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Abstract 
This paper describes Harmony, a practical grid 
infrastructure built using personal computer resources. 
Harmony addresses the key concerns of end users for 
responsiveness, privacy and protection by isolating the grid 
computation in a virtual machine on the PC and by 
implementing a layered resource management architecture 
to divert workload to unutilized computers from those 
currently experiencing high levels of interaction. The use 
of a virtual machine separates the interactive workload 
software environment from that for the grid workload. 
Harmony also addresses the key concerns of enterprise IT 
by automating initial resource assignment and by 
automatically reallocating workload so as to meet quality 
of service goals. We have implemented a prototype of 
Harmony and demonstrated its capability to protect 
interactive performance. Our preferred grid workload is 
transactional – a key characteristic of commercial 
applications. The implementation uses Web Service-based 
interfaces, so the programming model of Harmony is 
compatible with and familiar to enterprise developers. We 
believe that Harmony demonstrates practical exploitation 
of a hitherto underutilized resource of considerable 
capability, with the potential to complement, or even in 
some cases replace, dedicated server-based resources. 
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1. Introduction 
Modern organizations, both academic and industrial, 
depend on network-attached personal desktop and mobile 
computer systems. A characteristic of these systems is that 
they are relatively resource rich (in terms of CPU power, 
memory, and disk capacity) but are utilized only for a 
fraction of the time during a day. Even during the time they 
are in use, their average utilization is much less than their 

peak capacity. For example, we measured the CPU 
utilization of developers’ desktops in our labs. We found 
that the average CPU utilization for Intel Pentium III 866 
MHz machines running Windows OS to be less than 10% 
during working hours and close to zero during non-
working hours. These systems represent significant 
computing resources that are underutilized. 
Harnessing these underutilized computational resources for 
organization-wide computing needs, however, has not been 
practical. The difficulties arise primarily from the 
following reasons: (i) integrity concerns of desktop owners; 
(ii) performance impacts to desktop users; (iii) 
unpredictability in the performance of grid computations; 
and, (iv) the complexity of the infrastructure needed to 
harness the idle resources. Standards-based grid technology 
[1, 2] addresses only the last of these concerns. As a 
practical matter, grid based computing is more mature on 
Linux, whereas almost all desktops run the Microsoft 
Windows OS. 
In this paper, we describe a virtual machine-based grid 
infrastructure called Harmony developed in our lab. Its 
design addresses all of the above difficulties, while 
adhering to the grid standards. Grid computations are 
executed in hypervisor-based virtual machines, such as 
supported by the VMWare Workstation application [3]. In 
Harmony, execution of grid computations is orchestrated 
such that their performance impact on workstation 
responsiveness is negligible and the integrity of the 
workstation environment is maintained even in the 
presence of a faulty or malicious grid computation.  
The objective and design of the proposed infrastructure 
differs from the popular grid infrastructure models. In our 
system, the granularity of resource availability is much 
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finer than that of the latter. This is because the availability 
of a desktop is governed by the local policies set by the 
desktop user, which typically is giving higher priority to 
their interactive workload. Such a situation calls for a 
resource management solution capable of hiding the 
variability in the resource availability among grid nodes, 
while striving to maintain a reasonable level of Quality of 
Service (QoS) to the grid users at the same time.  
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Another difference in our approach and the traditional Grid 
approach is that we target our infrastructure towards 
handling of transactional Grid workloads. Such workloads 
differ from batch type of computations in granularity and 
interactivity. Transactional workloads are typically finely 
grained and are much more interactive than the latter. 
The contributions of this paper are as follows: (i) we 
describe our novel grid-based infrastructure developed 
using desktop resources and identify the issues involved in 
building it, (ii) we describe the resource management 
mechanisms that we have developed to simultaneously 
preserve desktop interactivity and maintain grid service 
availability and (iii) show the feasibility of concepts 
discussed here by means of our prototype implementation, 
which delivers grid services using Web service protocols 
and interfaces. 
The rest of the paper is organized as follows: We outline 
our layered system architecture in Section 2 and present 
our integrated management infrastructure in Section 3. We 
describe our experience with building this architecture in 
Section 4. We discuss the related work in Section 5 and 
conclude with a brief discussion on future directions in 
Section 6. 

