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Abstract— Services-oriented architectures hold a lot of promise
for grid-enabling scientific applications. In recent times, Web ser-
vices have gained wide-spread acceptance in the Grid community
as the standard way of exposing application functionality to end-
users. Web services-based architectures provide accessibility via
a multitude of clients, and the ability to enable composition of
data and applications in novel ways for facilitating innovation
across scientific disciplines. However, issues of diverse data
formats and styles which hinder interoperability and integration
must be addressed. Providing Web service wrappers for legacy
applications alleviates many problems because of the exchange of
strongly typed data, defined and validated using XML schemas,
that can be used by workflow tools for application integration.
In this paper, we describe the end-to-end architecture of such a
system for biomedical applications that are part of the National
Biomedical Computation Resource (NBCR). We present the
technical challenges in setting up such an infrastructure, and
discuss in detail the back-end resource management, application
services, user-interfaces, and the security infrastructure for the
same. We also evaluate our prototype infrastructure, discuss some
of its shortcomings, and the future work that may be required
to address them.

I. I NTRODUCTION

For a number of years, there has been a shift in grid comput-
ing towards a “services-oriented” architecture leveraging Web
services technologies and methodologies. With the recent Web
Services Resource Framework (WSRF) [19] specification and
initial releases of a reference platform, that shift continues.
Despite much enthusiasm for this shift, there are remarkably
few articles or papers that show how to build a production-
level services-oriented infrastructure with the technologies
that are available today. Such an illustration would serve to
highlight those technologies and methodologies that are in a
mature state, those that are not yet production-ready, and those
that are entirely missing and needed.

In this paper, we aim to present such an end-to-end architec-
ture for a production infrastructure currently being built as part
of the National Biomedical Computing Resources (NBCR).
This infrastructure is scheduled to go into production use by
the end of this calendar year and is already available for alpha
testers. The infrastructure is focused on providing access to
a variety of biomedical applications at different molecular
scales. However, the initial version is limited to chemical and

Fig. 1. The end-to-end Web services architecture

molecular analysis applications.
As a production infrastructure, considerable effort has been

made to leverage mature software with known reliability and
performance characteristics. Security is a major concern at
all layers in the infrastructure as is ease-of-use for the end
user – we strive to conform to the known best practices for
Grid security but wrap these capabilities in an easy-to-use and
easy-to-manage way. Performance of a single application is
not a driving priority, but rather stability of the system and
scalability in terms of concurrent users, compute resources,
and number of applications have taken precedence. Integration
and interoperability between the different applications is of
particular interest; therefore the infrastructure should support
aggregation and composition using higher-level workflow tools
and semantic mediators. Finally, although we are working
to provide a complete end-to-end environment for the end-
user, we have strived to build an open system with published
interfaces at all layers where different tools can be substituted
as appropriate.

Figure 1 shows the overall multi-tiered architecture of
our system, with the compute resources at the bottom tier,
the application services in the middle tier, and the end-user
environment in the top tier. The bottom tier is composed of
multiple clusters that are located at different sites. NBCR
itself has several clusters, including a 103 node cluster of Dell



PowerEdges, and a 16 node cluster of Intel Xeons. Additional
clusters may be available if they are not used by other projects,
including GEON’s [1] 12 node HP cluster, and the UCSD
Department of Bioengineering’s 210 node Dell PowerEdge
cluster. Section III discusses resource management on these
clusters in greater detail. The Application services form the
middle tier and provide domain-appropriate Web service in-
terfaces for any client application. Section IV describes the
implementation of these services. Finally, the top tier is the
environment in which the end-users interact with the services.
This includes common Web-based portals, workflow tools like
PMV/Vision [4] and Informnet [2], and a custom environment
being built called Gemstone [3] that is described in Section
V. Section VI describes the security infrastructure that is used
throughout our system. Section VII presents an evaluation of
the performance of the system and a discussion regarding
the state of the tools for building Web services. Section VIII
presents our conclusions and future work.

