
Checkpoint and Restart for Distributed Components in XCAT3

Sriram Krishnan Dennis Gannon

Department of Computer Science, Indiana University.
215 Lindley Hall, 150 S Woodlawn Avenue, Bloomington, IN 47405-7104�

srikrish, gannon � @cs.indiana.edu

Abstract

With the advent of Grid computing, more and more high-
end computational resources become available for use to
a scientist. While this opens up new avenues for scientific
research, it makes reliability and fault tolerance of such a
system a non-trivial task, especially for long running dis-
tributed applications. In order to solve this problem, we
present a distributed user-defined checkpointing mechanism
within the XCAT3 system. XCAT3 is a framework for Com-
ponent Component Architecture (CCA) based components
consistent with current Grid standards. We describe in de-
tail the algorithms and APIs that are added to XCAT3 in or-
der to support distributed checkpointing. Our approach en-
sures that the checkpoints are platform independent, min-
imal in size, and always available during component fail-
ures. In addition, our algorithms maintain correctness in
the presence of failures and scale well with the number of
components, and checkpoint size.

Key Words: Grids, Components, Web Services, Dis-
tributed Checkpointing.

1. Introduction

A computational Grid is a set of hardware and software
resources that provide seamless, dependable, and pervasive
access to high-end computational capabilities. Resources
on the Grid may be geographically distributed, and part of
different administrative domains. While the growth in the
availability of compute and data resources opens up whole
new avenues for scientific research, maintaining reliability
in a such a system is a non-trivial task. Reliability of re-
sources becomes especially critical when long running dis-
tributed applications have to be orchestrated.

Until recently, there has been no consensus on the pro-
gramming model that is appropriate for Grid computing.
The Open Grid Services Architecture (OGSA) [13] is the
first effort to standardize Grid functionality and produce a

progamming model consistent with trends in the commer-
cial Web service sector. The Open Grid Services Infras-
tructure (OGSI) refers to the basic infrastructure on which
OGSA is built. At its core is the Grid Service Specifica-
tion [10], which defines standard interfaces and behaviors
of a Grid service in terms of Web services technologies.

On the other hand, the DOE sponsored Common Com-
ponent Architecture (CCA) [9] project has been adopting
a component based approach towards building large scale
scientific applications. A software component is defined as
a unit of composition with contractually specified inter-
faces and explicit context dependencies. A software compo-
nent can be deployed independently and is subject to com-
position by third parties [17]. In our previous work [14],
we presented XCAT3, a framework for CCA-based compo-
nents consistent with current Grid standards. In this paper,
we present the design and implementation of a distributed
checkpointing and restart mechanism for components in the
XCAT3 framework, in order to address fault tolerance for
long running distributed applications on the Grid. Some of
the issues we address in our system are:

Portability: Since no assumptions can be made about the
architecture of the resources on the Grid, the checkpoints
need to be architecture independent. Hence, we store the
checkpoints in a platform independent XML-based format.
Checkpoint size: Only the minimal information required
to restart an application needs to be stored. We take a user-
defined checkpointing approach where the user is respon-
sible for specifying the minimal state required to restart a
component.
Interoperability: In order to be interoperable with standard
Grid and Web service clients, no changes should be made to
any protocols used. Hence, our algorithms and techniques
work at a higher level of abstraction and make no changes
to any protocols or semantics.
Scalability: The checkpointing algorithm should scale well
with the number of components, as well as the checkpoint
size. We show with an example that this holds true for our
system.

Correctness: The algorithm should ensure that the check-
points are globally consistent. Furthermore, the checkpoint-
ing mechanism itself should be resistant to failures - it
should not leave the system in an inconsistent state if any
of the parties fail during checkpointing.
Checkpoint availability: Since the most common cause of
failure is the failure of the host that the component is execut-
ing on, the checkpoints cannot be stored locally as they may
not be available in the event of a crash. Hence, the check-
points are stored in stable storage at a separate location.