2. Architecture Overview 
Our architecture is driven by two objectives: (i) Deploy and 
enable transactional services (e.g., financial, accounting, 
billing, customer relations, or supply-chain management 
related transactions) as grid services5 and (ii) Use desktop 
based resources to provision these transactional services. 
Availability and responsiveness to client demands are the 
key criteria that a transactional service provider must meet. 
The primary figure-of-merit (i.e., expected QoS) for such 
services is throughput and response time. This means the 
architecture should be able to deliver a requested service on 
demand from the clients and it should be able to adjust the 
capacity of each service so as to meet the intensity of the 
demand. The client requests can be complex (e.g., requests 
resulting in a workflow), request arrival rates can be 
unpredictable, and clients may have multiple levels of 
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5 In this paper, the term grid service refers to the software entity 

that can be invoked remotely over the network and shared 
among multiple clients of that service. A grid service may be 
invoked directly in response to a client request or it may 
provide management or a support service needed to generate the 
response. 
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Figure 1: Three-layer architecture for the Peer-based 
Enterprise Grid: (i) Grid Service Layer, (ii) Logical 
Resource Layer, and (iii) Physical Resource Layer. 
ervice-level-agreements (SLA) with the service provider. 
he architecture needs to address these requirements.  
he use of desktop-based resources gives rise to a different 
et of requirements. The primary purpose of desktops is to 
erve the desktop users by providing a high degree of 
nteractivity and responsiveness. These resources are to be 
sed to provision the transactional services according to 
ome policy defined by the desktop user or by system 
dministrators. Each desktop may have a unique local 
olicy, which may change over time. Examples of local 
esktop policies include: (i) interactive workload always 
as the highest priority, (ii) allocate no more than a certain 
ercent of the desktop resources to grid services at any 
iven time, (iii) dedicate certain fraction of the resources 
or grid computations, (iv) allow participation in the grid 
omputations only during certain time of the day or on 
ertain days of the week. Thus, policy enforcement requires 
valuation of certain conditions, which may be static and 
redictable or dynamic and unpredictable such as the 
urrent interactive workload. Moreover, policies may be 
efined using a combination of static and dynamic 
onditions. The architecture needs to take into account 
olicies and the heterogeneity in the capacities associated 
ith each desktop resource while addressing the 

vailability, throughput, and responsiveness requirements 
ssociated with the transactional services. Rest of this 



section gives an overview of our architecture and the extent 
to which it addresses these requirements. We also point out 
specific design points we have chosen for Harmony, which 
is an instance of this architecture.  
The architecture is defined using a layered approach. This 
allows addressing the requirements of grid workload and of 
transactional grid services separately from the requirements 
of interactive workload and desktop related policies. The 
architecture, as shown in Figure 1, has three layers: (i) The 
Grid Service Layer, (ii) The Logical Resource Layer, and 
(iii) The Physical Resource Layer.  
Each layer is associated with Control and Management 
Components (CMCs). The interactions among the CMCs 
and the functionality they provide largely define the 
architecture. 
The SLA Monitor and Demand Predictor, shown in Figure 
1 is one such CMC. This component monitors request 
arrivals per Grid service type and per Grid client class 
basis. It also monitors SLA violations on a per client basis. 
In addition, predictions on future arrival rates are made for 
each Grid service type. Based on the predicted arrivals and 
available Grid service capabilities, a scheduling strategy for 
request processing is adopted to meet the SLA 
requirements. This process is repeated frequently as arrival 
patterns change and/or as the Grid service capabilities 
change. Some of examples of scheduling strategies are 
weighted round robin, priority based scheduling (with 
priorities derived from SLAs), one-to-many scheduling 
(i.e., simultaneous processing of a request on multiple Grid 
service instance to overcome uncertainties in service 
capabilities), and so on. 
The CMCs in the Physical Resource Layer enforce desktop 
related policies, monitor and analyze the interactive 
workload, and predict the short range availability and 
capability of the desktop system for a particular Grid 
service.  The CMCs in the Logical Resource Layer act as 
coordinators between the Grid Service Layer and Physical 
Resource Layer. We now describe some of the salient 
points of each layer. 

2.1 Grid Service Layer 
The Grid Service Layer is concerned with deploying and 
provisioning transactional grid services in response to 
requests from grid clients or from other grid services. This 
layer is also concerned with managing multiple instances of 
a grid service in response to current or anticipated grid 
workload and the routing of client requests to appropriate 
service instances so as to meet the QoS requirements. 
The grid service layer consists of an entry point to the grid 
and a mechanism to invoke the grid services in response to 
requests from grid clients. The entry point to the grid is 
referred to as the Gateway. Grid clients direct their requests 
to the Gateway, which then repackages and reroutes those 
requests internally to an appropriate grid service instance 
where the request is processed. The response is returned to 

