
On Building Parallel & Grid Applications:
Component Technology and Distributed Services

Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy,
Yogesh Simmhan, Aleksander Slominski

Department of Computer Science, Indiana University

Bloomington, IN
gannon@cs.indiana.edu

Abstract

Software Component Frameworks are well known
in the commercial business application world and now
this technology is being explored with great interest as
a way to build large-scale scientific application on
parallel computers. In the case of Grid systems, the
current architectural model is based on the emerging
web services framework. In this paper we describe
progress that has been made on the Common
Component Architecture model (CCA) and discuss its
success and limitations when applied to problems in
Grid computing.

Our primary conclusion is that a component model
fits very well with a services-oriented Grid, but the
model of composition must allow for a very dynamic
(both in space and it time) control of composition. We
note that this adds a new dimension to conventional
service workflow and it extends the “Inversion of
Control” aspects of must component systems.

1. Introduction

A Software Component Framework provides a
way to build applications by composing them from
predefined and tested units of code called
“components”. The need for component frameworks
is driven by the complexity of the programming tasks
we see today. It is no longer conceivable that a single
programmer can build a large application by writing
every line of code. Professional programmers work by
composing elements from large collections of libraries
made available from third parties or the vast open-
source community. In the area of scientific
applications the multidisciplinary nature of our work
has driven us to work in large teams of specialists.

Though slower to change than the rest of the software
world, scientific community has reached the software
complexity threshold where a profound change in
programming practice is required to build the next
generation of high performance, multidisciplinary
applications.

In 1995 an effort began within a small group of
collaborators to define a component architecture for
scientific applications that ran on massively parallel
systems. This effort gained support from the Office of
Science of the U.S. Department of Energy and it has
grown to be a consortium of researchers from about 15
universities and laboratories. The resulting
specification, called the Common Component
Architecture (CCA) [7,8,10] has been implemented in
several different frameworks [14,15,17,21,31].

At the same time that CCA has been developed and
tested for applications on high performance parallel
computers, another group has been looking at
applications that span multiple resources in “Grid”
environments [26]. These Grid applications have
several additional dimensions of complexity because
they are more heterogeneous, dynamic and distributed
in both space and time. In addition, factors such as
security are often as critical as performance. The
emerging Grid architecture is based on web services
and, as we shall show, this provides an interesting
foundation for a Grid CCA.

In the paragraphs that follow we will describe some
of the formal properties of component architectures
that make them useful and some of the progress made
on CCA. We will then describe the difficult problems
that must be solved to make the architecture work in
the Grid environment and discuss several solutions to
these problems.

2. Software Component Frameworks

What sets component architectures apart from

standard class or subroutine libraries are a few basic
properties.

1. A component is a service that is defined
by a set of interfaces that it implements. A
user of a component invokes the functions
defined by the services interfaces and the
appropriate actions are taken by the
component implementation. In most cases
this service is considered to be stateless,
but in some cases the component interacts
with a resource, such as a database which
has state.

2. Each component framework provides a
component container or context in which
components are instantiated and
composed. In some systems the
framework often also provides a set of
standard services (implicit components)
that can be used by the instantiated
components.

A critical feature of component frameworks is that
applications can be built by composing components
and, because the components are designed to follow a
specific set of behavior rules, the composed
application works as expected. For example, an
important feature of component frameworks that
differs from many standard programming models, is
the use of a design pattern called Inversion of Control
(IOC). The basic principle of IOC has two parts.
First, application control is never distributed over or
vested in more than one driver component of the
application, and, in some systems, the control flow of
the application lies completely within the framework
“container”. In its purest form IOC also implies that a
component instance has a lifecycle and environment
that is completely managed by the framework.
Everything the component needs is supplied by the
component. One aspect of this idea, as argued by
Fouler [5], involves Dependency Injection, which is
the concept that applications invoke services but the
instantiation of the component that implements this
service is determined by the framework at runtime. In
other words, the dependency of one component
instance upon another is injected into the system at the
latest possible time.

Another type of behavior rule that many component
systems enforce is a standard way for a framework to
learn about a component at runtime. This type of
component introspection is what allows a framework

to discover that a component actually implements an
interface required by an application.

The earliest component frameworks with many of
this properties included Microsoft COM, the Java bean
model and the CORBA Component Model [6].
Szyperski [12] provides a description of many other
component system properties and features. More
recently the complexity of the Enterprise Java Bean
framework has spawned other frameworks like Spring
[24] to simplify its programming model. Pico [23] and
the Apache Avalon [25], which is a server side
framework for Apache, are also important component
frameworks.