The remainder of this paper is organized as follows. We
present background in Section 2. In Section 3, we introduce
the XCAT3 framework, and in Section 4, we describe the
mechanisms that are added to XCAT3 to support check-
point and restart of components. In Section 5, we present
a scenario and analyze the performance of our system. We
present related work in Section 6, and our conclusions and
future work in Section 7.

2. Background

2.1. Checkpointing for Fault Tolerance

Checkpointing of applications enables a basic form of
fault tolerance in the presence of transient failures. Long
running applications can save their state to stable storage,
and roll-back to it upon failure. When an application is dis-
tributed, a consistent global state is one that occurs in a
failure-free, correct execution, without loss of any messages
sent from one process to another [3]. A consistent global
checkpoint is a set of individual checkpoints that consti-
tute a consistent global state. For a distributed application, a
consistent global checkpoint is required to restart execution
upon failure. In this subsection, we describe the main tech-
niques used for checkpointing, and the types of algorithms
used in practice to generate a consistent global checkpoint.

2.1.1. System-level versus User-defined Checkpoints.
System-level checkpointing is a technique which pro-
vides automatic, transparent checkpointing of applications
at the operating system or middleware level. The ap-
plication is seen as a black-box, and the checkpointing
mechanism has no knowledge about any of its charac-
teristics. Typically, this involves capturing the complete
process image of the application. User-defined checkpoint-
ing is a technique that relies on programmer support for
capturing the application state. While a detailed compari-
son between the two approaches can be found in [15], we
present some of the key differences:
Transparency: As defined above, system-level check-
pointing is transparent to the user, while user-defined
checkpointing is not. This means that user-defined check-
pointing involves more programmer effort.
Portability: Transparent system-level checkpointing has

proven to be hardly portable across heterogeneous ar-
chitectures. However, user-defined checkpoints are quite
portable since the user can store the checkpoints in a
platform-independent format.
Checkpoint size: Since system-level checkpointing is
oblivious to the details of the application, it is usu-
ally not possible to determine the critical state of the appli-
cation. Hence, lots of unnecessary temporary data tends to
get checkpointed leading to large checkpoint sizes. How-
ever, user-defined checkpointing relies on user support to
store only the minimal checkpoint required for restart.
Flexibility: Rather than blindly checkpointing an appli-
cation at regular intervals like system-level checkpoint-
ing does, user-defined checkpointing stores application
state at programmer-defined logical states. This pro-
vides a higher degree of flexibility for the user, since these
checkpoints can also be used for other purposes such as
post-processing analysis, and visualization.

2.1.2. Consistent Global Checkpoints. Checkpoint-
ing for distributed applications can be broadly divided
into two categories: uncoordinated, and coordinated. A de-
tailed exposition of these checkpointing techniques can be
found in [4]. We briefly describe them below.
Uncoordinated Checkpointing: In this approach, each of
the processes that are part of the system determine their lo-
cal checkpoints individually. During restart, these check-
points have to be searched in order to construct a consis-
tent global checkpoint. The advantage of this approach
is that the individual processes can perform their check-
pointing when it is most convenient. The disadvantages are
that (1) there is a possibility of a domino effect which can
cause the system to rollback to the beginning, (2) each of
the processes has to maintain multiple checkpoints result-
ing in a large storage overhead, and that (3) a process may
take a checkpoint that need not ever contribute to a consis-
tent global checkpoint.
Coordinated Checkpointing: In this approach, the check-
pointing is orchestrated such that the set of individual
checkpoints always results in a consistent global check-
point. This minimizes the storage overhead, since only a
single global checkpoint needs to be maintained on sta-
ble storage. Additionally, this approach is also free from
the domino effect. Algorithms that use this approach are ei-
ther blocking or non-blocking.

Blocking algorithms typically are multi-phase. In
the first phase, they ensure that all communication be-
tween processes is frozen. The communication channels
are now empty, and the set of individual checkpoints con-
stitute a consistent global checkpoint. The individual
checkpoints are then taken, and subsequently all commu-
nication between processes can be resumed. Non-blocking
algorithms typically use a communication-induced ap-
proach where each process is forced to take a check-

point based on protocol-related information piggybacked
on the application messages it receives from other pro-
cesses [3].