the Gateway, which then routes it back to the original grid 
client. In Figure 1, the SLA Monitor & Demand Predictor 
Component, the Scheduler & Router component, and the 
collection of Grid Services constitute the Grid Service 
Layer.  
The Scheduler & Router component in the Gateway 
provides three main functions: (i) Determining the types of 
services to deploy and the number of instances of each type 
to deploy at any given time, (ii) the order in which client 
requests are to be served and the number of requests to be 
served simultaneously, and (iii) routing grid client requests 
to service instances in a transparent manner.  The Gateway 
may also perform a few other functions such as grid client 
authentication and authorization, tracking the status of 
client requests, and providing service orchestration, if 
necessary. For a more detailed discussion on the Grid 
Service Layer, we refer interested readers to [4]. 
In Harmony, which is an instance of this architecture, there 
is one logical Gateway. However, for achieving scalability, 
multiple physical entry points may be provided, with client 
traffic distributed roughly equally among these physical 
Gateways, transparent to clients. For the purpose of this 
paper, we consider the Harmony architecture that consists 
of one logical Gateway, which maps onto one physical 
Gateway. 
The grid services respond to requests from grid clients or 
from other grid services. In case of a transactional service, 
interactions with one or more database services are an 
essential part of the service. To streamline these 
interactions (from development, deployment, fault 
tolerance, and administration point of view), a trend in 
enterprise computing is towards the use of standard 
container technologies. To conform to this trend, we use 
J2EE compliant grid services in the form of Web Services 
and industry standard containers that support Enterprise 
Java Beans (EJBs) and Web Services. 
In our architecture, each grid service provides a web 
service interface, which can be described by WSDL, and is 
amenable to SOAP based interactions (over HTTP or 
JMS). Multiple web services deployed in one or more 
containers may combine to form a single grid service (e.g., 
workflow management). In addition, the same service may 
be deployed in more than one container and collectively 
these services may serve one or more grid clients. The 
database servers maintain consistency among related grid 
client requests. 
   

2.2 Logical Resource Layer 
The logical resources are the resources on which grid 
services are deployed. These in turn are mapped onto the 
physical resources made available by the Physical Resource 
Layer. The role of this layer is to mask the changes in the 
Physical Resource Layer from the Grid Service Layer.  
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In Figure 1, the Logical Resource Layer consists of the 
Containers for deploying grid services, the Virtual 
Machines (VM) where the Web Service Containers run, 
and the Virtual Machine Manager (VMM) that runs inside 
each Virtual Machine. The Web Service Container 
supports a multi-threaded environment and is capable of 
providing simultaneous service (i.e., provisioning of 
multiple service instances) to multiple requests from grid 
clients. When deploying grid service instances, the 
Gateway takes into account the state and capacity of the 
Containers and of the corresponding VMs. This is done in 
coordination with the VMMs. 

 
 
In Harmony, VMM runs as a privileged service or daemon 
in the guest OS. It is responsible for collecting and 
reporting resource usage information of its VM. It also 
continuously collects the policy and predicted resource 
availability information from the Host Agent for its 
desktop. The collected resource availability information is 
reported to the Grid Resource Manager (GRM), described 
in Section 3.1. This information is used in predicting 
availability and capacity of the virtual and the physical 
resource at a future time interval. 

Another important role of the layer is to satisfy the 
constraint of providing isolation between the grid 
computations and the local, non-grid computations taking 
place on the desktop. In Harmony, this is accomplished by 
virtualizing the desktop resources using hypervisor-based 
technology. On each desktop, a VM complete with its own 
OS, is deployed using the virtualized resources of that 
desktop. The operating system, as seen by the end user of 
the desktop, is referred to as the host OS and the operating 
system on top of the virtualized resources, is referred to as 
the guest OS. The hypervisor provides the separation 
between the guest OS and the host OS. To the host OS, all 
the activities associated with the guest OS are viewed as 
part of a single application with a single context. On the 
other hand, computations inside the guest OS, which may 
support multi-tasking, take place as if the guest OS were 
running directly on top of the physical resources. 

VMM is also responsible for (i) instantiating the grid 
service Containers, (ii) deployment of specific grid services 
inside a specific Container, and (iii) deployment of any 
batch/stand-alone jobs outside the Containers. The VMM 
performs these actions upon receiving a request from the 
Gateway. It adjusts the priority levels of grid services 
within the Container or the VM, whenever the current 
priority levels are observed to be inadequate in meeting the 
guaranteed service level agreements. On the other hand, 
when the grid usage policies set by the desktop users are 
found to be in violation, VMM may lower the priority of 
the grid services or may even terminate the grid services. 

2.3 Physical Resource Layer 
The Physical Resource Layer consists of the resources 
associated with network-attached desktops and 
workstations. The resources of primary concern are CPU, 
memory, storage (temporary and permanent), and network 
bandwidth. Resources may join and leave this layer 
dynamically. Typically, the owner of a resource may 
dictate when the resource may participate in the grid 
environment. This could be done by defining a policy or by 
direct intervention. The logical resource layer virtualizes 
the physical resources before making them available for 
deploying grid services. Collectively, the physical resource 
layer forms the basis for all the resources available to the 
grid and, ultimately, the quality of the services delivered by 
the grid layer is determined by the quality of the resources 
available in this layer. 

