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Abstract 
 

Software Component Frameworks are well known 
in the commercial business application world and now 
this technology is being explored with great interest as 
a way to build large-scale scientific application on 
parallel computers.  In the case of Grid systems, the 
current architectural model is based on the emerging 
web services framework.  In this paper we describe 
progress that has been made on the Common 
Component Architecture model (CCA) and discuss its 
success and limitations when applied to problems in 
Grid computing.   

Our primary conclusion is that a component model 
fits very well with a services-oriented Grid, but the 
model of composition must allow for a very dynamic 
(both in space and it time) control of composition.  We 
note that this adds a new dimension to conventional 
service workflow and it extends the “Inversion of 
Control” aspects of must component systems. 
 
1. Introduction 
 

A Software Component Framework provides a 
way to build applications by composing them from 
predefined and tested units of code called 
“components”.   The need for component frameworks 
is driven by the complexity of the programming tasks 
we see today. It is no longer conceivable that a single 
programmer can build a large application by writing 
every line of code. Professional programmers work by 
composing elements from large collections of libraries 
made available from third parties or the vast open-
source community.   In the area of scientific 
applications the multidisciplinary nature of our work 
has driven us to work in large teams of specialists.  

Though slower to change than the rest of the software 
world, scientific community has reached the software 
complexity threshold where a profound change in 
programming practice is required to build the next 
generation of high performance, multidisciplinary 
applications.    

In 1995 an effort began within a small group of 
collaborators to define a component architecture for 
scientific applications that ran on massively parallel 
systems.  This effort gained support from the Office of 
Science of the U.S. Department of Energy and it has 
grown to be a consortium of researchers from about 15 
universities and laboratories.  The resulting 
specification, called the Common Component 
Architecture (CCA) [7,8,10] has been implemented in 
several different frameworks [14,15,17,21,31]. 

At the same time that CCA has been developed and 
tested for applications on high performance parallel 
computers, another group has been looking at 
applications that span multiple resources in “Grid” 
environments [26]. These Grid applications have 
several additional dimensions of complexity because 
they are more heterogeneous, dynamic and distributed 
in both space and time.  In addition, factors such as 
security are often as critical as performance.  The 
emerging Grid architecture is based on web services 
and, as we shall show, this provides an interesting 
foundation for a Grid CCA.  

In the paragraphs that follow we will describe some 
of the formal properties of component architectures 
that make them useful and some of the progress made 
on CCA.  We will then describe the difficult problems 
that must be solved to make the architecture work in 
the Grid environment and discuss several solutions to 
these problems.   

 



2. Software Component Frameworks 
 
What sets component architectures apart from 

standard class or subroutine libraries are a few basic 
properties. 

1. A component is a service that is defined 
by a set of interfaces that it implements.  A 
user of a component invokes the functions 
defined by the services interfaces and the 
appropriate actions are taken by the 
component implementation. In most cases 
this service is considered to be stateless, 
but in some cases the component interacts 
with a resource, such as a database which 
has state.   

2. Each component framework provides a 
component container or context in which 
components are instantiated and 
composed.   In some systems the 
framework often also provides a set of 
standard services (implicit components) 
that can be used by the instantiated 
components.   

A critical feature of component frameworks is that 
applications can be built by composing components 
and, because the components are designed to follow a 
specific set of behavior rules, the composed 
application works as expected. For example, an 
important feature of component frameworks that 
differs from many standard programming models, is 
the use of a design pattern called Inversion of Control 
(IOC).  The basic principle of IOC has two parts.  
First, application control is never distributed over or 
vested in more than one driver component of the 
application, and, in some systems, the control flow of 
the application lies completely within the framework 
“container”.  In its purest form IOC also implies that a 
component instance has a lifecycle and environment 
that is completely managed by the framework.  
Everything the component needs is supplied by the 
component. One aspect of this idea, as argued by 
Fouler [5], involves Dependency Injection, which is 
the concept that applications invoke services but the 
instantiation of the component that implements this 
service is determined by the framework at runtime.  In 
other words, the dependency of one component 
instance upon another is injected into the system at the 
latest possible time. 