3. XCAT3: Distributed Components on the
Grid

We briefly introduce the Common Component Archi-
tecture (CCA) and the Open Grid Services Infrastructure
(OGSI) before presenting the architecture of the XCAT3
framework in the following subsections. A more detailed
explanation of the XCAT3 architecture can be found in [14].

3.1. Common Component Architecture

The Common Component Architecture is defined by a
set of framework services, and the definitions of the com-
ponents that use them. Each component communicates with
other components by a system of ports. There are two types
of CCA ports: provides ports which are the services of-
fered by the component, and uses ports which are the stubs
that a component uses to invoke the services provided by an-
other component.

A uses port of one component can be connected to a pro-
vides port of another component as long as they implement
the same interface. Connections between uses and provides
ports are made at runtime. A component needs to execute
a getPort statement to grab the most recent reference to
provider, and a releasePort when it has finished using
it. The get/release semantics of component connections en-
able the framework to infer if any port calls are being made
at any point in time, and also enable the connections to be
changed dynamically.

Every CCA component implements the Component in-
terface, which contains the setServicesmethod respon-
sible for setting the Services object for the component. The
Services object can then be used to add and remove ports,
and get and release them as needed. The Services object also
contains a ComponentID which has methods that uniquely
identify the component, and provide metadata about it. The
most important framework service that CCA defines is the
Builder service for creation and composition of these com-
ponents.

3.2. Grid Services

The Open Grid Services Infrastructure extends the Web
services model by defining a special set of service proper-
ties and behaviors for stateful Grid services. Some of the
key features of OGSI that separate Grid services from sim-
ple Web services are:
Multiple level naming: OGSI separates a logical ser-
vice name from a service reference. A Grid Service Handle

(GSH) provides an immutable location-independent name
for a service, while a Grid Service Reference (GSR) pro-
vides a precise description of how to reach a service in-
stance on a network, e.g a WSDL reference. A GSH can be
bound to different GSRs over time.
Dynamic Service Introspection: Grid services can ex-
pose metadata about their state to the outside world through
the use of Service Data Elements (SDE). SDEs are XML
fragments that are described by Service Data Descrip-
tors (SDD). SDEs can be queried by name or type, and can
be used to notify state changes to clients.
Standardized ports: Every Grid service implements a
GridService port, which provides operations to query for
SDEs, and manage lifetime of the Grid service. OGSI also
specifies standard ports for creation, discovery, and han-
dle resolution.

Recently, OGSI has been superseded by the Web Ser-
vice Resource Framework (WSRF) [1], which represents
the refactoring of the functionality of OGSI into a frame-
work of independently useful Web service standards, and
the alignment of the functionality of OGSI with current and
emerging Web service standards.

3.3. XCAT3 Architecture

Currently, the XCAT3 framework is implemented in
Java, and we plan to implement a C++ version that is in-
teroperable with the former. In XCAT3, we implement the
CCA specification in the context of the Grid services spec-
ifications. Some of the key features of XCAT3 components
are as follows.

Ports as Grid services: As per the CCA specification,
one component can have more than one provides port of
the same type. Simple Grid and Web services allow multi-
ple ports of the same portType; however, multiple bind-
ings of the same port are semantically equivalent. Hence,
the same operation on different ports of the same type af-
fects the service in exactly the same way. However, unlike
Web service ports, ports in CCA are designed to be state-
ful. Hence, every provides port in XCAT3 is implemented
as a separate Grid service. The consequence of this is that
every provides port inherits multiple level naming from the
OGSI specification, and this enables the ports to be location
independent. Additionally, any Grid service that is compli-
ant with the OGSI specification can serve as a provides port.
Uses ports are just client-side stubs for the remote provides
ports.
ComponentID as a Grid service: The ComponentID, as
specified by the CCA specification, is also implemented as
a Grid service. It exposes handles and references of all the
provides ports that a component contains as SDEs, and acts
as a manager for the component. Users can query a compo-

Service
Storage

Individual

Service
Storage
Master

Individual

Store
Load &

Location of
checkpoints

and restart
for checkpointing
Control signals

Storage Service

Locate an
Individual

State

Federation of Storage Services

C

A B

Coordinator
Application

Service
Storage

Figure 1. Checkpointing & restart big picture

nent for the types of services provided via the Componen-
tID, and connect to them directly.

