
Harmony: A Desktop Grid for Delivering Enterprise
Computations

Vijay K. Naik1, Swaminathan Sivasubramanian2, David Bantz3, Sriram Krishnan4

Abstract
This paper describes Harmony, a practical grid
infrastructure built using personal computer resources.
Harmony addresses the key concerns of end users for
responsiveness, privacy and protection by isolating the grid
computation in a virtual machine on the PC and by
implementing a layered resource management architecture
to divert workload to unutilized computers from those
currently experiencing high levels of interaction. The use
of a virtual machine separates the interactive workload
software environment from that for the grid workload.
Harmony also addresses the key concerns of enterprise IT
by automating initial resource assignment and by
automatically reallocating workload so as to meet quality
of service goals. We have implemented a prototype of
Harmony and demonstrated its capability to protect
interactive performance. Our preferred grid workload is
transactional – a key characteristic of commercial
applications. The implementation uses Web Service-based
interfaces, so the programming model of Harmony is
compatible with and familiar to enterprise developers. We
believe that Harmony demonstrates practical exploitation
of a hitherto underutilized resource of considerable
capability, with the potential to complement, or even in
some cases replace, dedicated server-based resources.

1 Corresponding Author: IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598, E-mail: vkn@us.ibm.com
2 Dept. of Computer Science, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands, E-mail: swami@cs.vu.nl
3 IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598, E-mail: dbantz@us.ibm.com
4 Dept of Computer Science, Indiana University, Bloomington, IN 47405, E-mail: srikrish@cs.indiana.edu

1. Introduction
Modern organizations, both academic and industrial,
depend on network-attached personal desktop and mobile
computer systems. A characteristic of these systems is that
they are relatively resource rich (in terms of CPU power,
memory, and disk capacity) but are utilized only for a
fraction of the time during a day. Even during the time they
are in use, their average utilization is much less than their

peak capacity. For example, we measured the CPU
utilization of developers’ desktops in our labs. We found
that the average CPU utilization for Intel Pentium III 866
MHz machines running Windows OS to be less than 10%
during working hours and close to zero during non-
working hours. These systems represent significant
computing resources that are underutilized.
Harnessing these underutilized computational resources for
organization-wide computing needs, however, has not been
practical. The difficulties arise primarily from the
following reasons: (i) integrity concerns of desktop owners;
(ii) performance impacts to desktop users; (iii)
unpredictability in the performance of grid computations;
and, (iv) the complexity of the infrastructure needed to
harness the idle resources. Standards-based grid technology
[1, 2] addresses only the last of these concerns. As a
practical matter, grid based computing is more mature on
Linux, whereas almost all desktops run the Microsoft
Windows OS.
In this paper, we describe a virtual machine-based grid
infrastructure called Harmony developed in our lab. Its
design addresses all of the above difficulties, while
adhering to the grid standards. Grid computations are
executed in hypervisor-based virtual machines, such as
supported by the VMWare Workstation application [3]. In
Harmony, execution of grid computations is orchestrated
such that their performance impact on workstation
responsiveness is negligible and the integrity of the
workstation environment is maintained even in the
presence of a faulty or malicious grid computation.
The objective and design of the proposed infrastructure
differs from the popular grid infrastructure models. In our
system, the granularity of resource availability is much

 1

finer than that of the latter. This is because the availability
of a desktop is governed by the local policies set by the
desktop user, which typically is giving higher priority to
their interactive workload. Such a situation calls for a
resource management solution capable of hiding the
variability in the resource availability among grid nodes,
while striving to maintain a reasonable level of Quality of
Service (QoS) to the grid users at the same time.

Scheduler
&

Router

Grid
Clients

Request/
Response

Grid
Resource
Manager

Grid
Service
Layer

Virtual
Resource

Layer

Physical
Resource

Layer

Virtual
Machine 1

Virtual
Machine 2

Virtual
Machine j

Virtual
Machine m…… ……

Grid Service
Container 1

Grid Service
Container n…………

Grid
Service 1

Grid
Service n…………

Database
Server

Desktop 1 Desktop 2 Desktop i Desktop M…… ……

Resource
Configuration
& Mapping

Tables

SLA monitor
& Demand
predictor

Request/Response

Control Flow

Mapping

Physical Connection

Legend

Another difference in our approach and the traditional Grid
approach is that we target our infrastructure towards
handling of transactional Grid workloads. Such workloads
differ from batch type of computations in granularity and
interactivity. Transactional workloads are typically finely
grained and are much more interactive than the latter.
The contributions of this paper are as follows: (i) we
describe our novel grid-based infrastructure developed
using desktop resources and identify the issues involved in
building it, (ii) we describe the resource management
mechanisms that we have developed to simultaneously
preserve desktop interactivity and maintain grid service
availability and (iii) show the feasibility of concepts
discussed here by means of our prototype implementation,
which delivers grid services using Web service protocols
and interfaces.
The rest of the paper is organized as follows: We outline
our layered system architecture in Section 2 and present
our integrated management infrastructure in Section 3. We
describe our experience with building this architecture in
Section 4. We discuss the related work in Section 5 and
conclude with a brief discussion on future directions in
Section 6.

