the WSDL4J [19] for dealing with
the WSDL documents of the individual services. WSDL4J is a toolkit that allows the creation, representation, and
manipulation of WSDL documents describing services.

As we described in Section4, the GSFL document contains enough information about the activities that are exported.
Since the WSDL for the services participating in the workflow is available, theTypesfor the input and output messages,
and theMessagesthemselves can be easily found out for these activities. Information about the rest of the WSDL,
such asOperations, Ports, etc. can be easily derived from the GSFL itself. The key in the auto-generation of the
WSDL for the workflow was to represent enough information the GSFL schema.

5.3 GSFL Coordinator

The heart of a GSFL workflow is the GSFLCoordinator service, which creates virtual ports and services that map to
processes internal to the workflow. These ports are virtual: they do not physically exist on the GSFLCoordinator.
However, a client can invoke methods on these ports, as they get mapped to a set of other calls with respect to the
GSFLCoordinator.

A diagram representing the usual flow of control is shown in Figure5. A client wishing to execute a GSFL workflow
first begins an instance of the GSFL coordinator via the standard OGSA factory methods. The coordinator instance is
then sent the GSFL that represents the workflow. Upon receipt of the GSFL document, the coordinator dynamically

9

generates a WSDL document with all of the newly exported operations included. This WSDL can then be used by
clients wishing to execute the workflow and the operations that are dynamically exported. When a client calls an
operation that has been exported by the GSFL coordinator, a request is sent via the servlet container to the OGSA
webapp (Web Application). The OGSA webapp uses the mappings in theserver-config.wsdd to send the call
the GSFLProvider/Intercepter, which has been implemented as an extension to the standard OGSA RPCURIProvider
class, which is responsible for dispatching incoming requests to the correct service instance based on the URL of
the request. If the standard provider had been used, this invocation would have failed, since the operation does not
physically exist on the GSFL Coordinator. The custom provider intercepts this call, however, and sends it to a generic
marshaler function in the coordinator. Based on the information provided in the GSFL document, the coordinator then
processes the request and maps the operation to a set of calls, which are, in fact, implemented by the set of services
participating in the workflow.

The provider has provisions to differentiate between calls to operations in dynamically exported ports and the static
ones. One of the static operations of interest isgenerateWSDL, which auto-generates the WSDL for the coordinator,
inclusive of the dynamic ports, as described in Section5.2.

6 GSFL Example

Consider the following scenario where a set of Grid services need to communicate with each other, in order to achieve
a common goal. The description is in terms of the concepts defined in Section4, rather than in XML for readability.
The interactions between the individual services is depicted diagrammatically in Figure6.

6.1 Service Providers

The set of Service Providers consists of a Job Queue Service, which is responsible for queueing up jobs to be executed
by the user; a Resource Manager Service, which is responsible for storing information about various resources on the
Grid and making intelligent decisions about the target resource to execute the job on; and a set of Execution Services,
which run on each of the individual machines and are responsible for the execution of the jobs and reporting resource
information to the Resource Manager Service.

6.2 Activity Model

The Activity Model consists of the Queue operation of the Job Queue Service, which is responsible for queuing up a
job request, along with information about the needs of the job in a suitable format; a Dequeue operation for retrieving
a job from the queue depending on the policy of the queue; a GetResource operation of the Resource Manager Service
for getting the best resource for a particular job, using the information from the dequeued job; and an ExecuteJob
operation of the Execution service, which is responsible for the execution of the job.

6.3 Composition Model

The Export Model within the Composition Model consists of an exported operation Execute, that consists of identical
Control and Data Models. The operations that are part of both these models are Dequeue, GetResource, and Execute-
Job. Thus, when a client invokes the Execute operation on the workflow instance, the workflow engine gets the next
job from the Job Queue Service, and passes the job information to the Resource Manager Service via the GetResource
call, which returns the target resource to run the job on. Using the information from this call, the job is executed on
the selected resource using the ExecuteJob operation.

Furthermore, each of the Execution Services sends soft-state resource information to the Resource Manager Service,
by using periodic asynchronous notifications. This is how the Resource Manager Service has information about each
of the resources, which it uses to make a decision on the best target resource for a job. A set of Notification Links
connecting the Execution Services to the Resource Manager Service constitute the Notification Model.

10

Job
Execution
Service

Resource
Manager
Service

Job
Queue
Service

Job
Execution
Service

GetResource

Queue

Dequeue

ExecuteJob ExecuteJob

SubmitJobExecute

Control & Data Flow

Notification
Link

Figure 6: GSFL Example

6.4 Lifecycle Model

In this case, we need all our services to be active at the same time, so we don’t need to utilize all the features provided
by the Lifecycle Model.

Thus, we can see that the individual services - Job Queue Service, Resource Manager Service, and Execution Services,
can cooperate by using GSFL, in order to create a composite service that is more complicated, and has more value
than each of the individual ones.

7 Future Work

Broad areas of application and enhancement in the Grid Services Flow Language remain. This is still a work in
progress, and the language will continue to evolve depending upon the requirements of the Grid community, and the
emerging technologies from the Web services community. Ideas for future features include the ability to handle and
process exceptions, similar to those found in XLANG; enhanced ordering of tasks in the workflow, possibly with
constructs such as loops and switch statements; and automatic integration with a graphical workflow editor.