II. SCIENTIFIC BACKGROUND

The fundamental goal in molecular modeling research is
to understand how the interplay of structural, chemical and
electrical signals manifest themselves into important biolog-
ical functions. Computational experiments can often fill in
important gaps or provide verification for the experimental
studies. However, as molecular structure increases in size
and complexity, addressing the consequences of molecular
and structural specialization and variation becomes more and
more difficult for either experimental difficulties and/or com-
putational challenges. Computational scientists have at their
disposal several powerful simulation techniques which provide
the means to explore the functional consequences of variation
in structural features. Computational modeling can be viewed
in a hierarchical fashion, ranging in accuracy as well as
complexity of computation.

Of the hierarchy of models available for molecular com-
putations, first principles, (ab initio) computational methods
offer the most accurate approximations. These models solve
the Schrodinger Equation and molecular Hamiltonians, from
which molecular structure, mechanisms, properties, and dy-
namics, are determined. Such enormously powerful techniques
have, to date, had little direct impact on the prediction of
macroscopic properties of biological materials due to the
associated computational cost. Detailed quantum mechanical
treatments of molecular and electronic structure, however, can
predict molecular geometry, follow the reaction paths of chem-
ical transformations, predict electrostatic effects in a variety of
environments, estimate pKa shifts, and provide interpretations
of spectroscopic probes of molecular environments, all with
considerable accuracy.

As the molecular system size grows, the use of quantum
chemical methodologies is typically prohibitively expensive.
Instead, less accurate, more affordable, methodologies, such
as empirical force fields or electrostatic methodologies are
often employed. There are many different applications of this
type and while related, each represent a different algorithmic

methodology for understanding molecule structure and prop-
erties, and as such provide different levels of accuracy. In
many areas of research, such applications may be accessed
by scientists in one of many combinations. More recently,
with advancements in computational technology, innovative
couplings between a wide range of different but related ap-
plications, hybrid modeling, is becoming an important aspect
of computational modeling.

In the present work, it is our goal to investigate hybrid
methodologies particularly focused for study of protein-ligand
interactions. We employ a technique using the highly accurate
quantum chemical model for the small ligand, employing the
computational chemistry package GAMESS [29], with the less
accurate electrostatics model for the ligand-protein complex,
using the APBS [26] computational package. The associated
tool, QMView [12], is then employed in the pipeline for vi-
sualization and analysis. Estimating correct three-dimensional
atomic structures of complexes between proteins and ligands
is an important component of the drug-design process in
the pharmaceutical industry. The computational method used
for this procedure is called ”docking”. This process usually
involves extracting separate geometries for the protein and
the ligand of interest from structural databases, often in a
high-throughput manner by scanning many proteins or ligands
against each other. Then the relative orientation between the
protein and the ligand is varied, which corresponds to the
scanning of three translational and three rotational degrees of
freedom between both molecules, until their optimal orienta-
tion is found. In some cases parts of the protein or the ligand
are also allowed to be flexible, that is, certain bond torsions
are permitted, however, this is beyond the scope of our project
at the moment.

III. C LUSTER BACK-END

Our goal is to leverage the set of computational resources
available not only across the UCSD campus, but also across
other partner sites. However, clusters at different sites run
schedulers of their choice, e.g. some of the schedulers used in
practice include Condor [13] and Sun Grid Engine (SGE).
Hence, it is mandatory that these schedulers be accessible
in a generic way, so that the clients are able to communi-
cate with them in a uniform non-scheduler-specific fashion.
Furthermore, users typically interact with schedulers such as
Condor and SGE via command line interfaces. However, in
order to expose the applications as services, we need to access
these schedulers programmatically.