Some of the useful services in the XCAT3 framework
are:
Builder service: As mentioned before, the Builder ser-
vice defines methods for component creation and compo-
sition. We allow remote instantiation of components via
ssh or Globus GRAM [7] provided by the Java CoG [18]
kit. For composition purposes, the Builder service provides
connect and disconnect methods for connecting and
disconnecting a uses port to a provides port respectively.
Once the ports have been connected, all communication be-
tween them is via Web service invocations provided by the
XSOAP [5] toolkit.
Handle Resolver: Since we employ multiple level naming
for our ports and ComponentIDs, we use a handle resolu-
tion mechanism that translates a GSH to a GSR. This is
provided by the Handle Resolver service. The Handle Re-
solver, as other Grid services in the XCAT3 framework, is
implemented using the GSX [12] toolkit, which provides a
lightweight implementation of the OGSI specification.

4. Checkpoint and Restart in XCAT3

In this section, we discuss in detail the various ser-
vices, algorithms, and implementation of the checkpoint
and restart mechanism in XCAT3.

4.1. Architecture

In order to add the capability to perform checkpoint and
restart of components, we added the following services to
the XCAT3 framework, as shown in Figure 1:
Application Coordinator: The Application Coordinator
provides operations to checkpoint and restart an applica-
tion composed of a set of XCAT3 components. The Ap-
plication Coordinator contains the list of GSHs for each of
the components constituting the application. Additionally, it
also contains all information required to restart the applica-
tion, viz. deployment information for the components, loca-
tions where they are currently executing, the protocols used
to instantiate them, etc. An instance of an Application Co-
ordinator can be uniquely identified by means of an appli-
cationID. The Application Coordinator can be passivated
by storing all this information into persistent storage, and
can be activated from persistent storage using the applica-
tionID only when it is required, e.g. when a checkpoint or
restart has to be initiated.
Storage services: As we point out earlier, the checkpoints
need to be stored in stable storage, and should be available
upon failure. Additionally, the stable storage should scale
well with the number of components. Although a scalable
and reliable persistent storage service is not the primary re-
search focus of this paper, we provide a proof-of-concept
implementation of a federation of Storage services to ad-
dress these requirements.

The federation of Storage services is comprised of a
Master Storage service and a set of Individual Storage ser-
vices. The Master Storage service contains references for
every Individual Storage service. Whenever a client needs
to store data into the Storage services, it contacts the Mas-
ter Storage service which assigns to it a reference to an In-
dividual Storage service from the available pool. The client
uses this reference to send its data to the Individual Stor-
age service, which stores it into stable storage and returns a
unique storageID which can be used to access the data at a
later time.
Component & ComponentID: The component writer is
expected to generate the minimal state required to restart a
component. However, the component writer can not be ex-
pected to generate framework specific information, e.g. con-
nections between uses and provides ports. The component
writer can also not be expected to write code to access the
Storage services to load and store the states. We follow an
approach where the component writer writes code to gener-
ate local state specific to the component instance, while the
rest of the work is done by the framework.

In order to help the component writer generate and
load component state, the component writer is pro-
vided with a MobileComponent interface that extends
the regular CCA Component interface. Inside this inter-

face, methods to generate and load component states are
added with an assumption that the framework would in-
voke these as and when required. Since the outside
world interacts with a component using its Componen-
tID, we add operations for loading and storing component
state into a MobileComponentID interface, which extends
the CCA ComponentID interface. We also add other con-
trol operations to the MobileComponentID which help in
the process of checkpointing & restart. The MobileCom-
ponentID implementation provided by the framework re-
trieves the local component state by making a callback
on the MobileComponent interface. Additionally, it gener-
ates the states of the Services object, viz. the uses and pro-
vides ports added, and their connection information, and
also of the Service Data Elements for the various Grid ser-
vices that are part of the component. This complete compo-
nent state is encapsulated in a platform-independent XML
format, and is transferred to the Storage services as re-
quired.