To describe the role played by the Logical Resource Layer, 
in Figure 2 we present a schematic of a desktop with a VM 
running on top of a hypervisor. The VM participates as a 
logical resource and has a guest OS possibly different from 
the host OS.  As seen in Figure 2, two types of resource 
managers are involved: Host Agent, and Virtual Machine 
Manager (VMM). We will describe role of the Host Agent 
shortly. Together they are collectively responsible for 
enforcing the local policy of the desktop and to provide the 
resource availability estimate of the desktop.  
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 The CMC in the Physical Layer is the Host Agent as shown 

Figure 2. The Host Agent runs as a privileged service in the 
host OS and provides current resource usage information to 
the VMM. The host agent is a key component in enforcing 
the local policy as it monitors the resource usage by the 
desktop owner and the VM and ensures that the local 
policy is not being violated. For example, if the local policy 
dictates that grid computations can be active only if there is 
no interactive workload, then the host agent monitors the 
CPU and memory consumption of both the workloads. If 

 
 
 
 
 
 
 
 

 

Figure 2: A schematic of a desktop with one virtual machine 
running with its own guest OS. The Virtual Machine 
Manager and the Host Agent provide the management 
controls at the Logical and Physical Resource Layers, 
respectively.  
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the interactive workload starts, then host agent sends a 
signal to the VMM to suspend any grid computations. 
The Host Agent also estimates the future resource 
availability of a physical resource (e.g., based on time-
series analysis of past usage patterns) and send these 
predictions to the VMM. Finally, it monitors the status of 
individual VMs, checkpoint them and restart them, if they 
fail and thus, ensuring the continuous availability of a 
virtualized resource. 

3. Integration Across the Three Layers 
In the desktop-based enterprise grid considered here, the 
Management System has to enforce the local policies and, 
simultaneously has to ensure that there are adequate 
physical resources for the logical resources to map onto, so 
that grid services can be delivered with a required level of 
QoS to grid clients. This requires coordination among the 
three layers discussed above. In the architecture, as shown 
in Figure 1, Grid Resource Manager (GRM) integrates the 
control and monitoring information flowing across the 
three layers. In the following, we first explain GRM 
architecture and functionality in some detail and then 
explain how actions of GRM bring about the desired 
effects. 

3.1 Grid Resource Manager 
GRM is a Control and Management Component that 
operates across the three layers. It acts as the coordinating 
component across the three layers. It is a logically 
centralized entity that may be scaled up by organizing in a 
hierarchical manner. GRM facilitates (i) desktop resource 
discovery, (ii) detection of resource availability and 
unavailability, (iii) detection of resource capability (e.g.., 
which resource is capable of deploying a certain type of 
grid service), and (iv) allocation of desktop resources to 
fulfill predicted demand.  
GRM keeps track of (i) current grid workload, (ii) expected 
grid workload in the near future, (iii) logical resources 
needed to meet the QoS requirements associated a given 
grid workload,  (iv) current available physical resources 
and their capabilities, and (v) expected availability and 
capabilities of physical resources in the near future. 
Information related to current and expected grid workload 
and the QoS requirements is obtained from the SLA 
Monitor & Demand Predictor component of the Gateway. 
Information related to current availability and capability of 
physical resources is obtained from individual VMMs and 
Host Agents. It then normalizes the raw capacity of the 
desktop against a standard platform. In case the desktop 
node is to be shared among multiple Grid services, it 
further reduces the available capacity in proportion to the 
share made available to other Grid services. This represents 
the maximum normalized capacity available to a particular 
Grid service. It uses built-in heuristics and algorithms to 
compute the effects of policies on the future availability 
and capabilities of the physical resources. This is used in 