In the case of scientific applications, early
component architectures include the Model and CODE
frameworks [1,2]. In visualization applications the
most important examples are the AVS system [36] and
the SciRun [22] framework, which now also
implements the CCA model described in greater detail
below. Webflow [26] was an early component model
for distributed systems for scientific applications, and,
more recently, the Discover project [3,4] considers the
problem in the context of Grid systems.

3. CCA

The Common Component Architecture is defined
by a set of framework services and the way
components are defined. Each component
communicates with other components by a system of
“ports”. Ports are defined by a type system, which is
expressed in “Scientific Interface Definition
Language” (SIDL). SIDL provides simple way to
describe a method interface in terms of the data \types
common in scientific computing. (The associated tools
that are part of the Babel Toolkit [13] allow powerful
language interoperability between Fortran, C++, and
Python.) There are two types of CCA ports:

1. Provides Ports are the services offered by
the component. Each provides port
implements an interface defined in IDL.

2. Uses Ports are component features that
implement the use of a service provided by
another component. They bound to the
“stubs” that a component “uses” to invoke
the services of another port “provided” by
another component. Uses ports are also
defined by IDL.

As illustrated in Figure 1 below, a uses port on
one component can be connected to the provides port
of another component as long as they implement the
same SIDL interface. The connection is made by the
framework operation “connect” at runtime. When a

component wants to use a service connected to one of
its “uses” ports, it executes a framework “getPort”
operation. This provides an implementation of the port
or blocks until one is available. When the component
is finished it issues a “releasePort” operation.

Figure 1. Component A has a uses port called vecPort which
it uses to compute the dot product of a vector with itself.
The port is defined by the SIDL interface VectOp.
Component B has a provides port that implements the
VectOp interface and the vecPort uses port from component
A is connected to the provides port from B.

A consequence of this get/release semantics is
that component connections may be changed at
runtime, which is especially useful in dynamic
environments.

.
4. The Grid Service Architecture

We can define a Grid to be a distributed collection
of resources and services, which operate together as a
single system. The services include:

• Data Services – archives of file objects,
databases, streaming data sources such as
those generated from on-line instruments,
directories and indexes.

• Security Services – the mechanisms used by a
service to authenticate users and user agents
and to manage their authorization to use other
services.

• Compute Services – the mechanisms that
enable a user Grid application instance to
schedule units of work on the computing
hardware that underlies the grid.

• Messaging services – the mechanisms uses
that allow an application component to
subscribe to notification about events
generated by other parts of the application or
the Grid itself.

This is only a partial list. The precise Grid
architecture of services is currently being defined in
detail by the Global Grid Forum, Open Grid Service

Architecture (OGSA) Working Group. Each service
in this Grid architecture is implemented as a Web
Service. In the first vision for OGSA [9], these web
services all conformed to the Open Grid Service
Infrastructure (OGSI) [20] specification, but that has
now been replaced by the WS-Resources Framework
proposal [35] being considered by OASIS. There are
two important properties of OGSI/WS-RF that are
critical for building a component architecture.

1. OGSI/WS-RF has a standard mechanism to
record and report service metadata. This
provides a uniform way to do runtime
component introspection.

2. WS-RF contains a specification called WS-
Notification that provides all the mechanisms
need to implement a “publish-subscribe”
messaging systems.

5. Building an Application Component
Framework on top of OGSA.

XCAT is our CCA compliant Application
Component Framework that is built on top of a web
service foundation. XCAT provides ports are
implemented as OGSI web services. (We are
developing plans for a WS-RF based version.) XCAT
uses ports can accept a connection to any properly
typed XCAT provides port but also to any OGSI
compliant web service [19,21]. Given this capability,
what is involved in building distributed Grid
applications using this system? What are the specific
technical problems that are solved and what additional
problems are encountered? We consider the following
to be the most important issues.

1. How does one program a “Grid application”?
Some components are linked uses-port-to-
provides-port as described in the classical
CCA model, but others consist of a set of
components that are run at different time and
their connection is more implicit and the logic
is driven by sequences of events.

2. How does one use a Grid application? The
applications often take the form of services
that are access through a Grid portal. The
user supplies parameters and the application
is launched. How do we control multiple
users trying to invoke the application at the
same time?