2. Architecture Overview
Our architecture is driven by two objectives: (i) Deploy and
enable transactional services (e.g., financial, accounting,
billing, customer relations, or supply-chain management
related transactions) as grid services5 and (ii) Use desktop
based resources to provision these transactional services.
Availability and responsiveness to client demands are the
key criteria that a transactional service provider must meet.
The primary figure-of-merit (i.e., expected QoS) for such
services is throughput and response time. This means the
architecture should be able to deliver a requested service on
demand from the clients and it should be able to adjust the
capacity of each service so as to meet the intensity of the
demand. The client requests can be complex (e.g., requests
resulting in a workflow), request arrival rates can be
unpredictable, and clients may have multiple levels of

s
T
T
s
s
i
u
s
a
p
d
h
p
g
f
c
c
e
p
c
d
c
p
w
a
a

5 In this paper, the term grid service refers to the software entity

that can be invoked remotely over the network and shared
among multiple clients of that service. A grid service may be
invoked directly in response to a client request or it may
provide management or a support service needed to generate the
response.

 2
Figure 1: Three-layer architecture for the Peer-based
Enterprise Grid: (i) Grid Service Layer, (ii) Logical
Resource Layer, and (iii) Physical Resource Layer.
ervice-level-agreements (SLA) with the service provider.
he architecture needs to address these requirements.
he use of desktop-based resources gives rise to a different
et of requirements. The primary purpose of desktops is to
erve the desktop users by providing a high degree of
nteractivity and responsiveness. These resources are to be
sed to provision the transactional services according to
ome policy defined by the desktop user or by system
dministrators. Each desktop may have a unique local
olicy, which may change over time. Examples of local
esktop policies include: (i) interactive workload always
as the highest priority, (ii) allocate no more than a certain
ercent of the desktop resources to grid services at any
iven time, (iii) dedicate certain fraction of the resources
or grid computations, (iv) allow participation in the grid
omputations only during certain time of the day or on
ertain days of the week. Thus, policy enforcement requires
valuation of certain conditions, which may be static and
redictable or dynamic and unpredictable such as the
urrent interactive workload. Moreover, policies may be
efined using a combination of static and dynamic
onditions. The architecture needs to take into account
olicies and the heterogeneity in the capacities associated
ith each desktop resource while addressing the

vailability, throughput, and responsiveness requirements
ssociated with the transactional services. Rest of this

section gives an overview of our architecture and the extent
to which it addresses these requirements. We also point out
specific design points we have chosen for Harmony, which
is an instance of this architecture.
The architecture is defined using a layered approach. This
allows addressing the requirements of grid workload and of
transactional grid services separately from the requirements
of interactive workload and desktop related policies. The
architecture, as shown in Figure 1, has three layers: (i) The
Grid Service Layer, (ii) The Logical Resource Layer, and
(iii) The Physical Resource Layer.
Each layer is associated with Control and Management
Components (CMCs). The interactions among the CMCs
and the functionality they provide largely define the
architecture.
The SLA Monitor and Demand Predictor, shown in Figure
1 is one such CMC. This component monitors request
arrivals per Grid service type and per Grid client class
basis. It also monitors SLA violations on a per client basis.
In addition, predictions on future arrival rates are made for
each Grid service type. Based on the predicted arrivals and
available Grid service capabilities, a scheduling strategy for
request processing is adopted to meet the SLA
requirements. This process is repeated frequently as arrival
patterns change and/or as the Grid service capabilities
change. Some of examples of scheduling strategies are
weighted round robin, priority based scheduling (with
priorities derived from SLAs), one-to-many scheduling
(i.e., simultaneous processing of a request on multiple Grid
service instance to overcome uncertainties in service
capabilities), and so on.
The CMCs in the Physical Resource Layer enforce desktop
related policies, monitor and analyze the interactive
workload, and predict the short range availability and
capability of the desktop system for a particular Grid
service. The CMCs in the Logical Resource Layer act as
coordinators between the Grid Service Layer and Physical
Resource Layer. We now describe some of the salient
points of each layer.

2.1 Grid Service Layer
The Grid Service Layer is concerned with deploying and
provisioning transactional grid services in response to
requests from grid clients or from other grid services. This
layer is also concerned with managing multiple instances of
a grid service in response to current or anticipated grid
workload and the routing of client requests to appropriate
service instances so as to meet the QoS requirements.
The grid service layer consists of an entry point to the grid
and a mechanism to invoke the grid services in response to
requests from grid clients. The entry point to the grid is
referred to as the Gateway. Grid clients direct their requests
to the Gateway, which then repackages and reroutes those
requests internally to an appropriate grid service instance
where the request is processed. The response is returned to