computing the predicted available capacity, at a future 
time, from a desktop resource for a Grid service. It also 
computes the uncertainty in each prediction. 
Based on the expected grid workload, GRM creates a list of 
required grid services and computes the number of 
instances needed for each type of grid service. It also 
determines the number and type of logical resources 
needed to run the grid services. The QoS requirements 
associated with a grid service determine the capacities of 
the logical resources needed to deploy the grid service. 
Using the information on the predicted availability and 
capabilities of physical resources, GRM creates an 
approximate mapping between the logical resources needed 
and the physical resources predicted to be available, so that 
the requirements and capabilities match as closely as 
possible. Since there are several hard problems involved in 
this process, GRM makes use of heuristics and 
approximations. Because of the uncertainties in the 
predictions, exact solutions are not necessarily worth the 
cost.  
GRM communicates the information on grid services and 
their mapping onto logical resources to corresponding 
VMMs as well as to the Scheduler & Router component of 
the Grid Service Layer. It informs each VMM the 
maximum number of service instances of a Grid service to 
deploy. It informs the Scheduler & Router, the number of 
instances of each grid service available at its disposal, their 
locations, predicted QoS for each instance, and the 
uncertainty in the predictions. This resource allocation and 
mapping information is represented by the Resource 
Configuration & Mapping Tables shown in Figure 1. It also 
provides a mapping between logical and physical 
resources. GRM continuously updates these tables as new 
information becomes available. As grid workload changes 
or as the availability of physical resources changes, new 
instances of logical resources are created or destroyed and 
the underlying mappings are updated by the GRM. This 
information is setup in the Scheduler such that client 
requests are scheduled onto a particular instance of a grid 
service without taking into account the variability in the 
underlying mappings.  
The Scheduler uses this information to determine the 
number of service instances to deploy for each Grid service 
for which it anticipates demand. The number of instances 
deployed is proportional to the allocated capacity and to the 
expected demand. When requests arrive, the Router routes 
those requests to the physical resources where the service 
instance is actually deployed.  
The Scheduler also takes into account the uncertainty in the 
predicted allocations. When the uncertainty is high, it may 
decide to schedule a request on more than one service 
instance simultaneously, making sure that the service 
instances are mapped on-to distinct physical resources. In 
such cases, the Router replicates a request and multicasts it 
to multiple instances of the same Grid service.  
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For a more detailed discussion on the Grid Service Layer 
and its interactions with GRM, we refer interested readers 
to [4]. 
Since the number of resources (logical and physical) in the 
grid can be large, management of these resources can 
introduce a scalability problem. However, this can be 
handled by adopting a hierarchical control structure for 
GRM. One way to achieve this is by dividing the large pool 
of desktops into small pools, each pool managed by a 
lower-level GRM. A higher-level GRM manages a group 
of these intermediate-level GRMs. 

3.2 Organization in Harmony 
In Harmony, we only consider desktop-based resources.  
Monitoring of desktop resources is performed by Host 
Agents. As mentioned earlier, each Host Agent provides 
data on past usage patterns of at the desktop as well as the 
QoS delivered. Past usage patterns can be analyzed to make 
predictions with certain level of confidence. Note that 
because of the collective nature of the desktop resources 
and with high number of participating desktops, estimates 
for the individual desktop resources need not be highly 
accurate. As long as there are sufficiently large number of 
desktop systems that are potential candidates for 
participation in the grid computations, and with sufficient 
variation in the usage across the available pool of desktop 
resources, estimates on the availability of resources can be 
made with high degree of confidence. However, this 
requires an efficient mechanism to detect physical 
resources that are currently available and then map logical 
resources onto the available physical resources, so the grid 
services can be delivered at the desired throughput levels.  
To realize the above described goals, the Harmony 
management system performs the following functions: (i) 
using monitoring and analysis, estimate the resource 
availability on each desktop; (ii) map logical resources onto 
physical resources and schedule grid computations on the 
grid service nodes; (iii) monitor individual desktop 
resources to ensure that the scheduled grid computations do 
not violate the local desktop policies. To perform these 
functions, the Harmony management system uses a 
hierarchy of controls and monitoring mechanisms. The 
resulting layered architecture is shown in Figure 1. 

Thus, the layered resource management architecture 
described above enables separation of concerns as well as 
simplifies many of the design issues. Control strategies in 
one layer can be changed without affecting the structure of 
the resource managers in other layers. For example, a 
change in desktop resource prediction mechanism will not 

affect the design and implementation of the grid resource 
management layer. 
In case of transactional workload, each transaction needs to 
be scheduled based on the transaction requirements and 
service level agreements with the grid client. For example, 
a transaction may need to be processed within a certain 
amount of time after its arrival. This includes any queuing 
delays at the server. To handle such service guarantees, we 
use a service request handler that selects and routes service 
requests to appropriate grid nodes so that the specified QoS 
requirement is met with high probability. 
 