The Globus Toolkit [27] is an open source software toolkit
used for building Grid systems and applications. It provides
a “bag of services” that are useful for interacting with Grid
resources in a secure way. One of the services that it provides
is the Globus Resource Allocation Manager (GRAM) [18],
which processes the requests for resources for remote applica-
tion execution, allocates the required resources, and manages
the active jobs. Furthermore, GRAM provides an API for
submitting and canceling a job request, as well as for checking
the status of a submitted job. The specifications are written by



Fig. 2. Access to Schedulers using Globus GRAM

the user in the Resource Specification Language (RSL), and
are processed by GRAM as part of the job request. The RSL
is scheduler-agnostic; hence, the clients are oblivious to the
actual schedulers being used at the back-end. This enables the
use of disparate schedulers without any modification to the
client-side code.

Figure 2 shows the flow of control when a job is launched
using GRAM. A client submits a job request using the RSL.
This RSL is received by a GlobusGate-keeper, which then
spawns off a scheduler-specificJob-managerfor every job.
The job-manager is responsible for interpreting the RSL,
converting it to the appropriate scheduler-specific parameters,
and launching the job using the scheduler. Once the job is
launched, a handle to the job-manager is returned to the
client. Clients can use this handle to contact the job-manager
and query it for status of the executing job. Note that the
Globus Gate-keeper authenticates and authorizes a user before
launching the Job-manager, which is not shown in the diagram.

With the advent of OGSA [23] and WSRF, GRAM is being
implemented using Web service technologies. However, we
still use the more stable pre-Web service versions of GRAM
on the computational resources. On the client side, we use the
Java CoG Kit [32] to communicate with the remote Globus
services. We plan on migrating to the newer Web service
versions once they have become production quality. However,
we don’t anticipate any major road-blocks in doing so because
the Java CoG Kit would still be responsible for providing the
same APIs to the new Globus services that are Web service-
based.

Our current implementation can only support one type
of scheduler at any point in time.Meta-scheduling, which
provides an ability to leverage multiple schedulers at the same
time, is not implemented. However, our architecture is highly
conducive for providing the same, and that is indeed our
eventual goal. One approach for providing meta-scheduling
is with the help of the Grid Information Service (GIS),
which is one of the other services that the Globus Toolkit
provides. GIS provides information about the state of the Grid
infrastructure. Information from the various resources (running
their individual schedulers) may be published into the GIS.
The meta-scheduler can then select the most lightly loaded

resource from the GIS and choose to schedule the job on that
resource via the GRAM API, irrespective of the scheduler
being used by that particular resource.

Another approach to meta-scheduling is with the help of
a Condorglide-in, which is a tool for dynamically adding
Globus resources onto a Condor pool. Using this approach,
Condor daemons are spawned on a resource using GRAM,
and these resources become part of a Condor pool even if
they are running their own schedulers. This approach is also
realizable within our architecture.

IV. A PPLICATION SERVICES

To make the biomedical applications that are part of NBCR
grid-aware, the following requirements have to be fulfilled -
remote execution and access to Grid resources, support for
multiple concurrent users, access via a set of disparate clients,
and the use of standards-based security mechanisms. Further-
more, as discussed in Section II, one of our primary goals is to
couple together applications across different molecular scales.

A services-oriented architecture lends itself very well to
satisfying these requirements. Applications can bewrapped
as services that provide transparent access to Grid resources
to the clients. Since the services are exposed via well-defined
published APIs, different user-interfaces can be built for the
same set of services, as appropriate for the end-user.

Web service technologies are used as thede factostandard
for applications on the Grid, and we use the same to build our
services-oriented architecture. Standard Grid security mech-
anisms are used for authentication and authorization of the
users, as discussed in Section VI. Furthermore, Web services-
basedworkflow tools can be used for complex interactions
between the individual biomedical applications, in order to
enable novel scientific research.

A. Strong Data Typing and Workflows

Traditionally, scientific applications deal with inputs and
outputs that are based on flat files. Typical inputs consist
of a set of control options and a series of data. However,
these files are not strongly typed, and can only be parsed by
application-specific tools. This serves as a serious impediment
if applications written by different user communities (such as
ours) need to be coupled together. This is especially difficult
if third-party workflow tools are to be used for application
integration, since they do not understand the application inputs
and outputs due the lack of strong data typing and standardized
formats.