the Gateway, which then routes it back to the original grid
client. In Figure 1, the SLA Monitor & Demand Predictor
Component, the Scheduler & Router component, and the
collection of Grid Services constitute the Grid Service
Layer.
The Scheduler & Router component in the Gateway
provides three main functions: (i) Determining the types of
services to deploy and the number of instances of each type
to deploy at any given time, (ii) the order in which client
requests are to be served and the number of requests to be
served simultaneously, and (iii) routing grid client requests
to service instances in a transparent manner. The Gateway
may also perform a few other functions such as grid client
authentication and authorization, tracking the status of
client requests, and providing service orchestration, if
necessary. For a more detailed discussion on the Grid
Service Layer, we refer interested readers to [4].
In Harmony, which is an instance of this architecture, there
is one logical Gateway. However, for achieving scalability,
multiple physical entry points may be provided, with client
traffic distributed roughly equally among these physical
Gateways, transparent to clients. For the purpose of this
paper, we consider the Harmony architecture that consists
of one logical Gateway, which maps onto one physical
Gateway.
The grid services respond to requests from grid clients or
from other grid services. In case of a transactional service,
interactions with one or more database services are an
essential part of the service. To streamline these
interactions (from development, deployment, fault
tolerance, and administration point of view), a trend in
enterprise computing is towards the use of standard
container technologies. To conform to this trend, we use
J2EE compliant grid services in the form of Web Services
and industry standard containers that support Enterprise
Java Beans (EJBs) and Web Services.
In our architecture, each grid service provides a web
service interface, which can be described by WSDL, and is
amenable to SOAP based interactions (over HTTP or
JMS). Multiple web services deployed in one or more
containers may combine to form a single grid service (e.g.,
workflow management). In addition, the same service may
be deployed in more than one container and collectively
these services may serve one or more grid clients. The
database servers maintain consistency among related grid
client requests.

2.2 Logical Resource Layer
The logical resources are the resources on which grid
services are deployed. These in turn are mapped onto the
physical resources made available by the Physical Resource
Layer. The role of this layer is to mask the changes in the
Physical Resource Layer from the Grid Service Layer.

 3

In Figure 1, the Logical Resource Layer consists of the
Containers for deploying grid services, the Virtual
Machines (VM) where the Web Service Containers run,
and the Virtual Machine Manager (VMM) that runs inside
each Virtual Machine. The Web Service Container
supports a multi-threaded environment and is capable of
providing simultaneous service (i.e., provisioning of
multiple service instances) to multiple requests from grid
clients. When deploying grid service instances, the
Gateway takes into account the state and capacity of the
Containers and of the corresponding VMs. This is done in
coordination with the VMMs.

In Harmony, VMM runs as a privileged service or daemon
in the guest OS. It is responsible for collecting and
reporting resource usage information of its VM. It also
continuously collects the policy and predicted resource
availability information from the Host Agent for its
desktop. The collected resource availability information is
reported to the Grid Resource Manager (GRM), described
in Section 3.1. This information is used in predicting
availability and capacity of the virtual and the physical
resource at a future time interval.

Another important role of the layer is to satisfy the
constraint of providing isolation between the grid
computations and the local, non-grid computations taking
place on the desktop. In Harmony, this is accomplished by
virtualizing the desktop resources using hypervisor-based
technology. On each desktop, a VM complete with its own
OS, is deployed using the virtualized resources of that
desktop. The operating system, as seen by the end user of
the desktop, is referred to as the host OS and the operating
system on top of the virtualized resources, is referred to as
the guest OS. The hypervisor provides the separation
between the guest OS and the host OS. To the host OS, all
the activities associated with the guest OS are viewed as
part of a single application with a single context. On the
other hand, computations inside the guest OS, which may
support multi-tasking, take place as if the guest OS were
running directly on top of the physical resources.

VMM is also responsible for (i) instantiating the grid
service Containers, (ii) deployment of specific grid services
inside a specific Container, and (iii) deployment of any
batch/stand-alone jobs outside the Containers. The VMM
performs these actions upon receiving a request from the
Gateway. It adjusts the priority levels of grid services
within the Container or the VM, whenever the current
priority levels are observed to be inadequate in meeting the
guaranteed service level agreements. On the other hand,
when the grid usage policies set by the desktop users are
found to be in violation, VMM may lower the priority of
the grid services or may even terminate the grid services.

2.3 Physical Resource Layer
The Physical Resource Layer consists of the resources
associated with network-attached desktops and
workstations. The resources of primary concern are CPU,
memory, storage (temporary and permanent), and network
bandwidth. Resources may join and leave this layer
dynamically. Typically, the owner of a resource may
dictate when the resource may participate in the grid
environment. This could be done by defining a policy or by
direct intervention. The logical resource layer virtualizes
the physical resources before making them available for
deploying grid services. Collectively, the physical resource
layer forms the basis for all the resources available to the
grid and, ultimately, the quality of the services delivered by
the grid layer is determined by the quality of the resources
available in this layer.

To describe the role played by the Logical Resource Layer,
in Figure 2 we present a schematic of a desktop with a VM
running on top of a hypervisor. The VM participates as a
logical resource and has a guest OS possibly different from
the host OS. As seen in Figure 2, two types of resource
managers are involved: Host Agent, and Virtual Machine
Manager (VMM). We will describe role of the Host Agent
shortly. Together they are collectively responsible for
enforcing the local policy of the desktop and to provide the
resource availability estimate of the desktop.

 Grid

Task

Guest OS

V
M
M

Hypervisor

Host

Agent

Native
Apps.

Host OS

Hardware

Grid
Node In general, there is a many-to-one mapping between logical

resources in and the physical resources. This mapping may
change dynamically as the resources join and leave the
Physical Resource Layer.