4. Our Experience with Harmony 
4.1 Implementation 
We have built a prototype implementation of Harmony 
using desktops used by developers in our lab. Each desktop 
runs a VmWare Workstation with Linux OS as the guest 
OS. On each guest OS, IBM’s WebSphere Application 
Server AEs 4.0 [5] is instantiated as a service container. On 
each application server, web services are deployed. The 
web services are described using WSDL documents and 
use SOAP-based interactions over HTTP. 
A dedicated server is used for the instantiating the 
Gateway. The same server is used to run GRM. Another 
dedicated server is used to run IBM DB2 server (DB2 
UDB Enterprise Edition). When transactions are processed 
in a Grid Service node, an EJB is in the service node 
interacts with this backend database server.  
The GRM is implemented as a web service, with VMMs 
updating their resource information by making web service 
calls to the GRM.  VMM is implemented as a stand-alone 
java program. The Gateway’s service request handler is 
implemented by modifying the Apache SOAP RPC Router 
[6]. The RPC Router receives requests from clients for Grid 
services and routes the requests based on a routing table 
populated by the GRM. The WebSphere Application 
servers running in VMs process the service requests and 
the results are returned to the Gateway. The Gateway’s 
service request handler receives the result, repacks and 
sends it back to the client. As noted in Section 3, for 
reasons of scalability, multiple instances of service request 
handler can be run. 
The Host Agent is implemented using C++ and monitors 
the processor utilization using Windows kernel APIs, such 
as QuerySystemInformation(). The host agent monitors the 
overall processor utilization and the individual processor 
utilization of VmWare process, thereby deducing the 
processor utilization of the interactive workload. 
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The host agent models the interactive workload utilization 
as a Markov chain with three states: Idle, Average, and 
Busy (Figure 3). The host agent updates the transition 
probabilities among the three states by observing its 
interactive workload behavior. From this model, the host 
agent predicts the probability for the system to be “idle” 
from its current state. For example, if an user works with 
only bursts of busy workload and leaving the system idle 
rest of the time, the transition probability from idle to idle 
will be high. The accuracy of this simple prediction scheme 
increases as it learns more about the desktop user’s 
workload pattern.  We are currently investigating complex 
prediction scheme that uses different Markov transition 
probability matrices for different times of a day. To ensure 
maximum possible responsiveness to the interactive 
workload, we set the priority of VmWare process to be 
low. Hence, when a new interactive workload is 
instantiated, the VmWare process gets swapped out. 
We have deployed a few transaction-based applications 
with Web service interfaces on the desktops. One such 
example is a WorkOrder Management service, which 
creates/updates/schedules the work orders of an 
organization by querying it with the database containing its 
existing order information.  

In our model, since Grid computations are encapsulated as 
web services, a computation-oriented job, if wrapped by an 
EJB, can be run in any of the grid nodes, with VMM 
handling the initial deployment of the EJBs.  
 
Although the database services themselves could be 
deployed on top of the VMs provided by the logical 
resource layer, for performance reasons we confine the 
database servers to dedicated backend resources. 
 

4.2 Performance Results 
The performance of our Grid infrastructure is measured by 
the throughput as seen by Grid clients. Throughput is 
calculated as the number of client service requests 
processed by the grid per unit time. We studied the 
performance of our grid infrastructure for two different 

scenarios: (i) the effect of number of grid nodes available 
on the throughput and (ii) the effect of varying desktop 
availability on the throughput. 

Idle 

Bus

Avg

We have performed the experiments with following 
machines: 1 dedicated IBM eServer 1Ghz running RedHat 
Linux 7.1 with I GB RAM, 4 desktops with 900 Mhz 
Pentium III processor and 256 MB RAM running Windows 
XP as host OS and RedHat Linux 7.1 as its guest OS. 

4.2.1 Effect of number of grid nodes Figure 3:  Workload model used to predict the resource 
availability information. Idle – maximum resource 
availability, Average load – average resource availability, 
Busy state – minimum resource availability 

In this experiment, we study the effect on throughput as a 
function of the number of desktop nodes participating in 
the grid. For this experiment, we created a traffic generator 
that generates grid service requests, with an exponential 
inter-arrival time. We studied the average throughput for 
various arrival rates for different number of desktop nodes.  
We first measured the grid throughput when a single 
dedicated server handles the requests. We repeated the 
same experiments for cases when more desktop nodes (2 
and 4) participate in the grid and the results are given in 
Figure 4.  
As expected, the grid throughput increases with increase in 
the number of nodes, since more nodes are available to 
process the client requests. It can be seen that, for an arrival 
rate of 20 requests/sec, the throughput increases from 1.1 
(for a single server case) to 3.5 (with addition of four 
desktop nodes). However, the improvement in throughput 
does not increase linearly with the increase in the number 
of grid nodes, which might be due to the difference in 
computational capacities of individual desktop nodes and 
the dedicated server. This experiment shows that desktop 
nodes are capable of running enterprise transaction 
workloads and can improve the overall throughput.  
The scenario depicted in this experiment, where the 
throughput is improved by adding more desktop nodes to 
the grid, in addition to a dedicated server, is representative 
of a real-life case, where an overloaded server is offloaded 
by diverting the requests to a backup server. In such a case, 
the desktop grid can act as a backup server in taking the 
service requests when the dedicated server is overloaded. 

4.2.2 Effect of variability in resource availability 
The first experiment just confirmed the improvement in the 
throughput with increase in the number of nodes. However, 
it did not discuss about the effect of variability in the 
desktop availability on the grid throughput. In this 
experiment, we study the effect of variation of desktop 
availability on the throughput.  
We varied the availability of 3 desktop nodes, such that on 
an average only one of these desktop nodes are available to 
the grid at a given time, while the others run a busy 
computing workload. We kept 2 other nodes dedicated to 
the grid.  Hence, in both setups, the number of virtual 
resources available to the grid is the same (3). However, in 
the first case, the 3 virtual resources maps on the 3 
dedicated physical resources, while in the second case the 
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mapping of 3rd virtual resource changes dynamically with 
change in the availability of the 3 desktops. This study will 
test the sensitivity of our GRM to changes in resource 
availability. The results are given in Figure 5. 