3. How can traditional applications be included
as components in this framework? For
example, an HPF based Fortran application
running on a parallel supercomputer?

4. How do we deal with very dynamically
changing resource environments? In a
conventional virtual memory operating
system, applications migrate between physical
memory and disk. Is there an analog for Grid
applications that may run for days and need
many resources to execute?

5. How do we handle user authentication and
authorization for Grid applications? If I build
a grid application that uses a variety of remote
services that I am authorized to use, how can
anybody else use this application unless they
have the same privileges?

We address each of these questions below.

5.1 Programming Grid Applications: Control
in a Distributed Framework.

An application component architecture for a

Grid must assume that an application instance consists
of coupled component instances that are physically
distributed in both space and time. By this we mean
the individual component instances may be running on
different hosts and they communicate over the
network. And, because of the nature of Grid workflow
constraints they may be actually executing at very
different times.
 To understand this issue, consider the basic
IOC model we assume for a component-based
application. A framework or application controller
component sequences the execution of component
interactions. The CCA framework assumes that
components interact through uses and provides ports.
Because XCAT has ports that are Grid services, this
means that connected components may reside on
different hosts (see Figure 2) and the connection
between the components can be implemented using
standard web service messaging protocols such as
SOAP.
 In the case that the components are all
running simultaneously and coupled via a system of
uses-to-provides port connections, CCA application
controllers can be written as a traditional C++ or Java
application. Another approach that is very popular is
to use a scripting language like Python.
 An attractive alternative is to have a graphical
representation for interconnected set of components.
Users can freely add new components to the
workspace (Figure 3.), connect them together, modify
their properties and press a go button to have an
application corresponding to this visual description
executed. The visual description is based on a graph
where nodes are component instances and edges are

connection between component instances. Such graph
describes all necessary information to proceed with
execution.

 Figure 2. A Distributed Component Framework requires a
remote message architecture to connect users to providers.

Figure 3. The Graphical User Interface for the Ccaffeine
[17] CCA component application builder (from the CCA
tutorial [18])

 In many cases components may not actually
be executing at the same time. For example, one
application that we are working on involves severe
storm modeling. In this case some components are
data mining streams of data from sensors. When the
mining components detect significant “bad weather”
the application will invoke a number of simulation
applications to predict the progress of the storm. As
these applications complete, visualization processes
turn the output into movies for the scientist to study.
In this case we are now controlling Grid workflow (see
Figure 3.). The important difference between the
simultaneous execution model (composition in space)
and the scheduling of tasks model (composition in
time) lies in the way we manage communication.
Composition in space typically follows an RPC model:
the user invokes a service provided and waits for a
response. In the case of composition in time
communication is by message notification.

Figure 4. A workflow driven application. Data mining
components poll sensor services and generate notification
events when something interesting happens. This causes the
workflow to be activated. The workflow script contacts the
application factory to launch simulation components.
Simulation events are relayed to the notification system,
which notifies the workflow to instantiate the visualization
components.

 Fortunately, the web services model
completely supports both communication models. A
notification framework is a persistent service that
provides ports for message delivery and subscription.
 To “program” time-based composition we
need to be able to describe the order in which
components are created, used, and destroyed. Instead
of reverting to scripts, it is worthwhile to consider
more powerful graph languages that can be used to
describe workflows. Workflows have rich body of
research that is built on well understood concepts like
Petri nets to formalize workflow description and to
enable mathematical analysis. Moreover there are
many existing workflow languages, products and tools
that can be used. However they lack interoperability
and rarely work well in Grid environments as most of
them was created for business production workflows.
 An ideal workflow language should have
strong graph composition capabilities to make it
possible to use it with visual workflow design tools. It
should also have simple and easy to understand
procedural constructs such as loops to avoid
limitations of pure graph language. And it should work
with Web services and Grid services.
 We think that BPEL4WS [37] is a strong
starting point for a Grid workflow composition

language. Even though it was not designed for Grid
environments, it is extensible enough to allow its use
in OGSI and WSRF based Grids. We are currently
investigating ways in which BPEL4WS can be adapted
to work in WSRF Grids and in particular to compose
XCAT components. We are considering ways
BPEL4WS can be made more dynamic.