 The CMC in the Physical Layer is the Host Agent as shown

Figure 2. The Host Agent runs as a privileged service in the
host OS and provides current resource usage information to
the VMM. The host agent is a key component in enforcing
the local policy as it monitors the resource usage by the
desktop owner and the VM and ensures that the local
policy is not being violated. For example, if the local policy
dictates that grid computations can be active only if there is
no interactive workload, then the host agent monitors the
CPU and memory consumption of both the workloads. If

Figure 2: A schematic of a desktop with one virtual machine
running with its own guest OS. The Virtual Machine
Manager and the Host Agent provide the management
controls at the Logical and Physical Resource Layers,
respectively.

4

the interactive workload starts, then host agent sends a
signal to the VMM to suspend any grid computations.
The Host Agent also estimates the future resource
availability of a physical resource (e.g., based on time-
series analysis of past usage patterns) and send these
predictions to the VMM. Finally, it monitors the status of
individual VMs, checkpoint them and restart them, if they
fail and thus, ensuring the continuous availability of a
virtualized resource.

3. Integration Across the Three Layers
In the desktop-based enterprise grid considered here, the
Management System has to enforce the local policies and,
simultaneously has to ensure that there are adequate
physical resources for the logical resources to map onto, so
that grid services can be delivered with a required level of
QoS to grid clients. This requires coordination among the
three layers discussed above. In the architecture, as shown
in Figure 1, Grid Resource Manager (GRM) integrates the
control and monitoring information flowing across the
three layers. In the following, we first explain GRM
architecture and functionality in some detail and then
explain how actions of GRM bring about the desired
effects.

3.1 Grid Resource Manager
GRM is a Control and Management Component that
operates across the three layers. It acts as the coordinating
component across the three layers. It is a logically
centralized entity that may be scaled up by organizing in a
hierarchical manner. GRM facilitates (i) desktop resource
discovery, (ii) detection of resource availability and
unavailability, (iii) detection of resource capability (e.g..,
which resource is capable of deploying a certain type of
grid service), and (iv) allocation of desktop resources to
fulfill predicted demand.
GRM keeps track of (i) current grid workload, (ii) expected
grid workload in the near future, (iii) logical resources
needed to meet the QoS requirements associated a given
grid workload, (iv) current available physical resources
and their capabilities, and (v) expected availability and
capabilities of physical resources in the near future.
Information related to current and expected grid workload
and the QoS requirements is obtained from the SLA
Monitor & Demand Predictor component of the Gateway.
Information related to current availability and capability of
physical resources is obtained from individual VMMs and
Host Agents. It then normalizes the raw capacity of the
desktop against a standard platform. In case the desktop
node is to be shared among multiple Grid services, it
further reduces the available capacity in proportion to the
share made available to other Grid services. This represents
the maximum normalized capacity available to a particular
Grid service. It uses built-in heuristics and algorithms to
compute the effects of policies on the future availability
and capabilities of the physical resources. This is used in

computing the predicted available capacity, at a future
time, from a desktop resource for a Grid service. It also
computes the uncertainty in each prediction.
Based on the expected grid workload, GRM creates a list of
required grid services and computes the number of
instances needed for each type of grid service. It also
determines the number and type of logical resources
needed to run the grid services. The QoS requirements
associated with a grid service determine the capacities of
the logical resources needed to deploy the grid service.
Using the information on the predicted availability and
capabilities of physical resources, GRM creates an
approximate mapping between the logical resources needed
and the physical resources predicted to be available, so that
the requirements and capabilities match as closely as
possible. Since there are several hard problems involved in
this process, GRM makes use of heuristics and
approximations. Because of the uncertainties in the
predictions, exact solutions are not necessarily worth the
cost.
GRM communicates the information on grid services and
their mapping onto logical resources to corresponding
VMMs as well as to the Scheduler & Router component of
the Grid Service Layer. It informs each VMM the
maximum number of service instances of a Grid service to
deploy. It informs the Scheduler & Router, the number of
instances of each grid service available at its disposal, their
locations, predicted QoS for each instance, and the
uncertainty in the predictions. This resource allocation and
mapping information is represented by the Resource
Configuration & Mapping Tables shown in Figure 1. It also
provides a mapping between logical and physical
resources. GRM continuously updates these tables as new
information becomes available. As grid workload changes
or as the availability of physical resources changes, new
instances of logical resources are created or destroyed and
the underlying mappings are updated by the GRM. This
information is setup in the Scheduler such that client
requests are scheduled onto a particular instance of a grid
service without taking into account the variability in the
underlying mappings.
The Scheduler uses this information to determine the
number of service instances to deploy for each Grid service
for which it anticipates demand. The number of instances
deployed is proportional to the allocated capacity and to the
expected demand. When requests arrive, the Router routes
those requests to the physical resources where the service
instance is actually deployed.
The Scheduler also takes into account the uncertainty in the
predicted allocations. When the uncertainty is high, it may
decide to schedule a request on more than one service
instance simultaneously, making sure that the service
instances are mapped on-to distinct physical resources. In
such cases, the Router replicates a request and multicasts it
to multiple instances of the same Grid service.

 5

For a more detailed discussion on the Grid Service Layer
and its interactions with GRM, we refer interested readers
to [4].
Since the number of resources (logical and physical) in the
grid can be large, management of these resources can
introduce a scalability problem. However, this can be
handled by adopting a hierarchical control structure for
GRM. One way to achieve this is by dividing the large pool
of desktops into small pools, each pool managed by a
lower-level GRM. A higher-level GRM manages a group
of these intermediate-level GRMs.