4.2. Checkpointing Algorithm

In XCAT3, a checkpoint can be initiated by a user by
activating an instance of the Application Coordinator us-
ing an applicationID, and then invoking a checkpoint-
Components operation on it. As we mention in Sec-
tion 2, a non-coordinated approach can lead to a surplus
of checkpoints and is vulnerable to the domino effect,
while non-blocking coordinated algorithms are typically
communication-induced, and may involve changes to the
underlying messaging layer. Since we prefer to use com-
modity implementations of the messaging layer for pur-
poses of interoperability, we choose to implement a coor-
dinated blocking algorithm in order to create a consistent
global checkpoint.

The checkpointing algorithm is shown in Figure 2. De-
tails are as follows:
1. The Application Coordinator retrieves the references for
all components that are part of the distributed application.
2. For every component that is part of the application, the
Application Coordinator sends a freezeComponent re-
quest to the appropriate MobileComponentID.
3. On receipt of the freezeComponent request, the Mo-
bileComponentID implementation waits until all remote in-
vocations are complete. It does so by waiting until all uses
ports in use are released via a releasePort invocation.
Subsequently, all getPort calls block until further notice.
After all ports are released, the MobileComponentID im-
plementation sends a componentFrozenmessage to the
Application Coordinator.
4. On receiving componentFrozen messages from ev-
ery component that is part of an application, the Application
Coordinator can infer that all communication between the

MobileComponentID
Application
Coordinator

Every

Checkpoint

Done

Request
Freeze Component

Return a storageID

of all checkpoints

Unfreeze component

Atomically commit locations

Return storageID

Store state Send state to Individual Storage service

Return an Individual Storage service reference

Request a reference to an Individual Storage Service

Component frozen

Wait until all components
are frozen

Individual
Storage ServiceStorage Service

Master

Figure 2. Distributed checkpointing algorithm

components is stalled, and that individual checkpoints can
now be taken. Subsequently, for every component, it con-
tacts the Master Storage service to receive a reference for
an Individual Storage service, and sends these references to
their MobileComponentID’s as part of the storeCompo-
nentState message.
5. On receipt of the storeComponentState message,
each of the MobileComponentID implementations generate
and store the complete state of the components into the In-
dividual Storage services referenced by the messages. They
return to the Application Coordinator the storageID’s re-
ceived from the Individual Storage services.
6. On receiving the storageID’s from every MobileCompo-
nentID implementation, the Application Coordinator stores
a list of � instanceHandle, individualStorageServiceHandle,
storageID � tuples into stable storage, which can be used
to locate the checkpoints if need be. It also removes prior
checkpoints and tuples referring to them, if they exist. Since
we don’t want a situation where we end up with locators for
a set of checkpoints referring to a combination of old and
new ones, this step is performed atomically using transac-
tion support provided by a MySQL database.
7. The Application Coordinator then sends unfreeze-
Component messages to every MobileComponentID im-
plementation signifying the end of the checkpointing pro-
cess. All blocked getPort calls can now proceed as ex-
pected.

We do not attempt to formally prove the correctness of
our distributed checkpointing algorithm since it is just a fla-
vor of coordinated blocking distributed checkpointing algo-
rithms. Coordinated blocking distributed checkpointing al-
gorithms are well known to be correct in the distributed sys-
tems community. However, we present two key arguments

towards its correctness:
Consistency: By blocking all communication between the
components that are part of the application, we reduce the
problem of distributed checkpointing to that of individual
checkpointing of the set of components since the message
channels between the components are now empty. Hence,
the set of individual checkpoints now constitute a consis-
tent global checkpoint which can be used for restarting the
application.
Atomicity: We have to ensure that we never end up with
a global checkpoint that contains a combination of new, as
well as old checkpoints. We ensure that this does not hap-
pen in our system by atomically updating the information
about the global checkpoint using transaction support pro-
vided by a MySQL database. Thus, either the global check-
point contains all new checkpoints, or all old ones if the
transaction fails, but never a combination of both.