Since the advent of the Web service technologies into the
Grid world, several projects have attempted to expose their
applications as Web services. However, it is very often the case
that the inputs and outputs of these Web services are simple
strings that represent the same data as the regular input and
output files of the applications. Although this may provide re-
mote execution and access to Grid resources via a Web service
interface, this is not very useful for workflow composition.
This is because the string-based inputs are not strongly typed.
The Taverna [22] workflow engine, that is being developed by



the MyGrid project, uses the concept ofshimsto get around
this problem. Shims are application-specific translators that
convert data from one format to another. Shims can be used
to convert outputs of one service into inputs of another, thus
enabling composition between different applications. However,
this is not a generic approach because shims would need to
be written between every pair of applications that need to be
coupled together.

A more generic approach is to define strong data types
for representing the inputs and outputs of the applications
themselves. This will enable the use of third-party workflow
tools for application integration. Since our architecture is Web
services-based, we can use XML Schemas for defining the
inputs and outputs. Standard Web service workflow specifica-
tions that mediate between services with the help of strongly
typed data can then be used to enable complex interactions
between these applications.

B. Applications as Web services

For our first prototype, we are providing the functionality
of the APBS, GAMESS, and QMView applications as Web
services. These are implemented in Java using the Apache
Axis SOAP Toolkit, and are hosted inside a Jakarta Tomcat
container. As an example, we will describe the implementation
of the APBS Web service.

First, we abstract out the core functions that are provided by
APBS. An analysis of the application shows that the three key
functions provided by APBS are the calculations of solvation
energy, binding energy, and electrostatic potential. Each of
these is represented as an operation in the WSDL description
of the service. Additionally, we analyze the inputs and outputs
to APBS, resulting in the definition of strong input and output
types with the help of XML Schemas. Figure 3 shows the
data structure representing the input type for the calculation
of electrostatic potential. It can be observed that the input
contains a set of parameters that can be filled in by a user via a
user-interface or retrieved programmatically by a Web service
client from another service or from a repository of input data.
A key part of the input data is the data type representing
a Molecule. Several representations of a molecule exist in
the life sciences, viz. the PQR file format used by APBS,
the Chemical Markup Language (CML) [28], etc. We have
attempted to create a common Molecule type that can be used
by our applications. However, the use of strong data typing
ensures that the conversions to and from disparate data formats
used by other applications are relatively straightforward, e.g.
XSLT [8] transformations can be used between CML and our
Molecule format. Finally, the service itself is implemented
to receive the strongly typed inputs, convert it into the input
formats used by the APBS executable, and use the back-end
resources described in Section III to execute the same.

We use theWSDL2Java tool provided by the Apache
Axis Toolkit to generate stub and skeleton code from the
WSDL service description. Hence, we don’t have to deal with
parsing and (de-)serializing the XML-based input and output
data. The stubs and skeletons ensure that both the server and

Fig. 3. Input type for calculation of electrostatic potential

client programs only operate on Java data structures that are
generated from the WSDL description of the services. Similar
tools exist in other languages such as Python and C/C++.

C. Remote Invocations and State Management

Jobs can be executed synchronously or asynchronously. If
they are executed synchronously, the client blocks until the
remote execution is complete. The job outputs are returned
as a response to the original request. However, this style of
invocation is not always appropriate. Jobs may possibly spend
a lot of time being queued if the resources happen to be heavily
loaded. Furthermore, if the jobs are long running, the client
will stay blocked until it finishes executing, or possibly time
out.

To overcome this shortcoming, jobs can be launched asyn-
chronously. A response is immediately sent back to the client
with a jobID for the job being executed. The clients can
use this jobID to query the service for job status and
output metadata at a later time. However, this makes the
servicestateful. Apart from the job status and metadata about
job inputs and outputs, the service state also includes user
information and job history. A PostgreSQL database is used
to persist this state, and is accessed via JDBC.