5.2 Using Grid applications: Portals and
Factories

 The use model for Grid applications is also
different from the case where one scientist can simply
give a code to another. Because the application is a
scripted composition of services, there may not be
much of a “code” to give away. And when there is
code that can be moved, it is often extremely difficult
to provide it in a way that is easy to use by somebody
else. For Grid applications, complex dependencies on
the users’ environment on each host are usually the
most difficult problem to solve.
 A better approach is to provide the application
as a service. NetSolve [27] and Ninf [28] were the
first systems to exploit this concept. However, their
approach only works if they services are stateless, and
are only meant to provide certain functionality on the
Grid. An approach we advocate for applications on the
Grid that have state is the use of Application Factories
[39]. In XCAT, Application Factories provide a set of
pre-packaged applications consisting of a set of
distributed components. Authorized users can connect
to the factory service from a user portal and request an
instantiation of an application. The factory service
would then instantiate all the components that are part
of the application, and connect them together to
compose an instance of the distributed application. The
user can then control the application using a reference
to the Application Coordinator that is returned by the
factory service after successful instantiation of the
application.

5.3 Traditional Applications as Components

 There have been several efforts at component-
izing traditional scientific applications. CCA has been
used in the context of parallel PDE solvers [16], earth
systems modeling [30,33,34] and for other high
performance scientific simulation codes [11,32].
However, this calls for rewriting legacy scientific
codes as components. Another approach is to use the
concept of application managers [38].
 In the application manager approach, every
scientific application is wrapped by a generic

application manager component, which is responsible
for managing the execution of the application,
monitoring its status, and staging its input and output
data. The application managers can then be accessed
via standard grid mechanisms.
 An example of a chemical engineering
application using the application manager approach is
illustrated in Figure 5.

Figure 5. Two coupled Chemical Engineering simulation
programs. Application Manger 1 signals Application Manger
2 when the Monte Carlo simulation completes a time step
and the associated output state files have been migrated.
Upon receipt of the message Application Manager 2 runs the
continuum simulation. When this terminates, control is
returned to Application Manager 1 for the next iteration

5.4 Dynamic Environments

 The resources in a Grid-based environment
can be highly dynamic. This is especially problematic
when the applications are long running in nature. The
applications on the Grid, hence, have to be able to
adapt to the runtime environment, so that they can
provide acceptable Quality of Service (QoS) to the
user. The dynamic nature of the Grid causes several
challenges – scheduling of the grid application such
that applications get the resources they desire and the
throughput of the system is maximized, providing fault
tolerance for long running applications especially since
resources can fail at any time, providing the ability for
components to migrate to better resources as they
become available. We address these issues in the
following paragraphs.
 Scheduling long running applications in a
Grid system is difficult since it is difficult to predict
the resource requirements and characteristics at job
submission time. Projects such as Condor [29] provide
scheduling services on the Grid. In addition, Condor
also provides an ability to checkpoint an application so
that (a) an application can start at the latest checkpoint
if the resource on which it is executing crashes, and (b)
the application can be migrated to another resource if

either the resource is not capable of providing
acceptable performance or if the resource decides to
evict the application due to some policy violations.
 However, the job of checkpointing and
migration of an application is more complicated if the
components those constitute an application are
distributed over various resources (such as in our
case). Checkpointing the components individually will
not preserve consistency of global state, and
distributed checkpointing algorithms have to be used
for the same.
 Currently, efforts are underway within the
XCAT project to provide distributed checkpointing for
fault tolerance of an application, and also to provide
migration of individual components. The ability to
migrate can be used in conjunction with traditional
schedulers to provide better throughput in a dynamic
environment.

5.5 Security

 Security is an important issue in the Grid
since the services and components are distributed all
across the network. There are three primary issues to
address:

1. Authentication – This is the step where the
identity of the caller (i.e. the client who
invokes the Grid service) is established

2. Authorization – This is the step where a
decision is made whether a client does or does
not have the right of invoking a service, once
his/her identity is established.

3. Confidentiality – This is the step where all
data that is sent between a caller and the
callee is encrypted such that no person other
than the intended receiver can make sense of
it.

In the Grid world, authentication and encryption is
generally addressed using X.509 certificates and public
key cryptography. Authorization is generally provided
by using Access Control and/or Revocation lists that
provide or revoke privileges to users.
 However, there are two popular approaches to
security using the above technologies.

1. Transport Level – This approach advocates
creation of a secure channel between the
caller and callee prior to the invocation of a
remote call (via the use of technologies such
as SSL/TLS).

2. Message Level – This approach is advocated
by the WS-Security [40] specification. WS-
Security provides mechanisms to provide
authentication, integrity and confidentiality of

a message, irrespective of the transport
mechanism used.