3.2 Organization in Harmony
In Harmony, we only consider desktop-based resources.
Monitoring of desktop resources is performed by Host
Agents. As mentioned earlier, each Host Agent provides
data on past usage patterns of at the desktop as well as the
QoS delivered. Past usage patterns can be analyzed to make
predictions with certain level of confidence. Note that
because of the collective nature of the desktop resources
and with high number of participating desktops, estimates
for the individual desktop resources need not be highly
accurate. As long as there are sufficiently large number of
desktop systems that are potential candidates for
participation in the grid computations, and with sufficient
variation in the usage across the available pool of desktop
resources, estimates on the availability of resources can be
made with high degree of confidence. However, this
requires an efficient mechanism to detect physical
resources that are currently available and then map logical
resources onto the available physical resources, so the grid
services can be delivered at the desired throughput levels.
To realize the above described goals, the Harmony
management system performs the following functions: (i)
using monitoring and analysis, estimate the resource
availability on each desktop; (ii) map logical resources onto
physical resources and schedule grid computations on the
grid service nodes; (iii) monitor individual desktop
resources to ensure that the scheduled grid computations do
not violate the local desktop policies. To perform these
functions, the Harmony management system uses a
hierarchy of controls and monitoring mechanisms. The
resulting layered architecture is shown in Figure 1.

Thus, the layered resource management architecture
described above enables separation of concerns as well as
simplifies many of the design issues. Control strategies in
one layer can be changed without affecting the structure of
the resource managers in other layers. For example, a
change in desktop resource prediction mechanism will not

affect the design and implementation of the grid resource
management layer.
In case of transactional workload, each transaction needs to
be scheduled based on the transaction requirements and
service level agreements with the grid client. For example,
a transaction may need to be processed within a certain
amount of time after its arrival. This includes any queuing
delays at the server. To handle such service guarantees, we
use a service request handler that selects and routes service
requests to appropriate grid nodes so that the specified QoS
requirement is met with high probability.

4. Our Experience with Harmony
4.1 Implementation
We have built a prototype implementation of Harmony
using desktops used by developers in our lab. Each desktop
runs a VmWare Workstation with Linux OS as the guest
OS. On each guest OS, IBM’s WebSphere Application
Server AEs 4.0 [5] is instantiated as a service container. On
each application server, web services are deployed. The
web services are described using WSDL documents and
use SOAP-based interactions over HTTP.
A dedicated server is used for the instantiating the
Gateway. The same server is used to run GRM. Another
dedicated server is used to run IBM DB2 server (DB2
UDB Enterprise Edition). When transactions are processed
in a Grid Service node, an EJB is in the service node
interacts with this backend database server.
The GRM is implemented as a web service, with VMMs
updating their resource information by making web service
calls to the GRM. VMM is implemented as a stand-alone
java program. The Gateway’s service request handler is
implemented by modifying the Apache SOAP RPC Router
[6]. The RPC Router receives requests from clients for Grid
services and routes the requests based on a routing table
populated by the GRM. The WebSphere Application
servers running in VMs process the service requests and
the results are returned to the Gateway. The Gateway’s
service request handler receives the result, repacks and
sends it back to the client. As noted in Section 3, for
reasons of scalability, multiple instances of service request
handler can be run.
The Host Agent is implemented using C++ and monitors
the processor utilization using Windows kernel APIs, such
as QuerySystemInformation(). The host agent monitors the
overall processor utilization and the individual processor
utilization of VmWare process, thereby deducing the
processor utilization of the interactive workload.

 6

The host agent models the interactive workload utilization
as a Markov chain with three states: Idle, Average, and
Busy (Figure 3). The host agent updates the transition
probabilities among the three states by observing its
interactive workload behavior. From this model, the host
agent predicts the probability for the system to be “idle”
from its current state. For example, if an user works with
only bursts of busy workload and leaving the system idle
rest of the time, the transition probability from idle to idle
will be high. The accuracy of this simple prediction scheme
increases as it learns more about the desktop user’s
workload pattern. We are currently investigating complex
prediction scheme that uses different Markov transition
probability matrices for different times of a day. To ensure
maximum possible responsiveness to the interactive
workload, we set the priority of VmWare process to be
low. Hence, when a new interactive workload is
instantiated, the VmWare process gets swapped out.
We have deployed a few transaction-based applications
with Web service interfaces on the desktops. One such
example is a WorkOrder Management service, which
creates/updates/schedules the work orders of an
organization by querying it with the database containing its
existing order information.

In our model, since Grid computations are encapsulated as
web services, a computation-oriented job, if wrapped by an
EJB, can be run in any of the grid nodes, with VMM
handling the initial deployment of the EJBs.

Although the database services themselves could be
deployed on top of the VMs provided by the logical
resource layer, for performance reasons we confine the
database servers to dedicated backend resources.

4.2 Performance Results
The performance of our Grid infrastructure is measured by
the throughput as seen by Grid clients. Throughput is
calculated as the number of client service requests
processed by the grid per unit time. We studied the
performance of our grid infrastructure for two different

scenarios: (i) the effect of number of grid nodes available
on the throughput and (ii) the effect of varying desktop
availability on the throughput.