4.3. Restart Algorithm

An application can be restarted also by invoking the
restartFromCheckpoint method on the Application
Coordinator, using an applicationID. During restart, it is
not sufficient to restart just the failed components from the
most recent consistent global checkpoints. This is because
messages might have been exchanged between the compo-
nents after the most recent checkpoint was taken. Hence, the
restart algorithm restarts every component from the most re-
cent global checkpoint.

Furthermore, when all components are restarted from the
global checkpoint, it has to be ensured that all components
have their states set from the checkpoint before any exe-
cution threads are resumed. If there are some components
whose states have not been set from the global checkpoint
before some of the execution threads are resumed, the re-
sumed threads might cause inconsistencies if they interact
with other components whose states have not yet been set.
Details of the algorithm are as follows:
1. The Application Coordinator retrieves handles for all
components that are part of the system. It destroys in-
stances of all components, if they are still alive. This has
to be done because it is not practical to easily roll back
the control and data of processes that are in the mid-
dle of their execution. It is much easier to destroy exe-
cuting threads, and restart them from the global check-
point.
2. Using the XML deployment descriptors for the com-
ponents, the Application Coordinator re-instantiates ev-
ery component with the help of the Builder service.
Since re-instantiated components signify the same com-
ponent instances, the GSH’s for the MobileComponen-
tID’s of the component instances are reused.
3. For every component, the Application Coordina-

tor sends a loadComponentState message to the ap-
propriate MobileComponentID along with the location of
the Individual Storage service and storageID needed to re-
trieve the component state.
4. On receipt of the loadComponentState mes-
sage, the MobileComponentID implementations load
the state of the component from the Individual Stor-
age service. The Services objects are initialized, and all
ports are initialized using their original GSH’s. New ref-
erences for the ports are registered with the Handle
Resolver service. The MobileComponentID implementa-
tions send a confirmation to the Application Coordina-
tor once this is complete.
5. After the Application Coordinator receives confirma-
tion from all components that their states have been loaded,
it sends a resumeExecution message to every Mobile-
ComponentID implementation.
6. On receipt of the resumeExecution message, the
MobileComponentID implementation forwards it to the
component which can now resume all threads of execu-
tion. Whenever these threads use a getPort call for
the first time to gain access to a uses port, a fresh refer-
ence for the remote provides port is retrieved from the
Handle Resolver service and all communication can pro-
ceed seamlessly.

5. Sample Application

The Master-Worker model is a commonly used model
for long running computations. Indeed, several examples of
the model have been implemented using XCAT, such as the
Chemical Engineering [8] application that we worked on in
collaboration with NCSA, and the Collision Risk Assess-
ment System (CRASS) [6] worked on at Indiana University.
As a sample application to test our performance, we use a
Master-Worker dummy application, which exactly follows
the execution model of the above examples.

The Master-Worker XCAT3 application consists of a sin-
gle Master component, and N Worker components. The
Master component contains a MasterPort, which is a pro-
vides port that is responsible for receiving a work packet
from a user, and processed results from Workers as an ar-
ray of bytes. The Worker component contains a WorkerPort,
which is a provides port that is responsible for receiving a
work packet from the Master as an array of bytes. Addition-
ally, the Master component contains uses ports to connect to
each of the Worker’s WorkerPort, and every Worker compo-
nent contains a uses port to connect to the Master’s Master-
Port. The interactions between the Master and the Workers
is shown in Figure 3.