Another type of behavior rule that many component 
systems enforce is a standard way for a framework to 
learn about a component at runtime.  This type of 
component introspection is what allows a framework 

to discover that a component actually implements an 
interface required by an application.  

The earliest component frameworks with many of 
this properties included Microsoft COM, the Java bean 
model and the CORBA Component Model [6]. 
Szyperski [12] provides a description of many other 
component system properties and features.  More 
recently the complexity of the Enterprise Java Bean 
framework has spawned other frameworks like Spring 
[24] to simplify its programming model.  Pico [23] and 
the Apache Avalon [25], which is a server side 
framework for Apache, are also important component 
frameworks.   

In the case of scientific applications, early 
component architectures include the Model and CODE 
frameworks [1,2].  In visualization applications the 
most important examples are the AVS system [36] and 
the SciRun [22] framework, which now also 
implements the CCA model described in greater detail 
below.  Webflow [26] was an early component model 
for distributed systems for scientific applications, and, 
more recently, the Discover project [3,4] considers the 
problem in the context of Grid systems. 
 
3. CCA 
 

The Common Component Architecture is defined 
by a set of framework services and the way 
components are defined.  Each component 
communicates with other components by a system of 
“ports”.  Ports are defined by a type system, which is 
expressed in “Scientific Interface Definition 
Language” (SIDL).  SIDL provides simple way to 
describe a method interface in terms of the data \types 
common in scientific computing.  (The associated tools 
that are part of the Babel Toolkit [13] allow powerful 
language interoperability between Fortran, C++, and 
Python.)  There are two types of CCA ports: 

1. Provides Ports are the services offered by 
the component.  Each provides port 
implements an interface defined in IDL. 

2. Uses Ports are component features that 
implement the use of a service provided by 
another component.  They bound to the 
“stubs” that a component “uses” to invoke 
the services of another port “provided” by 
another component.  Uses ports are also 
defined by IDL. 

As illustrated in Figure 1 below, a uses port on 
one component can be connected to the provides port 
of another component as long as they implement the 
same SIDL interface.  The connection is made by the 
framework operation “connect” at runtime.  When a 



component wants to use a service connected to one of 
its “uses” ports, it executes a framework “getPort” 
operation.  This provides an implementation of the port 
or blocks until one is available.  When the component 
is finished it issues a “releasePort” operation.   

 
Figure 1. Component A has a uses port called vecPort which 
it uses to compute the dot  product of a vector with itself. 
The port is defined by the SIDL interface VectOp.  
Component B has a provides port that implements the 
VectOp interface and the vecPort uses port from component 
A is connected to the provides port from B. 
 

A consequence of this get/release semantics is 
that component connections may be changed at 
runtime, which is especially useful in dynamic 
environments. 

. 
4. The Grid Service Architecture 
 

We can define a Grid to be a distributed collection 
of resources and services, which operate together as a 
single system.   The services include: 

• Data Services – archives of file objects, 
databases, streaming data sources such as 
those generated from on-line instruments, 
directories and indexes. 

• Security Services – the mechanisms used by a 
service to authenticate users and user agents 
and to manage their authorization to use other 
services. 

• Compute Services – the mechanisms that 
enable a user Grid application instance to 
schedule units of work on the computing 
hardware that underlies the grid. 

• Messaging services – the mechanisms uses 
that allow an application component to 
subscribe to notification about events 
generated by other parts of the application or 
the Grid itself. 

This is only a partial list. The precise Grid 
architecture of services is currently being defined in 
detail by the Global Grid Forum, Open Grid Service 

Architecture (OGSA) Working Group.   Each service 
in this Grid architecture is implemented as a Web 
Service.  In the first vision for OGSA [9], these web 
services all conformed to the Open Grid Service 
Infrastructure (OGSI) [20] specification, but that has 
now been replaced by the WS-Resources Framework 
proposal [35] being considered by OASIS.  There are 
two important properties of OGSI/WS-RF that are 
critical for building a component architecture.  