Idle

Bus

Avg

We have performed the experiments with following
machines: 1 dedicated IBM eServer 1Ghz running RedHat
Linux 7.1 with I GB RAM, 4 desktops with 900 Mhz
Pentium III processor and 256 MB RAM running Windows
XP as host OS and RedHat Linux 7.1 as its guest OS.

4.2.1 Effect of number of grid nodes Figure 3: Workload model used to predict the resource
availability information. Idle – maximum resource
availability, Average load – average resource availability,
Busy state – minimum resource availability

In this experiment, we study the effect on throughput as a
function of the number of desktop nodes participating in
the grid. For this experiment, we created a traffic generator
that generates grid service requests, with an exponential
inter-arrival time. We studied the average throughput for
various arrival rates for different number of desktop nodes.
We first measured the grid throughput when a single
dedicated server handles the requests. We repeated the
same experiments for cases when more desktop nodes (2
and 4) participate in the grid and the results are given in
Figure 4.
As expected, the grid throughput increases with increase in
the number of nodes, since more nodes are available to
process the client requests. It can be seen that, for an arrival
rate of 20 requests/sec, the throughput increases from 1.1
(for a single server case) to 3.5 (with addition of four
desktop nodes). However, the improvement in throughput
does not increase linearly with the increase in the number
of grid nodes, which might be due to the difference in
computational capacities of individual desktop nodes and
the dedicated server. This experiment shows that desktop
nodes are capable of running enterprise transaction
workloads and can improve the overall throughput.
The scenario depicted in this experiment, where the
throughput is improved by adding more desktop nodes to
the grid, in addition to a dedicated server, is representative
of a real-life case, where an overloaded server is offloaded
by diverting the requests to a backup server. In such a case,
the desktop grid can act as a backup server in taking the
service requests when the dedicated server is overloaded.

4.2.2 Effect of variability in resource availability
The first experiment just confirmed the improvement in the
throughput with increase in the number of nodes. However,
it did not discuss about the effect of variability in the
desktop availability on the grid throughput. In this
experiment, we study the effect of variation of desktop
availability on the throughput.
We varied the availability of 3 desktop nodes, such that on
an average only one of these desktop nodes are available to
the grid at a given time, while the others run a busy
computing workload. We kept 2 other nodes dedicated to
the grid. Hence, in both setups, the number of virtual
resources available to the grid is the same (3). However, in
the first case, the 3 virtual resources maps on the 3
dedicated physical resources, while in the second case the

 7

mapping of 3rd virtual resource changes dynamically with
change in the availability of the 3 desktops. This study will
test the sensitivity of our GRM to changes in resource
availability. The results are given in Figure 5.

5. Related Work
5.1 OGSA and Globus Toolkit
Our work has several similarities with certain services
provided by the Globus Toolkit. However, there are key
differences as well. Globus provides resource allocation
and management of active jobs via the Grid Resource
Allocation and Manager (GRAM) [8]. It also provides
standard mechanisms for publishing and retrieving
resource status and configuration information via the
Monitoring and Discovery Service (MDS) [9]. GRAM can
be configured such that it sends resource information to
MDS, and clients can then query MDS to find suitable
resources. In our system, the GRM is responsible for
storing and retrieving resource information, and can be
thought of as our replacement for MDS. The VMMs are
responsible for resource allocation and reporting
information to the GRM, and hence can be thought of as
our replacement for GRAM.

0
0.5

1
1.5

2
2.5

3
3.5

4

0.5 1 2.5 5 10 20 40 60 80 90

Arrival Rate (Reqs/sec)

Th
ro

ug
hp

ut
 (R

es
po

ns
e/

se
c)

Single node
3 nodes
5 nodes

Conceivably, we could have implemented our GRM and
VMMs using MDS and GRAM respectively. The GRM
could act as a thin wrapper around MDS, and could retrieve
resource information from it in order to create and send

As s
betw
visib
case
the
vari
Ano
the
VmW
have
insid
conf
to p
in te
of se

Figure 4: Effect of arrival rate on throughput for
different number of grid nodes
routing tables to the Gateway. GRAM could be used
instead of the VMM, with certain modifications to send
prediction information to the MDS along with observed
resource information. However, the stable versions of
Globus (2.x) do not have explicit support for Web services
and their hosting environments, such as WebSphere. This
was the major motivating factor for our approach.

een in Figure 5, the difference between the throughput
een the dedicated case and that of the variable case is
le only during higher arrival rates, and even for those
s, the difference in throughput is not large. This shows
effectiveness of our control architecture in masking the
ability of resources..
ther important performance issue in our architecture is
overhead introduced by running computations on

are instead of native platform. In [7], the authors
 shown that the overhead of running computations
e VmWare to be less than 10%. Our experience
irms this observation. Thus, by using a virtual machine
erform grid computations we pay only a small penalty
rms of performance, but realize high benefits in terms
curity, isolation, and control.

With the advent of OGSA, the Grid is moving towards a
Web services based approach. Since our GRM and VMMs
are already Web services, we do not foresee any major
hindrances in making our system OGSA compatible. In the
future, we plan to be compatible with OGSA and modify
our GRM and VMMs such that they use the OGSA
compatible versions of MDS and GRAM respectively. In
addition, all our Grid services will obey the two-level
naming scheme suggested by OGSA, with each of them
having a unique Grid Service Handle (GSH) and a Grid
Service Reference (GSR).