We are currently analyzing the viability of each of the
two approaches.

6. Conclusions

 In this paper we have attempted to outline the
primary design issues that are critical for building a
distributed software component architecture for Grid
applications. Unlike the non-distributed case, where
software components typically all reside in the same
address space and communicate by simple method or
function invocation, the distributed case requires a
very flexible communication model. The XCAT
system we have built will allow components to be Grid
web services which communicate by direct SOAP
messages or indirectly through a notification service.
This allows components in a application to be very
dynamic at runtime. As services they are “virtually”
always available, but exact host they are running on
may not be known until they are actually invoked.
And, they may move when resource constraints require
them to do so. We have also observed that security is
a critical issue that separates the Grid applications
from more traditional scientific codes. Web service
security protocols allow us to provide both
authentication and authorization at the message level in
order to make dealing with security easy for the
application programmer.

7. References
[1] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, P.
Newton. Visual Programming and Debugging for Parallel
Computing. IEEE Parallel and Distributed Technology,
Spring 1995, Volume 3, Number 1, 1995.
[2] P. Newton and J.C. Browne. The CODE 2.0 Graphical
Parallel Programming Language. Proc. ACM Int. Conf. on
Supercomputing, July 1992.
[3] V. Bhat and M. Parashar. Discover Middleware Substrate
for Integrating Services on the Grid. Proceedings of the 10th
International Conference on High Performance Computing
(HiPC 2003), Lecture Notes in Computer Science, Editors:
T.M. Pinkston, V.K. Prasanna, Springer-Verlag, Hyderabad,
India, Vol. 2913, pp 373 – 382, December 2003
[4] M. Agarwal and M. Parashar . Enabling Autonomic
Compositions in Grid Environments.Proceedings of the 4th
International Workshop on Grid Computing (Grid 2003),
Phoenix, AZ, USA, IEEE Computer Society Press, pp 34 -
41, November 2003
[5] Martin Fowler. Inversion of Control Containers and the
Dependency Injection pattern. January 2004,
http://www.martinfowler.com/articles/injection.html
[6] CORBA Component Model. http://www.omg.org/
technology/documents/formal/components.htm.

[7] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna
Keahey, Scott Kohn, Lois McInnes, Steve Parker, and Brent
Smolinski. Towards a common component architecture for
high performance scientific computing. In Proceedings of the
The Eighth IEEE International Symposium on High
Performance Distributed Computing, 1998.
[8] David Bernholdt, et al. A Component Architecture for
High-Performance Scientific Computing. To appear.
[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
Services for Distributed System Integration. Computer 35(6),
2002.
[10] CCA specification. http://cca-forum.org/specification.
[11] David E. Bernholdt, Robert C. Armstrong, and
Benjamin A. Allan. Managing complexity in modern high
end scientific computing through component-based software
engineering. In Proc. of HPCA Workshop on Productivity
and Performance in High-End Computing (PPHEC 2004),
Madrid, Spain. IEEE Computer Society, 2004.
[12] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press, New York, New
York 10036, 1999.
[13] Tammy Dahlgren, Tom Epperly, and Gary Kumfert.
Babel User’s Guide. CASC, Lawrence Livermore National
Laboratory, version 0.8.4 edition, April 2003.
[14] Gary Kumfert. Understanding the CCA specification
using Decaf. Technical Report UCRLMA-145991, Lawrence
Livermore National Laboratory, 2003. http://www.llnl.
gov/CASC/components/docs.html.
[15] David E. Bernholdt, Wael R. Elwasif, James A. Kohl,
and Thomas G. W. Epperly. A component architecture for
high-performance computing. In Proceedings of the
Workshop on Performance Optimization via High-Level
Languages and Libraries (POHLL-02), 2002.
[16] B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland,
L. McInnes, and B. Smith. Parallel components for PDEs and
optimization: Some issues and experiences. Parallel
Computing, 28 (12):1811–1831, 2002.
[17] Benjamin A. Allan, Robert C. Armstrong, Alicia
P.Wolfe, Jaideep Ray, David E. Bernholdt, and James A.
Kohl. The CCA core specification in a distributed memory
SPMD framework. Concurrency and Computation: Practice
and Experience, 14(5):1–23, 2002.
[18] CCA Tutorials. http://www.cca-forum.org/tutorials/
[19] Madhusudhan Govindaraju, Sriram Krishnan, Kenneth
Chiu, Aleksander Slominski, Dennis Gannon, Randall
Bramley. Merging the CCA Component Model with the
OGSI Framework. In 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, May 12-
15, 2003.
[20] The Open Grid Services Infrastructure Working Group.
http://www.gridforum.org/ogsi-wg, 2003.
[21] Sriram Krishnan and Dennis Gannon. XCAT3: A
Framework for CCA Components as OGSA Services. In
Proceedings of HIPS 2004, 9th International Workshop on
High-Level Parallel Programming Models and Supportive
Environments, April, 2004.
[22] S.G. Parker and C.R. Johnson. SCIRun: A scientific
programming environment for computational steering. In
Supercomputing ‘95. IEEE Press, 1995.