5. Related Work 
5.1 OGSA and Globus Toolkit 
Our work has several similarities with certain services 
provided by the Globus Toolkit. However, there are key 
differences as well. Globus provides resource allocation 
and management of active jobs via the Grid Resource 
Allocation and Manager (GRAM) [8]. It also provides 
standard mechanisms for publishing and retrieving 
resource status and configuration information via the 
Monitoring and Discovery Service (MDS) [9]. GRAM can 
be configured such that it sends resource information to 
MDS, and clients can then query MDS to find suitable 
resources. In our system, the GRM is responsible for 
storing and retrieving resource information, and can be 
thought of as our replacement for MDS. The VMMs are 
responsible for resource allocation and reporting 
information to the GRM, and hence can be thought of as 
our replacement for GRAM. 
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Conceivably, we could have implemented our GRM and 
VMMs using MDS and GRAM respectively.  The GRM 
could act as a thin wrapper around MDS, and could retrieve 
resource information from it in order to create and send 
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Figure 4: Effect of arrival rate on throughput for
different number of grid nodes 
routing tables to the Gateway. GRAM could be used 
instead of the VMM, with certain modifications to send 
prediction information to the MDS along with observed 
resource information. However, the stable versions of 
Globus (2.x) do not have explicit support for Web services 
and their hosting environments, such as WebSphere. This 
was the major motivating factor for our approach. 

een in Figure 5, the difference between the throughput 
een the dedicated case and that of the variable case is 
le only during higher arrival rates, and even for those 
s, the difference in throughput is not large. This shows 
effectiveness of our control architecture in masking the 
ability of resources..  
ther important performance issue in our architecture is 
overhead introduced by running computations on 

are instead of native platform. In [7], the authors 
 shown that the overhead of running computations 
e VmWare to be less than 10%. Our experience 
irms this observation. Thus, by using a virtual machine 
erform grid computations we pay only a small penalty 
rms of performance, but realize high benefits in terms 
curity, isolation, and control.  

With the advent of OGSA, the Grid is moving towards a 
Web services based approach. Since our GRM and VMMs 
are already Web services, we do not foresee any major 
hindrances in making our system OGSA compatible. In the 
future, we plan to be compatible with OGSA and modify 
our GRM and VMMs such that they use the OGSA 
compatible versions of MDS and GRAM respectively. In 
addition, all our Grid services will obey the two-level 
naming scheme suggested by OGSA, with each of them 
having a unique Grid Service Handle (GSH) and a Grid 
Service Reference (GSR). 

0
0.5

1
1.5

2
2.5

0.5 1 2.5 5 10 20 40 60 80 90

Arrival rate (Reqs/sec)

Th
ro

ug
hp

ut
 (R

es
po

ns
es

/s
ec

) Dedicated
Variable

 

5.2 Peer to Peer Computing 
The goal of Peer to Peer (p2p) technologies is to leverage 
idle cycles and storage at the edges of the Internet [10].  Its 
focus on decentralization, instability, and fault tolerance 
exemplifies areas that have been omitted from emerging 
Grid standards, but will become more significant as the 
system grows [11]. Typical p2p systems provide solutions 
for categories of applications, such as file sharing (e.g. 
Gnutella), distributed computation (e.g. SETI@home), and 
anonymity (e.g. Freenet). Our system is similar to the p2p 
systems that provide distributed computation by leveraging 
idle cycles from available computational resources on the 
internet. However, it differs from most such systems in the 
Figure 5: Effect of variability in resources on throughput 
sense that it does not restrict itself to jobs of any particular 
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kind, e.g. searching for extra-terrestrial intelligence (as in 
SETI@home). In addition, the transactional workloads we 
support require higher interactivity with the Grid clients, 
unlike other traditional p2p distributed computing systems.  