0
0.5

1
1.5

2
2.5

0.5 1 2.5 5 10 20 40 60 80 90

Arrival rate (Reqs/sec)

Th
ro

ug
hp

ut
 (R

es
po

ns
es

/s
ec

) Dedicated
Variable

5.2 Peer to Peer Computing
The goal of Peer to Peer (p2p) technologies is to leverage
idle cycles and storage at the edges of the Internet [10]. Its
focus on decentralization, instability, and fault tolerance
exemplifies areas that have been omitted from emerging
Grid standards, but will become more significant as the
system grows [11]. Typical p2p systems provide solutions
for categories of applications, such as file sharing (e.g.
Gnutella), distributed computation (e.g. SETI@home), and
anonymity (e.g. Freenet). Our system is similar to the p2p
systems that provide distributed computation by leveraging
idle cycles from available computational resources on the
internet. However, it differs from most such systems in the
Figure 5: Effect of variability in resources on throughput
sense that it does not restrict itself to jobs of any particular

8

kind, e.g. searching for extra-terrestrial intelligence (as in
SETI@home). In addition, the transactional workloads we
support require higher interactivity with the Grid clients,
unlike other traditional p2p distributed computing systems.

5.3 Other Systems
In a typical grid environment, grid management services
are provided to mask resource management related issues
from the grid user. To the grid user, resources appear as if
they are part of a homogeneous cluster and are managed in
a dedicated manner for the user, when in fact the resources
may be widely distributed, loosely coupled, and may have
variable availability and response time characteristics. Grid
management services [1, 2, 12] attempt to keep track of the
resources and services delivered and try to match the
demand with the supply. As long as the available supply of
resources exceeds the demand, the grid services only have
to manage the mapping of the resources to the consumers
of the resources. Today many efforts [8, 13, 14, 15] are
focused in streamlining the process of searching for grid
resources and towards managing and monitoring of the
resources, so that meaningful service level agreements can
be set and achieved. This scenario plays out well only
when resources are dedicated for delivering grid services,
whereas in our system the resources are not assumed to be
dedicated and vary in instantaneous availability.
The Xenoservers described in [16] provide a secure
infrastructure for running untrusted applications. Similar to
our work, Xenoservers are hypervisor based. However, in
the case of Xenoservers, the entire OS runs over an
hypervisor, which makes the approach unsuitable for
capturing the idle cycles from a desktop system. Moreover,
the approach described in this paper is targeted towards use
of persistent grid services that participate in grid
computations when the underlying desktop resource allows
them to do so. The infrastructure described in [16] is
targeted more towards conventional grid applications that
are instantiated along with a grid user request.
We note here that the basic objectives of our project are
similar to other Distributed Processing Systems (DPS) such
as Condor [17] and Legion [18], in terms of utilizing the
computational power of idle workstations. A novelty of our
architecture is that it offers better host resource control for
transactional applications, where individual service times
are short but overall throughput over a large number of
requests is important. By using persistent grid services and
by directing the grid service request traffic to appropriate
grid service, throughput of the grid computations can be
controlled easily even when the underlying resources keep
moving in and out of the grid pool. Furthermore, the virtual
machines are self-contained and can be easily managed by
the host OS, facilitating migration of computation, check-
pointing and recovery. A similar PC-based grid
infrastructure built by Entropia, called DCGrid platform
[19]. DCGrid platform provides a secure platform for
executing native Win-32 applications. The platform

guarantees isolation of execution of external applications
through a secure technology and provide job-scheduling
schemes to preserve the interactivity of the desktops.
However, the usage of virtual machines as in our
architecture, in addition to preserving the integrity of the
desktop also provides a computational environment,
wherein each VM can be treated as an individual machine
by itself. This enables us to potentially run any kind of
application (windows or Linux applications, by running
different OSes in different VMs) and services, such as web
services in an easier manner.
Grid systems suitable for commercial and transactional
applications are described in [20] and [21]. In [20], the
authors describe an “on demand” use of grid resources to
offload peak workload from dedicated web servers to idle
servers in a proxy grid. They also discuss scheduling and
traffic modeling related performance issues in the context
of commercial applications. In [21], the authors describe a
grid system that manages its resources so as to conform to
the service level agreements (SLA) between grid customers
and grid service providers. In both [20] and [21], dedicated
set of servers are assumed for forming grid systems, where
as our work focuses on scavenging idle resources from
desktop systems. Nevertheless, there are several
complimentary aspects. In particular, traffic monitoring for
SLA enforcements is one such area and use of shared
resources is another complementary area. Recall from
Figure 1 that our architecture incorporates a component
called SLA Monitor and Demand predictor. However, in
Harmony, we have not implemented this component. On
the other hand, the resource management infrastructure in
Harmony is geared towards using shared resources –
shared across virtual grid systems or shared among grid
and non-grid applications.

6. Conclusions and Future Work
In this paper, we have presented a grid architecture suitable
for deploying transactional workload using idle resources
from desktop systems. This architecture is built on grid
standards using virtual machines running in workstations
and desktop PCs. We have designed and implemented
Harmony, which is an instance of this architecture.
Harmony is capable of utilizing the idle computational and
memory resources of workstations, even those in active
use.
Our infrastructure has the following advantages:

i. Limited Intrusion: Grid computations run only on
virtual machines, any malicious code/error will
not have any effect on the host applications and
OS.

ii. Fault tolerance: As virtual machines can be easily
and effectively check pointed and migrated to
another node.