A recent technology that is worth investigation is the Business Process Execution Language for Web Services (BPEL4WS)
[10], that was released in August 2002 by IBM, Microsoft and BEA Systems. BPEL4WS represents the merger of
the two rival standards, WSFL and XLANG, and is supposed to address the several unmet needs of Web services
technologies. Integration with BPEL4WS is part of the future plans for GSFL.

8 Conclusions

In this paper, we have described the Grid Services Flow Language (GSFL), a workflow framework for Grid-based
services. We surveyed existing technology that addresses workflow for Web services and investigated their applica-
bility to Grid services. Existing Web services technologies provide a number of desirable features that we can reuse;
however, certain requirements such as peer-to-peer service interaction and complicated lifecycle management for the
services were found lacking. We have designed GSFL such that it addresses these requirements, while still being able
to integrate the features provided by existing Web service technologies.

11

References

[1] Condor : High Throughput Computing. http://www.cs.wisc.edu/condor/, 2002.

[2] DAGMan (Directed Acyclic Graph Manager). http://www.cs.wisc.edu/condor/dagman/, 2002.

[3] Assaf Arkin. Business Process Modelling Language. http://www.bpmi.org/bmpi-downloads/BPML-SPEC-
1.0.zip, June 2002.

[4] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David Orchard, Stefano Pogliani,
Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, Ivana Trickovic, and Sinisa Zimek. Web Services Choreogra-
phy Interface. http://wwws.sun.com/software/xml/developers/wsci/index.html, June 2002. Version 1.0.

[5] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski. Toward a
Common Component Architecture for High-Performance Parallel Computing. InProceedings of High Perfor-
mance Distributed Computing, pages 115–124, Redondo Beach, California, 1999. CCA Forum, .

[6] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc2396.txt, August 1998.

[7] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May
2000.

[8] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, and Sanjiva Weerawarana. Web Services Description
Language Version 1.2. http://www.w3.org/TR/2002/WD-wsdl12-20020709/, July 2002. W3C Working Draft 9.

[9] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services Description Lan-
guage. http://www.w3.org/TR/wsdl, March 2001. Revision 1.1 - March 15, 2002.

[10] Francisco Curbera, Yaron Goland, Yohannes Klein, Frank Leymann, Dieter Roller, and Sanjiva Weerawarana.
Business Process Execution Language for Web Services. http://www.ibm.com/developerworks/library/ws-bpel/.
Version 1.0 - July 31, 2002.

[11] Distributed Systems Department Pervasive Collaborative Computing Environment Project (PCCE), LBL. PCCE
Quarterly Reports. http://www-itg.lbl.gov/Collaboratories/quarterly-reports.html, April 2002.

[12] David C. Fallside. XML Schema Part 0: Primer. http://www.w3.org/TR/xmlschema-0/, May 2001.

[13] I. Foster and C. Kesselman, editors.The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers, July 1998.

[14] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steven Tuecke. The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. http://www.globus.org/research/papers/ogsa.pdf, January 2002.

[15] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organiza-
tions. International Journal of Supercomputing Applications, 15(3), 2002.

[16] Dennis Gannon, Rachana Ananthakrishnan, Sriram Krishnan, Madhusudhan Govindaraju, La-
vanya Ramakrishnan, and Aleksander Slominski. Grid Web Services and Application Factories.
http://www.extreme.indiana.edu/xcat/AppFactory.pdf, June 2002.

[17] The Globus Project. http://www.globus.org/, June 2002.

[18] Steve Graham, Simeon Simeonov, Toufic Boubez, Doug Davis, Glen Daniels, Yuichi Nakamura, and Ryo
Neyama.Building Web Services With Java. SAMS, 2002.

[19] IBM. The Web Services Description Language for Java Toolkit (WSDL4J). http://www-
124.ibm.com/developerworks/projects/wsdl4j, July 2002.

12

[20] Frank Leymann. Web Services Flow Language. http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
May 2001.

[21] OGSI Technology Preview Release. http://www.globus.org/ogsa/releases/TechPreview/, June 2002.

[22] Apache Jakarta Project. Apache Tomcat. http://jakarta.apache.org/tomcat/, June 2002.

[23] Apache XML Project. Apache Axis. http://xml.apache.org/axis/, June 2002.

[24] Sun Microsystems Inc. Java Server Pages. http://java.sun.com/products/jsp, 2002.

[25] Sun Microsystems Inc. Java Servlet Technology. http://java.sun.com/products/servlet/index.html, 2002.

[26] Satish Thatte. XLANG: Web services for Business Process Design.
http://www.gotdotnet.com/team/xmlwsspecs/xlang-c/default.htm, 2001.

[27] The Hewlett-Packard Company. Web Services Conversation Language (WSCL) 1.0.
http://www.w3.org/TR/wscl10/, March 2002.

[28] Steven Tuecke, Karl Czajkowski, Ian Foster, Jeffrey Frey, Steve Graham, and Carl Kesselman. Grid Service
Specification (Draft 2). http://www.gridforum.org/ogsi-wg/drafts/GSSpecdraft022002-06-13.pdf, June 2002.

[29] UDDI Technical White Paper. http://www-3.ibm.com/services/uddi/pubs/IruUDDI TechnicalWhite Paper.pdf,
September 2000. Universal Description, Discovery and Integration is for discovering web services.

[30] Keith Visco and Assaf Arkin. Castor. http://castor.exolab.org/, 2002.

[31] World Wide Web Consortium. http://www.w3.org/, June 2002.

13