The Grid community has been deliberating for a few years
to arrive at a consensus for representing stateful Web services.

The Open Grid Services Infrastructure (OGSI) was the first
attempt by the Grid community to define a standard represen-
tation for transient stateful Web services (called Grid services).
This recently evolved into the Web Services Resource Frame-
work (WSRF) specification that better aligns the functionality
of OGSI with current and emerging Web service standards.
WSRF defines standard conventions for Web services for
managing state so that applications discover, inspect, and
interact with stateful resources in standard and interoperable
ways. In the future, when WSRF implementations are more



mature and stable, we plan to use WSRF-based mechanisms
for management of our service state. One possible approach
is to create a new WS-Resource for every asynchronous
execution, instead of the currentjobID . Implementations of
one-way messaging techniques such as WS-Notification [9]
could then be used to notify clients of changes to job state.

V. RICH USERENVIRONMENT

The application services described in the previous section
are accessible through programmatic APIs and are not meant
for end-users to interact with directly. Instead the end-user will
use a variety of tools and applications that in turn communicate
with the application services. We don’t believe that there
is any one tool that will be sufficient for all the end-user
needs. Some tools such as Web browsers provide ubiquitous
access to the services (any machine with a Web browser
and IP connectivity), but suffer from inflexibility. Other tools,
such as Kepler [11], Taverna and PMV/Vision, provide a
desktop environment for building domain-specific workflows.
Each of these end-user environments can easily work with
the application services using SOAP libraries for the various
platforms and languages.

A. Gemstone Framework

In this section, we describe a new end-user environment that
is currently being developed specifically for the computational
chemistry community. Gemstone (Grid Enabled Molecular
Science Through Online Networked Environments) provides
end-users with a convenient user interface for interacting with
back-end applications similar in nature to Web-based portals.
Gemstone, however, is not a Web-portal and is not limited to
HTML in its interaction. It is a desktop application that is fully
integrated into the end-users desktop environment, for example
supporting drag and drop across files and data. Gemstone is
more dynamic than Web-portals as well: Gemstone accesses
remote registries and lists the application services that are
available at that time. As more services are added or services
removed, this list is updated. A listed service is a application
Web service such as the GAMESS and APBS services. When
a user selects a particular service, aservice panel, that provides
its user interface, is loaded dynamically from the remote
service. The Gemstone interface also provides a local file
system browser for dragging and dropping files to and from
the service panels, and GSI integration using GAMA (see the
Section VI on security). Additionally, a light-weight workflow
composition tool called Informnet will be integrated inside
Gemstone so that the above services can be coupled together.

Figure 4 shows a screen-shot of the Gemstone application.
The registry listing is shown on the left, the local file browser
is on the right and the various service panels are in the
middle and represented as a set of tabs. The service panel
provides the user with a rich user interface for interacting with
the remote service, launching jobs and monitoring running
jobs. The framework provides APIs for the service panels to
communicate with other service panels, to transfer files, and
to access the security certificates.

Fig. 4. The Gemstone User Interface

The Gemstone framework is built on the Gecko rendering
engine developed by the Mozilla Corporation. Gecko is the
same core that is used in the Firefox browser, and Thunderbird
mail client. The Gecko engine provides layout and rendering
of user interface elements. The user interface elements are
described using an XML syntax called the XML User-interface
Language (XUL) [17]. It defines all the GUI elements such
as buttons, text fields, and menu items. The GUI elements
are tied together using the JavaScript which is natively inter-
preted by the Mozilla SpiderMonkey JavaScript interpreter.
A large library of components is accessible to the user in
JavaScript through the XPCOM (Cross Platform Component
Object Model) layer written in C. Both the JavaScript libraries
and the XPCOM components are easily extensible.