 9

iii. Host OS independence: Candidate nodes need not
run the same host OS; VMs permit the guest OS to
be chosen independently of the host.

iv. Ease of developing and deploying applications:
Since grid nodes are homogeneous, grid
computations need not be written for different
platforms and any grid computation can be
deployed to any grid node.

We are also planning to extend our architecture to utilize
the resources provided by departmental and enterprise
servers, where the resource availability of the servers is
governed by their local policies. We are also investigating
other resource prediction algorithms to increase the
accuracy and efficiency of the grid resource availability
forecaster.
Despite the fact that our experiments were performed on a
limited number of desktop nodes, our design is scalable
due to our scalable resource management structure, via the
use of a hierarchical system of GRMs and Gateways. We
are planning to conduct more experiments with larger
number of participating desktop nodes in order to confirm
this theory.

 10

[12] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of High
Performance Computing Applications, 15(3), 200-222, 2001.

REFERENCES
[1] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration,” http://www.globus.org/research/papers/ogsa.pdf, as of Nov.
2002.

[13] B. Lee and J. B. Weissman, “An Adaptive Service Grid Architecture
Using Dynamic Replica Management”, In Proc. 2nd Intl. Workshop on
Grid Computing, Nov. 2001.

[2] I. Foster, C. Kesselman, (eds.), “The Grid: Blueprint for a New
Computing Infrastructure,” Morgan Kaufmann, 1999.

[14] R. Buyya, D. Abramson, J. Giddy, “Nimrod/G: An Architecture for a
Resource Management and Scheduling System in a Global Computational
Grid,” In Proc. of The 4th International Conference on High Performance
Computing in Asia-Pacific Region, Beijing, China, May 2000.

[3] “VMWare Workstation’s Manual,” http:// www. vmware. com/
support/ ws3/docs/, as of Nov. 2002.

[15] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and
Survey of Grid Resource Management Systems for Distributed
Computing,” International Journal of Software: Practice and Experience,
May 2002.

[4] V. Naik, S. Sivasubramanian, and S. Krishnan, “Adaptive Resource
Management and Workload Scheduling for a Peer Grid,” IBM Research
Report RC 22839, July, 2003.

[5] IBM WebSphere, http://www.ibm.com/websphere/, as of Nov. 2002.
[6] Apache SOAP Documentation,
http://xml.apache.org/soap/docs/index.html, as of Nov. 2002

[16] D.Reed, I. Pratt, P. Menage, S. Early, N. Stratford, “Xenoservers:
Accounted execution of untrusted code,” In Proc. IEEE Hot Topics in
Operating Systems VII, Mar. 1999.

[7] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A Case for Grid
Computing on Virtual Machines,” Technical Report TR-ACIS-02-001,
University of Florida, August 2002.

[17] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor - A Hunter
of Idle Workstations", In Proc. 8th International Conference of
Distributed Computing Systems, pp. 104-111, June, 1988.

[8] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S.
Tuecke, “A resource management architecture for metacomputing
systems,” In. Proc. IPPS/SPDP '98, Workshop on Job Scheduling
Strategies for Parallel Processing, pp. 62-82, 1998.

[18] A. S. Grimshaw, et. al., “The Legion Vision of a Worldwide Virtual
Computer,” Communications of the ACM January, 40(1), 1997.

[19] ‘’DCGrid Platform”, http://www.entropia.com

[20] C. Crawford, D. Dias, A. Iyengar, M. Novaes, and L. Zhang,
“Commercial Applications of Grid Computing,” IBM Research Report RC
22702, January 2003.

[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S.
Tuecke. “A Directory Service for Configuring High-Performance
Distributed Computations”, In Proc. 6th IEEE Symposium on High-
Performance Distributed Computing, pp. 365-375, 1997. [21] A. Leff, J. Rayfield, and D. Dias, “Service-Level Agreements and

Commercial Grids,” IEEE Internet Computing, Special Issue on Grid
Computing, 7(4), July-August, 2003.

[10] C. Shirky. “What is P2P And what isn’t?”
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html,
as of June 2003.
[11] J. Ledlie, J. Shneidman, M. Seltzer, and J. Huth, “Scooped, Again”,
In Proc, 2nd International Workshop on Peer-to-Peer Systems (IPTPS
'03), Feb 2003.

 11

http://www.globus.org/research/papers/ogsa.pdf
http:// www. vmware. com/ support/ ws3/docs/
http:// www. vmware. com/ support/ ws3/docs/
http://www.ibm.com/websphere/
http://xml.apache.org/soap/docs/index.html
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html
http://www.entropia.com/

	Introduction
	Architecture Overview
	Grid Service Layer
	Logical Resource Layer
	Physical Resource Layer

	Integration Across the Three Layers
	Grid Resource Manager
	Organization in Harmony

	Our Experience with Harmony
	Implementation
	Performance Results
	Effect of number of grid nodes
	Effect of variability in resource availability

	Related Work
	OGSA and Globus Toolkit
	Peer to Peer Computing
	Other Systems

	Conclusions and Future Work
	REFERENCES