[23] The Pico Framework, http://www.picocontainer.org
[24] The Spring Project. http://www.springframework.org
[25] The Avalon Project. http://avalon.apache.org/.
[26] Dimple Bhatia, Vanco Burzevski, Maja Camuseva,
Geoffrey Fox, Wojtek Furmanski, Girish Premchandra
WebFlow: A Visual Programming Paradigm for Web/Java
Based Coarse Grain Distributed Computing
(1997) .Concurrency - Practice and Experience.
[27] Henri Casanova and Jack Dongarra, NetSolve: a
network server for solving computational science problems.
Proceedings SC 96.
[28] Satoshi Matsuoka, et. al., Ninf: A Global Computing
Infrastructure, http://ninf.apgrid.org/welcome.shtml
[29] Todd Tannenbaum, Derek Wright, Karen Miller, and
Miron Livny. Condor - A Distributed Job Scheduler. In
Beowulf Cluster Computing with Linux, The MIT Press,
2002.
[30] Earth System Modeling Framework (ESMF).
http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc.
[31] Felipe Bertrand and Randall Bramley. DCA: A
distributed CCA framework based on MPI. In Proceedings of
the 9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS’03), Santa Fe, NM, April 2004. IEEE Press. 53
[32] S. Lefantzi, J. Ray, and H. N. Najm. Using the common
component architecture to design high performance
scientific simulation codes. In Proceedings of the 17th
International Parallel and Distributed Processing
Symposium (IPDPS 2003), 22-26 April 2003, Nice, France.
IEEE Computer Society, 2003.

 [33] J. Walter Larson, Boyana Norris, Everest T. Ong,
David E. Bernholdt, John B. Drake, Wael R. Elwasif,
Michael W. Ham, Craig E. Rasmussen, Gary Kumfert,
Daniel S. Katz, Shujia Zhou, Cecelia DeLuca, and Nancy S.
Collins. Components, the common component architecture,
and the climate/weather/ocean community. In 84th American
Meteorological Society Annual Meeting, Seattle,
Washington, 11–15 January 2004. American Meteorological
Society.
[34] S. Zhou, A. da Silva, B. Womack, and G. Higgins.
Prototyping the ESMF using DOE’s CCA. In NASA Earth
Science Technology Conference 2003, College Park, MD,
June 24–26 2003. http://esto.nasa.gov/conferences/estc2003/
papers/A4P3(Zhou).pdf.
[35] WS-Resource Framework. http://www.globus.org/wsrf.
[36] Advanced Visual Systems (AVS).
http://www.avs.com/
[37] Business Process Execution Language for Web Services
Version 1.1. http://www-
106.ibm.com/developerworks/library/ws-bpel/
[38] Sriram Krishnan, et al. The XCAT Science Portal. In
Proceedings of IEEE/ACM SuperComputing 2001, Denver,
CO. Nov 2001
[39] . Dennis Gannon, Rachana Ananthakrishnan, Sriram
Krishnan, Madhusudhan Govindaraju, Lavanya
Ramakrishnan, and Aleksander Slominski. Grid Web
Services and Application Factories. In Grid Computing:
Making the Global Infrastructure a Reality, Chapter 9. Nov
2002.
[40] Web Services Security Version 1.0. http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

http://www.springframework.org/
http://avalon.apache.org/

	1. Introduction
	2. Software Component Frameworks
	3. CCA
	4. The Grid Service Architecture
	5. Building an Application Component Framework on top of OGS
	5.1 Programming Grid Applications: Control in a Distributed
	5.2 Using Grid applications: Portals and Factories
	5.3 Traditional Applications as Components
	5.4 Dynamic Environments
	5.5 Security

	6. Conclusions
	7. References