Gemstone is built as an open framework that provides base
capabilities such as registry lookup, user login and credential
management, and local and remote file system access. This
framework provides ashell in which different service panels
(e.g. application user interfaces) are run. The service panels
can interact arbitrarily with the user but is constrained in its
access to local resources for security reasons.

While each application service panel operates more or less
independently from the other service panels, there may be need
for different service panels to communicate with other service
panels and for service panels to communicate with the core
Gemstone framework. This communication infrastructure is
currently being developed and is using a publish-subscribe
event model: service panels can register interest in certain
types of events and broadcast event notifications as appro-
priate. When broadcast, the Gemstone framework will trigger
event handlers for all service panels that have registered an
interest for such events.

VI. SECURITY

A reliable yet easy to use security infrastructure is pivotal
if application scientists are to adopt a Web services approach.
One of the contributions of the Globus Toolkit is the Grid
Security Infrastructure (GSI) [24]. GSI is a public-key-based



Fig. 5. Grid Account Management Architecture

system that uses X.509-based [21] user and host certificates
signed by trusted third parties called Certificate Authorities
(CAs). Typical usage models require that each user is assigned
a user credential consisting of a public and private key. Users
generate ”delegated proxy” certificates with short life spans
that get passed from one component to another and form the
basis of authentication, access control and logging.

However, there are several technical hurdles in using GSI-
based security within a Web services infrastructure. We discuss
these issues in detail in the following subsections.

A. Credential Management

Although GSI-based systems have been adopted universally
in Grid systems, these are known to be notoriously difficult
for administrators to deploy, and for users to use. From the
perspective of an end-user, several portal-based tools are now
available for simplifying certificate management. Although
such tools are promising, we wish to access our services not
just via Web portals, but also through other rich interfaces.
Hence, simple portal-based interfaces do not suffice.

From the perspective of a security architect, there are
several software packages for building CAs. It is desirable
that these are abstracted out into a single set of services
for easy deployment. We use the Grid Account Management
Architecture (GAMA) [14] for accomplishing these goals.
Although a detailed discussion of GAMA is beyond the scope
of this paper, we discuss its architecture briefly.

The two-tier architecture of GAMA is described in Figure
5. The back-end (shown on the right) is a set of Web services
that wraps the functionality of the various CA packages. These
services provide operations to create users on Grid resources,
and retrieve credentials for users at a later time. End-users
interact with these services via a set of Web service clients.
Initially, users use an intuitive Web portal to create accounts
easily on the Grid resources. After account creation, users can
retrieve their Grid credentials from the back-end services using
any Web service clients with the help of a user-name and
password that they chose during account creation. The use of
GAMA greatly reduces not only the learning curve for the
end-user, but also the set-up time for the security architect.

B. Authentication

In the context of Web service invocations,authentication
is the process by which the two parties, the client and the
service, attempt to confirm the identities of the other prior to
any message exchange. Currently, there are two ways to do
authentication using X.509-based certificates:

• Transport-level: This method relies on the creation of
a secure point-to-point connection between the client
and the server, using a Secure Sockets Layer (SSL)
implementation. Once a connection has been created and
identities of the client and service have been confirmed,
the channel can then be encrypted, if need be.

• Message-level:This method relies on signing and/or
encrypting SOAP messages between the client and server.
No secure connection is required between the client and
the service. Most of the Web services security specifica-
tions operate at the message level.

Since transport-level security relies on a point-to-point con-
nection between the client and the service, it is not easy for it
to work for a connection that includes multiple hops, e.g. in
the presence of intermediaries. Furthermore, it doesn’t provide
an ability to sign or encrypt specific portions of messages.
Message-level security, on the other hand, solves both of
these problems. However, it suffers from severe performance
problems. This is because signing and encrypting SOAP
messages involves manipulating XML. In particular, XML
canonicalization, which is an essential step before signing or
encrypting, has been shown as a bottleneck by Shirasuna et al
[30]. They recommend that message-level security should only
be used only if there is a need to sign or encrypt portions of
SOAP messages, or in the presence of intermediaries. Neither
of the above are critical requirements for our applications.
Hence, we use transport-level security for our authentication
purposes.