1. OGSI/WS-RF has a standard mechanism to 
record and report service metadata.  This 
provides a uniform way to do runtime 
component introspection. 

2. WS-RF contains a specification called WS-
Notification that provides all the mechanisms 
need to implement a “publish-subscribe” 
messaging systems.     

 
5. Building an Application Component 
Framework on top of OGSA. 
 

XCAT is our CCA compliant Application 
Component Framework that is built on top of a web 
service foundation.  XCAT provides ports are 
implemented as OGSI web services.  (We are 
developing plans for a WS-RF based version.)  XCAT 
uses ports can accept a connection to any properly 
typed XCAT provides port but also to any OGSI 
compliant web service [19,21].  Given this capability, 
what is involved in building distributed Grid 
applications using this system?  What are the specific 
technical problems that are solved and what additional 
problems are encountered?  We consider the following 
to be the most important issues. 

1. How does one program a “Grid application”? 
Some components are linked uses-port-to-
provides-port as described in the classical 
CCA model, but others consist of a set of 
components that are run at different time and 
their connection is more implicit and the logic 
is driven by sequences of events.    

2. How does one use a Grid application?  The 
applications often take the form of services 
that are access through a Grid portal.  The 
user supplies parameters and the application 
is launched.  How do we control multiple 
users trying to invoke the application at the 
same time?   

3. How can traditional applications be included 
as components in this framework?  For 
example, an HPF based Fortran application 
running on a parallel supercomputer? 



4. How do we deal with very dynamically 
changing resource environments?  In a 
conventional virtual memory operating 
system, applications migrate between physical 
memory and disk.  Is there an analog for Grid 
applications that may run for days and need 
many resources to execute? 

5. How do we handle user authentication and 
authorization for Grid applications?  If I build 
a grid application that uses a variety of remote 
services that I am authorized to use, how can 
anybody else use this application unless they 
have the same privileges?  

We address each of these questions below. 
 
5.1 Programming Grid Applications: Control 
in a Distributed Framework. 

 
An application component architecture for a 

Grid must assume that an application instance consists 
of coupled component instances that are physically 
distributed in both space and time.  By this we mean 
the individual component instances may be running on 
different hosts and they communicate over the 
network. And, because of the nature of Grid workflow 
constraints they may be actually executing at very 
different times.   
 To understand this issue, consider the basic 
IOC model we assume for a component-based 
application.  A framework or application controller 
component sequences the execution of component 
interactions.  The CCA framework assumes that 
components interact through uses and provides ports.  
Because XCAT has ports that are Grid services, this 
means that connected components may reside on 
different hosts (see Figure 2) and the connection 
between the components can be implemented using 
standard web service messaging protocols such as 
SOAP.    
 In the case that the components are all 
running simultaneously and coupled via a system of 
uses-to-provides port connections, CCA application 
controllers can be written as a traditional C++ or Java 
application.  Another approach that is very popular is 
to use a scripting language like Python.   
 An attractive alternative is to have a graphical 
representation for interconnected set of components. 
Users can freely add new components to the 
workspace (Figure 3.), connect them together, modify 
their properties and press a go button to have an 
application corresponding to this visual description 
executed. The visual description is based on a graph 
where nodes are component instances and edges are 

connection between component instances. Such graph 
describes all necessary information to proceed with 
execution. 

 Figure 2. A Distributed Component Framework requires a 
remote message architecture to connect users to providers. 
 

 
Figure 3.  The Graphical User Interface for the Ccaffeine 
[17] CCA component application builder (from the CCA 
tutorial [18]) 
 
 In many cases components may not actually 
be executing at the same time.  For example, one 
application that we are working on involves severe 
storm modeling.  In this case some components are 
data mining streams of data from sensors.  When the 
mining components detect significant “bad weather” 
the application will invoke a number of simulation 
applications to predict the progress of the storm.  As 
these applications complete, visualization processes 
turn the output into movies for the scientist to study.   
In this case we are now controlling Grid workflow (see 
Figure 3.).  The important difference between the 
simultaneous execution model (composition in space) 
and the scheduling of tasks model (composition in 
time) lies in the way we manage communication.  
Composition in space typically follows an RPC model: 
the user invokes a service provided and waits for a 
response.   In the case of composition in time 
communication is by message notification.   
 