To store states of the Master and Workers, we make a dis-
tinction between a super-state and the actual physical state.
We define a super-state as a logical block of execution in

Component[i]

3. Split processed

Worker

results for Workers

2. Process Data

4. Send Work Packet to Workers

Via XCAT Port Invocations
5. Process Received
 Data

6. Send results to Master via
 XCAT Port Invocations

 from Workers
7. Collect results

 8. Iterate, if required

1. Receive Data

9. Return results

Master
Component

Figure 3. Master & Worker Interaction

the program. Within the super-state, the physical state may
still vary depending on the state of the internal data struc-
tures at any point of execution. From Figure 3, we infer
that the Master has the following possible super-states: (1)
INITIALIZED, where it has received its work packet from
a client, (2) PROCESSING DATA, where it is processing
data received, (3) SENDING DATA, where it has finished
processing and has sent a work packet to 0 or more Workers,
and (4) RECEIVING DATA, where it has received results
back from 0 or more Workers. All others super-states can
be inferred with minimal overhead from the above. Simi-
larly, the Worker has the following possible super-states: (1)
INITIALIZED, where it has been been initialized with all
connections, and (2) PROCESSING DATA, where it is pro-
cessing the data received from the Master. Using the above
analysis of the states, the generateComponentState
and setComponentState are coded such that the ac-
tual physical state is generated and set appropriately with
respect to the super-states defined. Additionally, the re-
sumeExecution is coded such that it can restart execu-
tion from the same. The only other thing to ensure is that ei-
ther the individual states do not change during execution of
the generateComponentState method, or if they do,
they do so atomically, i.e. modified data and their indices get
updated at the same time. This is easily done by synchroniz-
ing all state changes inside mutually exclusive blocks.

In order to measure the performance for the above ap-
plication, we scripted it such that we could parameterize
the number of Workers, and the size of data that is being
processed. The experiments were run on an 8-node Linux
cluster. Each of the cluster nodes is a dual processor sys-
tem with 2.8GHz Intel Xeon processors and 2GB of mem-
ory running Redhat Linux 8.0. The version of Java used
is 1.4.2. All the components and storage services are run
on the same cluster. We plot the time to checkpoint a set
of components against the number of Workers keeping the

2 4 6 8 10 12 14 16
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800
Checkpoint Time Versus Number of Workers

Number of Workers

C
he

ck
po

in
t T

im
e

(m
s)

Data Size: 2KB
Data Size: 4KB
Data Size: 6KB
Data Size: 8KB

Figure 4. Checkpoint Time Versus Workers

1 2 3 4 5 6 7 8
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800
Checkpoint Time Versus Data Size

Data Size (KB)

C
he

ck
po

in
t T

im
e

(m
s)

Workers: 4
Workers: 8
Workers: 12
Workers: 16

Figure 5. Checkpoint Time Versus Data Size

data size per Worker constant in Figure 4, and against the
data size per Worker keeping the number of Workers con-
stant in 5. In both cases, there is a single Master Storage ser-
vice, and 8 Individual Storage services.

We expect our algorithm to be linear with respect to
both the number of Workers, and data size. This is vali-
dated by our figures. Additionally, the time taken to check-
point the application is acceptable considering the fact
that our implementation is in Java, the checkpoints are
stored in XML format, and that we use SOAP for our re-
mote invocations. We envision the use of the checkpoint-
ing and restart capability for long running applications,
in which case the impact of checkpointing on process-
ing time would be negligible.

6. Related Work

Checkpointing and restart for applications has been im-
plemented by a number of systems. Condor [2] is a popular
system that provides system-level checkpointing and restart
for applications on the Grid. However, Condor does not pro-
vide checkpointing for applications that are multi-process,
and which involve any sort of inter-process communication.
There are several systems that provide distributed check-
pointing for parallel MPI and PVM based applications, such
as [11], and [16]. However, portability of checkpoints is not
a big requirement for MPI applications since they are typi-
cally run on a single cluster. Hence, most of the above sys-
tems use a system-level approach to distributed checkpoint-
ing.