To enable transport-level security between the Web ser-
vices and their clients, we needed to modify a few of
the default settings of Tomcat and Axis. The default SSL
implementation, using Sun’s Java Secure Sockets Extension
(JSSE), does not work with GSI-based proxy certificates.
Hence, we use a custom implementation of SSL provided by
the Java CoG Kit on both the client and server sides. On
the server side, we configure theserver.xml of Tomcat
to use CoG’s implementation of theHTTPSConnector ,
which uses a GSI-based server socket implementation. Fur-
thermore, we configure the Axis client to use CoG’s imple-
mentation of a GSI-basedHTTPSSender . Additionally, the
GSIConstants.GSI CREDENTIALSproperty is set to the
user’s proxy on the Axis stub for the remote service.

C. Authorization

In the context of Web services,authorizationis the process
where a decision is made whether a particular user has
the permissions required to perform a particular operation.
Authorization can be performed in a variety of ways - from the
traditional GSI-based grid-map files that map user certificates



to local users, to the use of the Virtual Organization Member-
ship Service (VOMS) [10], or the Community Authorization
Service (CAS) [20]. At present, we use a grid-map based
authorization technique. We are investigating other tools, and
may incorporate it in our system in the future.

The grid-map authorization for the application services is
implemented as an Axis Handler. Apache Axis uses aHandler
Chain model where every message passes through a sequence
of Handlers before the Web service operation is invoked.
Developers are free to add their own handlers in order to
manage their services. We added an Grid-Map Authorization
Handler that retrieves the client’s identity from the message
context, and looks up a grid-map file to verify if a user is
allowed to make a remote invocation. If there is an entry for
that particular user in the grid-map file, then the invocation
proceeds as usual. If not, an exception is returned to the
client with a message that (s)he is not authorized to make
that particular invocation. Other authorization techniques can
be added in a similar fashion.

VII. PERFORMANCEEVALUATION

It is well-known that Web services and SOAP add a lot of
overhead because of the verbose nature of the XML format.
However, as we have discussed earlier, strong data typing with
the help of XML Schemas is extremely beneficial for complex
coupling of services with the help of workflow tools. Lack
of strong data typing would make the application integration
non-generic, and error-prone. The verbose nature of XML is
a small price to pay for the other benefits that it provides.
However, having said that, it is still desirable that the Web
service invocations be as fast as they possible can, and that
emerging faster alternatives be investigated. Here, we present
a preliminary analysis of the overhead caused by Apache Axis,
and discuss a few alternatives for the future.

As an example, we investigate the performance of the APBS
Web service. APBS traditionally uses the PQR file format
to represent a molecule. An interesting molecule typically
contains a few thousand atoms. Generally, we do not encounter
many molecules with more than ten thousand or so atoms.
The PQR file representing a molecule with ten thousand
atoms is about 800KB. The corresponding size of the XML
representation that is generated by Axis is about 8MB. We
have generally noticed that the XML representation of a
molecule is about an order of magnitude larger than the
corresponding representation in PQR format. This increases
the latency between the client and the Web service due to
the time needed to transmit the molecule, especially when the
client is not connected by a high speed Internet connection.

We measured the performance of a non-blocking remote
invocation on the APBS Web service over a Gigabit Ethernet
connection, as well as over a slower cable modem. This is
a fair indicator of the Web service overhead because this
operation involves transfer of XML data, marshaling and
unmarshaling of parameters, conversions to the application-
specific input types, and job submission. We do not measure
the performance of the actual APBS execution because this

stays the same irrespective of whether it is executed via a
Web service wrapper, or via the command-line.