 



 
Figure 4. A workflow driven application.  Data mining 
components poll sensor services and generate notification 
events when something interesting happens.  This causes the 
workflow to be activated.  The workflow script contacts the 
application factory to launch simulation components.  
Simulation events are relayed to the notification system, 
which notifies the workflow to instantiate the visualization 
components. 
 
 Fortunately, the web services model 
completely supports both communication models.  A 
notification framework is a persistent service that 
provides ports for message delivery and subscription.  
 To “program” time-based composition we 
need to be able to describe the order in which 
components are created, used, and destroyed. Instead 
of reverting to scripts, it is worthwhile to consider 
more powerful graph languages that can be used to 
describe workflows. Workflows have rich body of 
research that is built on well understood concepts like 
Petri nets to formalize workflow description and to 
enable mathematical analysis. Moreover there are 
many existing workflow languages, products and tools 
that can be used. However they lack interoperability 
and rarely work well in Grid environments as most of 
them was created for business production workflows. 
 An ideal workflow language should have 
strong graph composition capabilities to make it 
possible to use it with visual workflow design tools.  It 
should also have simple and easy to understand 
procedural constructs such as loops to avoid 
limitations of pure graph language. And it should work 
with Web services and Grid services. 
 We think that BPEL4WS [37] is a strong 
starting point for a Grid workflow composition 

language.  Even though it was not designed for Grid 
environments, it is extensible enough to allow its use 
in OGSI and WSRF based Grids. We are currently 
investigating ways in which BPEL4WS can be adapted 
to work in WSRF Grids and in particular to compose 
XCAT components. We are considering ways 
BPEL4WS can be made more dynamic.   
 
5.2 Using Grid applications: Portals and 
Factories  
 
 The use model for Grid applications is also 
different from the case where one scientist can simply 
give a code to another.  Because the application is a 
scripted composition of services, there may not be 
much of a “code” to give away.   And when there is 
code that can be moved, it is often extremely difficult 
to provide it in a way that is easy to use by somebody 
else.  For Grid applications, complex dependencies on 
the users’ environment on each host are usually the 
most difficult problem to solve.   
 A better approach is to provide the application 
as a service.  NetSolve [27] and Ninf [28] were the 
first systems to exploit this concept.  However, their 
approach only works if they services are stateless, and 
are only meant to provide certain functionality on the 
Grid. An approach we advocate for applications on the 
Grid that have state is the use of Application Factories 
[39]. In XCAT, Application Factories provide a set of 
pre-packaged applications consisting of a set of 
distributed components. Authorized users can connect 
to the factory service from a user portal and request an 
instantiation of an application. The factory service 
would then instantiate all the components that are part 
of the application, and connect them together to 
compose an instance of the distributed application. The 
user can then control the application using a reference 
to the Application Coordinator that is returned by the 
factory service after successful instantiation of the 
application. 
  
5.3 Traditional Applications as Components 
 
 There have been several efforts at component-
izing traditional scientific applications. CCA has been 
used in the context of parallel PDE solvers [16], earth 
systems modeling [30,33,34] and for other high 
performance scientific simulation codes [11,32]. 
However, this calls for rewriting legacy scientific 
codes as components. Another approach is to use the 
concept of application managers [38]. 
 In the application manager approach, every 
scientific application is wrapped by a generic 



application manager component, which is responsible 
for managing the execution of the application, 
monitoring its status, and staging its input and output 
data. The application managers can then be accessed 
via standard grid mechanisms. 
 An example of a chemical engineering 
application using the application manager approach is 
illustrated in Figure 5. 
 