5.3 Other Systems 
In a typical grid environment, grid management services 
are provided to mask resource management related issues 
from the grid user. To the grid user, resources appear as if 
they are part of a homogeneous cluster and are managed in 
a dedicated manner for the user, when in fact the resources 
may be widely distributed, loosely coupled, and may have 
variable availability and response time characteristics. Grid 
management services [1, 2, 12] attempt to keep track of the 
resources and services delivered and try to match the 
demand with the supply. As long as the available supply of 
resources exceeds the demand, the grid services only have 
to manage the mapping of the resources to the consumers 
of the resources. Today many efforts [8, 13, 14, 15] are 
focused in streamlining the process of searching for grid 
resources and towards managing and monitoring of the 
resources, so that meaningful service level agreements can 
be set and achieved. This scenario plays out well only 
when resources are dedicated for delivering grid services, 
whereas in our system the resources are not assumed to be 
dedicated and vary in instantaneous availability. 
The Xenoservers described in [16] provide a secure 
infrastructure for running untrusted applications. Similar to 
our work, Xenoservers are hypervisor based. However, in 
the case of Xenoservers, the entire OS runs over an 
hypervisor, which makes the approach unsuitable for 
capturing the idle cycles from a desktop system. Moreover, 
the approach described in this paper is targeted towards use 
of persistent grid services that participate in grid 
computations when the underlying desktop resource allows 
them to do so. The infrastructure described in [16] is 
targeted more towards conventional grid applications that 
are instantiated along with a grid user request. 
We note here that the basic objectives of our project are 
similar to other Distributed Processing Systems (DPS) such 
as Condor [17] and Legion [18], in terms of utilizing the 
computational power of idle workstations. A novelty of our 
architecture is that it offers better host resource control for 
transactional applications, where individual service times 
are short but overall throughput over a large number of 
requests is important. By using persistent grid services and 
by directing the grid service request traffic to appropriate 
grid service, throughput of the grid computations can be 
controlled easily even when the underlying resources keep 
moving in and out of the grid pool. Furthermore, the virtual 
machines are self-contained and can be easily managed by 
the host OS, facilitating migration of computation, check-
pointing and recovery. A similar PC-based grid 
infrastructure built by Entropia, called DCGrid platform 
[19]. DCGrid platform provides a secure platform for 
executing native Win-32 applications. The platform 

guarantees isolation of execution of external applications 
through a secure technology and provide job-scheduling 
schemes to preserve the interactivity of the desktops. 
However, the usage of virtual machines as in our 
architecture, in addition to preserving the integrity of the 
desktop also provides a computational environment, 
wherein each VM can be treated as an individual machine 
by itself. This enables us to potentially run any kind of 
application (windows or Linux applications, by running 
different OSes in different VMs) and services, such as web 
services in an easier manner. 
Grid systems suitable for commercial and transactional 
applications are described in [20] and [21]. In [20], the 
authors describe an “on demand” use of grid resources to 
offload peak workload from dedicated web servers to idle 
servers in a proxy grid. They also discuss scheduling and 
traffic modeling related performance issues in the context 
of commercial applications. In [21], the authors describe a 
grid system that manages its resources so as to conform to 
the service level agreements (SLA) between grid customers 
and grid service providers. In both [20] and [21], dedicated 
set of servers are assumed for forming grid systems, where 
as our work focuses  on scavenging idle resources from 
desktop systems. Nevertheless, there are several 
complimentary aspects.  In particular, traffic monitoring for 
SLA enforcements is one such area and use of shared 
resources is another complementary area. Recall from 
Figure 1 that our architecture incorporates a component 
called SLA Monitor and Demand predictor. However, in 
Harmony, we have not implemented this component. On 
the other hand, the resource management infrastructure in 
Harmony is geared towards using shared resources – 
shared across virtual grid systems or shared among grid 
and non-grid applications. 

6. Conclusions and Future Work  
In this paper, we have presented a grid architecture suitable 
for deploying transactional workload using idle resources 
from desktop systems. This architecture is built on grid 
standards using virtual machines running in workstations 
and desktop PCs. We have designed and implemented 
Harmony, which is an instance of this architecture. 
Harmony is capable of utilizing the idle computational and 
memory resources of workstations, even those in active 
use.  
Our infrastructure has the following advantages: 

i. Limited Intrusion: Grid computations run only on 
virtual machines, any malicious code/error will 
not have any effect on the host applications and 
OS.  

ii. Fault tolerance: As virtual machines can be easily 
and effectively check pointed and migrated to 
another node. 
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iii. Host OS independence: Candidate nodes need not 
run the same host OS; VMs permit the guest OS to 
be chosen independently of the host. 

iv. Ease of developing and deploying applications: 
Since grid nodes are homogeneous, grid 
computations need not be written for different 
platforms and any grid computation can be 
deployed to any grid node. 

We are also planning to extend our architecture to utilize 
the resources provided by departmental and enterprise 
servers, where the resource availability of the servers is 
governed by their local policies. We are also investigating 
other resource prediction algorithms to increase the 
accuracy and efficiency of the grid resource availability 
forecaster. 
Despite the fact that our experiments were performed on a 
limited number of desktop nodes, our design is scalable 
due to our scalable resource management structure, via the 
use of a hierarchical system of GRMs and Gateways. We 
are planning to conduct more experiments with larger 
number of participating desktop nodes in order to confirm 
this theory.  
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