In both cases, the Web services were running on a Intel
Xeon cluster with four compute nodes and one head node,
each having a 4-processor 3GHz CPU and 2GB memory,
and running Java version 1.4.204. To test the performance
over Gigabit Ethernet, the client ran on the head node of the
same cluster. For the slower network connection, the client
ran on a Macintosh Powerbook G4 with a 1.5GHz processor
and 1GB memory, and running Java version 1.4.205. The
available network bandwidth for uploads was approximately
60KB/s. It was observed that a non-blocking invocation from
the Gigabit connection for the said molecule size took about
10s. However, the invocation from the slower cable modem
connection took about 110s. The additional time required for
the slower cable modem connection can be attributed to the
time required to transfer the 8MB molecule represented in
XML over the 60KB/s network. Both of these numbers were
higher than we anticipated. However, the APBS execution lasts
for tens of minutes or more, which is a couple of orders
of magnitude greater than the Web service overhead on the
Gigabit Ethernet connection. Hence, the performance is quite
acceptable.

However, we made two observations that were worrying.
First, the memory footprint of the Web server running Apache
Axis was inordinately high. In fact, the server would run out
of memory on using the default heap size. Increasing the
heap size to 256MB circumvented this problem. However,
this is not a very scalable solution as the memory required
is proportional to the number of clients being served at any
point in time. Furthermore, we noticed that the bottleneck, for
both memory and time, was the de-serialization of the XML
message into the molecule data type. Around 5s was spent in
the de-serialization, which is about half the time taken by the
Gigabit client.

Despite these poor performance numbers, it would be naive
to dismiss XML and XML Schemas for describing data
structures such as ours. Govindaraju et al [25] discuss the
performance of various SOAP toolkits, and their observations
are very interesting. They have shown that despite the fact
that Axis is one of the most well-accepted SOAP toolkits, its
performance is in fact one of the worst among the ones tested,
especially for large data sizes. Other toolkits tested were
XSOAP4/XSUL [5] which is written in Java, and gSOAP [31]
which is C/C++. XSOAP4 uses techniques such as parsing of
streaming data, as well as pull-parsing [7] to improve the per-
formance to about an order of magnitude better than Axis, and
to almost approach the performance of gSOAP, despite the fact
that gSOAP is written in a compiled language (C/C++). This
proves that fast processing of XML is possible if clever parsing
techniques are used. In fact, the new generation of Axis being
developed (called Axis2) is centered on a new representation
for SOAP messages called AXIOM (AXIs Object Model).
AXIOM is built on a StAX-based (Streaming API for XML)
pull parsing API, that allows one to stop building the XML
tree and just access the pull stream directly; thus enabling both



maximum flexibility and maximum performance.
The validation of XML instances against a schema is usually

performed separately from the parsing of the more basic
syntactic aspects of XML. However, schema information can
be used during parsing to improve performance, in what is
called schema-specific parsing [16]. Binary representation of
XML data has also been proven to be useful for improving
performance. Several groups are investigating the use of binary
XML for scientific applications ([15], [6]).

VIII. C ONCLUSIONS

In this paper, we presented an end-to-end Web services-
based infrastructure for biomedical applications. This infras-
tructure enables remote execution of biomedical applications
on Grid resources, with the help of appropriate schedulers. It
allows multiple users to concurrently access these applications,
via a multitude of user-interfaces. Furthermore, it provides
GSI-based authentication and authorization mechanisms for
secure access to the application services. Workflow tools are
leveraged for coupling different application services in order
to enable integration of multi-scale biomedical applications.

However, several technical challenges still remain to be
addressed. We are investigating meta-scheduling techniques to
schedule jobs across multiple clusters. We plan on leveraging
WSRF toolkits for implementation of stateful Web services
so that they can be discovered and used in an interoper-
able manner. We are researching alternate representations
and parsing techniques for XML data in order to improve
Web service performance. Furthermore, we are looking at
alternate authorization techniques for providing a more role-
based access control to the biomedical applications.

For more information about our work, including software
releases, readers are strongly encouraged to visit our Web-site:
http://nbcr.net/services.
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