 

 
Figure 5. Two coupled Chemical Engineering simulation 
programs. Application Manger 1 signals Application Manger 
2 when the Monte Carlo simulation completes a time step 
and the associated output state files have been migrated. 
Upon receipt of the message Application Manager 2 runs the 
continuum simulation. When this terminates, control is 
returned to Application Manager 1 for the next iteration 
 
5.4 Dynamic Environments 
  
 The resources in a Grid-based environment 
can be highly dynamic. This is especially problematic 
when the applications are long running in nature. The 
applications on the Grid, hence, have to be able to 
adapt to the runtime environment, so that they can 
provide acceptable Quality of Service (QoS) to the 
user. The dynamic nature of the Grid causes several 
challenges – scheduling of the grid application such 
that applications get the resources they desire and the 
throughput of the system is maximized, providing fault 
tolerance for long running applications especially since 
resources can fail at any time, providing the ability for 
components to migrate to better resources as they 
become available. We address these issues in the 
following paragraphs. 
 Scheduling long running applications in a 
Grid system is difficult since it is difficult to predict 
the resource requirements and characteristics at job 
submission time. Projects such as Condor [29] provide 
scheduling services on the Grid. In addition, Condor 
also provides an ability to checkpoint an application so 
that (a) an application can start at the latest checkpoint 
if the resource on which it is executing crashes, and (b) 
the application can be migrated to another resource if 

either the resource is not capable of providing 
acceptable performance or if the resource decides to 
evict the application due to some policy violations. 
 However, the job of checkpointing and 
migration of an application is more complicated if the 
components those constitute an application are 
distributed over various resources (such as in our 
case). Checkpointing the components individually will 
not preserve consistency of global state, and 
distributed checkpointing algorithms have to be used 
for the same. 
 Currently, efforts are underway within the 
XCAT project to provide distributed checkpointing for 
fault tolerance of an application, and also to provide 
migration of individual components. The ability to 
migrate can be used in conjunction with traditional 
schedulers to provide better throughput in a dynamic 
environment. 
 
5.5 Security 
 
 Security is an important issue in the Grid 
since the services and components are distributed all 
across the network. There are three primary issues to 
address: 

1. Authentication – This is the step where the 
identity of the caller (i.e. the client who 
invokes the Grid service) is established 

2. Authorization – This is the step where a 
decision is made whether a client does or does 
not have the right of invoking a service, once 
his/her identity is established. 

3. Confidentiality – This is the step where all 
data that is sent between a caller and the 
callee is encrypted such that no person other 
than the intended receiver can make sense of 
it. 

In the Grid world, authentication and encryption is 
generally addressed using X.509 certificates and public 
key cryptography. Authorization is generally provided 
by using Access Control and/or Revocation lists that 
provide or revoke privileges to users. 
 However, there are two popular approaches to 
security using the above technologies. 

1. Transport Level – This approach advocates 
creation of a secure channel between the 
caller and callee prior to the invocation of a 
remote call (via the use of technologies such 
as SSL/TLS).  

2. Message Level – This approach is advocated 
by the WS-Security [40] specification. WS-
Security provides mechanisms to provide 
authentication, integrity and confidentiality of 



a message, irrespective of the transport 
mechanism used. 

We are currently analyzing the viability of each of the 
two approaches. 
 
6. Conclusions 
 
 In this paper we have attempted to outline the 
primary design issues that are critical for building a 
distributed software component architecture for Grid 
applications. Unlike the non-distributed case, where 
software components typically all reside in the same 
address space and communicate by simple method or 
function invocation, the distributed case requires a 
very flexible communication model.  The XCAT 
system we have built will allow components to be Grid 
web services which communicate by direct SOAP 
messages or indirectly through a notification service.  
This allows components in a application to be very 
dynamic at runtime.  As services they are “virtually” 
always available, but exact host they are running on 
may not be known until they are actually invoked.  
And, they may move when resource constraints require 
them to do so.   We have also observed that security is 
a critical issue that separates the Grid applications 
from more traditional scientific codes.  Web service 
security protocols allow us to provide both 
authentication and authorization at the message level in 
order to make dealing with security easy for the 
application programmer. 
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