Recently, the Grid Checkpointing and Recovery (Grid-
CPR) group at the Global Grid Forum has been work-
ing on user-level APIs and associated services that will
permit checkpointing and restart of applications on het-
erogeneous Grid resources. However so far, they have
only concentrated on checkpointing and restart of sin-
gle process jobs. In the context of components, both
Enterprise Java Beans and CORBA Components pro-
vide mechanisms to load and store state into persistent
storage. However, in both cases, they are primarily con-
cerned with persisting the state of the data encapsulated
by the component, and not the state of the execution. Fur-
thermore, they only concentrate on storage of individual
component states, and do not explicitly handle global states.

7. Conclusions

In this paper, we described the support for user-defined
checkpointing and restart for distributed applications within
the XCAT3 framework. We presented the architecture of
XCAT3, the APIs and algorithms used for checkpoint and
restart, and with the help of a sample application demon-
strated that our implementation scales well with the number
of components and checkpoint size.

Currently, we are working on migration of individ-
ual components for performance reasons and policy viola-
tions. As part of our future work, we plan to integrate our
system with the WSRF specification, when stable imple-
mentations for it become available. Additionally, we plan to
add monitoring for our components in order to identify fail-
ures as soon as they occur. At present, we do not deal
with link failures between components and we plan to ad-
dress this in the future.

References

[1] Globus Alliance, IBM, and HP. Web Service Resource
Framework, June 2004. http://www.globus.org/wsrf.

[2] Jim Basney, Miron Livny, and Todd Tannenbaum. High
Throughput Computing with Condor. In HPCU news, Vol-
ume 1(2), June 1997.

[3] K. Mani Chandy and Leslie Lamport. Distributed snapshots:
Determining global states of distributed systems. In ACM
Transactions on Computer Systems, volume 3, Feb 1985.

[4] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson.
A Survey of Rollback-recovery Protocols in Message Pass-
ing Systems. Technical report, School of Computer Science,
Carnegie Mellon University, 1996. CMU-CS-96-181.

[5] A. Slominski et al. Design of an XML based Interoperable
RMI System : SoapRMI C++/Java 1.1. In International Con-
ference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, Pages 1661-1667, June 25-28
2001.

[6] D. Gannon et al. Programming the Grid: Distributed Soft-
ware Components, P2P and Grid Web Services for Scientific
Applications. In Special Issue on Grid Computing, Journal
of Cluster Computing, July 2002.

[7] K. Czajkowski et al. A resource management architecture
for metacomputing systems. In IPPS/SPDP 98, Workshop
on Job Scheduling Strategies for Parallel Processing, 1998.

[8] M. Govindaraju et al. XCAT 2.0: Design and Implementa-
tion of Component based Web Services. Technical report,
C.S. Dept., Indiana University, June 2002. TR562.

[9] R. Armstrong et al. Toward a Common Component Archi-
tecture for High-Performance Scientific Computing. In 8th
IEEE International Symposium on High Performance Dis-
tributed Computation, August 1999.

[10] S. Tuecke et al. Grid Service Specification, April
2003. http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-
ogsi-gridservice-29 2003-04-05.pdf.

[11] Sriram Sankaran et al. Checkpoint/Restart System Services
Interface (SSI) Modules for LAM/MPI. Technical report,
C.S. Dept., Indiana University, 2003. TR578.

[12] Indiana University Extreme Computing Lab.
Grid Service Extensions (GSX), Dec 2003.
http://www.extreme.indiana.edu/xgws/GSX.

[13] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. Computer 35(6),
2002.

[14] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA
Components as OGSA Services. In 9th International Work-
shop on High-Level Parallel Programming Models and Sup-
portive Environments, April 2004.

[15] L.M. Silva and J.G. Silva. System-level versus User-defined
Checkpointing. In Seventeenth Symposium on Reliable Dis-
tributed Systems, Oct. 1998.

[16] G. Stellner. CoCheck: Checkpointing and Process Migration
for MPI. In 10th International Parallel Processing Sympo-
sium, 1996.

[17] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1998.

[18] G. von Laszewski et al. Grid Computing: Making the Global
Infrastructure a Reality, chapter 25, Commodity Grid Kits
- Middleware for Building Grid Computing Environments.
Wiley, 2003.

