
Analysis of Query Matching Criteria and Resource Monitoring Models for Grid
Application Scheduling

Ronak Desai, Sameer Tilak, Bhavin Gandhi, Michael J. Lewis and Nael B. Abu-Ghazaleh
State University of New York, Binghamton NY 13902

{rdesai, sameer, bgandhi, mlewis, nael}@cs.binghamton.edu

Abstract

Making effective use of computational Grids requires
scheduling Grid applications onto resources that best match
them. Resource factors (e.g., load, availability, and lo-
cation), and demand factors (number and distribution of
application resource requests) influence scheduling decision
success. The scale of the Grid makes maintaining detailed
up-to-date information regarding all resources impractical.
Thus, concurrent distributed schedulers must attempt to
make scheduling decisions based on dynamic and poten-
tially inconsistent resource state information. In this pa-
per, we evaluate the effect that the criteria for selecting
scheduling matches has on the success of scheduling de-
cisions. We focus on three criteria: information freshness,
resource distance from requesters, and past behavior; we
evaluate the quality of the schedule for various resource
monitoring models, Grid loads, and Grid overlay topolo-
gies. Among our findings is the counter-intuitive result that
favoring freshness can sometimes hinder overall system
performance; a combination of resource distance and past
scheduling success performs best. We also evaluate a pure
resource state pull model with caching, and demonstrate
that proactively pushing dynamic state information to sched-
ulers is beneficial with respect to several different evaluation
metrics.

I. Introduction

Realizing the potential of Grids requires effective mid-
dleware services that manage the complexity of the en-
vironment and present useful abstractions to applications.
Among these services is Grid application scheduling, which
matches application resource requests to resources that can
best meet them. This problem is challenging because the
scheduling has to be carried out in a large scale, distributed,
heterogeneous, and dynamic environment. Many concurrent
and possibly competing resource reservation requests are
submitted to different schedulers, causing resource states to

vary significantly in short periods of time.
To make appropriate decisions, schedulers need up-to-

date and accurate information about Grid resources. This
information can be made available using either thepush
model to periodically distribute information out into the
Grid, or thepull modelto collect information directly from
resources on demand, to satisfy specific requests.

The push model may not directly lead to application
requests being satisfied, and may cause schedulers to use
stale (i.e. old and potentially inaccurate) information. On
the other hand, the pull model requires significant delay at
application run-time while the remote resource information
is collected. Moreover, in terms of overhead, the pull model
incurs the cost of resource discovery with each query. In
contrast, the push model requires a constant overhead as
each resource provider periodically advertises its resource
availability, and the cost of this advertisement may be amor-
tized over multiple queries that use it. Caching may improve
the pull model performance, but may also lead to the use
of outdated information, and scheduling may fail without
pulling the remote resource information again. In Section II,
we describe more specific background and related work for
Grid resource discovery and query matching.

An underlying operation needed by resource monitor-
ing algorithms is a protocol fordisseminationof resource
data to multiple schedulers distributed across the overlay
network. Structured approaches, such as multicast, require
significant overhead to maintain the multicast backbone,
and make it difficult to disseminate information at different
granularities. Moreover, brute force approaches such as
flooding lead to excessive overhead. In previous work,
we studied the use of efficient probabilistic forwarding
algorithms for disseminating resource information non-
uniformly. More specifically, resources send their informa-
tion to update schedulers with a frequency and granularity
that is inversely proportional to the distance between the re-
source and the scheduler (alternatively, the same algorithms
can be used to send queries non-uniformly from schedulers
to resources in the pull model). This model is described in
more detail in Section III. The first contribution of this paper
is to analyze the effectiveness and overhead of different re-
source monitoring models (push, pull, and variants of each)
using different network-wide dissemination algorithms.



Resource monitoring algorithms make available to sched-
ulers information regarding multiple matching resources.
The second contribution of this paper is to explore the
following question: how should schedulers select which
resource to schedule a query to, and what effect does
this query matching policy have on the performance of
the scheduler? We explore several criteria for ranking the
resources, including the distance of the resource, the fresh-
ness of the information, the historical scheduling successto
the resource, as well as combinations of these factors. We
evaluate the effect of these factors on the scheduling success
of different resource monitoring algorithms (including the
effect of the dissemination algorithm), overlay topologies,
dissemination rates, offered application loads, and typesof
available resources.

Section IV experimentally evaluates the proposed query
matching policies under different resource monitoring mod-
els. Our main high-level observations are that the push
approach reduces scheduling overhead and improves overall
query success. However, within satisfied queries, pull results
in slightly better schedules, because it acts on fresh infor-
mation. With query matching, push performance approaches
pull performance, even in this respect. Furthermore, using
freshness can unexpectedly lead to worse schedules because
it causes contention on the resources that most recently ad-
vertised their presence; the best matching criteria combines
hop count and historical scheduling success. We summarize
contributions and discuss future work in Section V.

II. Related Work

Our previous work introduced and characterized informa-
tion dissemination protocols; we designed and simulated
non-uniform protocols that result in increased information
quality available at nearby nodes [1]. This helps keep
dissemination overhead low, while maintaining acceptable
accuracy of information at places where needed. In fol-
lowup work, we showed that probabilistic dissemination
protocols have complex coverage characteristics and are
not easily controllable. We proposed hybrid protocols
to enable better control over dissemination coverage [2].
This paper integrates the dissemination protocols into a
resource monitoring and scheduling simulation framework.
We significantly extend our previous work by studying and
evaluating resource monitoring models (push vs. pull). We
also study for the first time the influence of query matching
criteria on scheduling success.

Iamnitchi et.al. [3] proposed strategies for query process-
ing and evaluated their scheduling success using average
hop count between querier and resource. Our study includes
this metric, in addition to the percentage of queries satis-
fied, and the potential application startup overhead of pre-
processing and resource reservation. We encapsulate their
“best neighbor” heuristic in ourconfidence factorranking
function component and consider the effect of two addi-
tional heuristics in ranking—distance between the requester
and the resource, and the freshness of the disseminated
state information. Finally, whereas their approach is purely
pull-based, we study the effect of push-based dissemination

as well, and explore the interaction with the underlying
dissemination algorithms.

Another decentralized resource discovery approach [4]
uses reservations with two different matching schemes—
best turn-around time and closest attribute match. In our
work, a requester matches queries locally to find a candidate
set of nodes that match all the query requirements, and then
ranks this set. Our work also differs in that it does not
require exclusive resource reservation.

In the Flock-of-Condors approach [5],Condor pools–
organized in a P2P structure using the Pastry routing
protocol–disseminate resource information and sharing poli-
cies (collectively called ClassAds [6]) to neighbors. Pools
contact one another to negotiate this resource sharing. Thus,
this approach uses a combination of push and pull. The
authors use turn-around time as the primary performance
metric. In contrast, we study various resource monitoring
models and analyze the effects of query matching policies
on several evaluation metrics, in a simulated environment.

Grid Information Services [7] require resources to be
registered with the MDS directory service. Clients query
this service to obtain information about current resource
status and sharing policy. Directory server organization,
policies for information dissemination, and resource selec-
tion criteria are left unspecified.

Lv et.al. [8] propose random walks as an alternative to
query flooding in unstructured P2P networks;k-walkerran-
dom walks help locate objects at lower overhead than TTL-
scoped flooding [9]. This approach relies on active object
replication in the overlay. Our search must consider dynamic
information, not just static objects, but could potentially
incorporate random walks to improve dissemination.

III. Resource Discovery Model

We model a computational Grid as a set of nodes1 organized
in an overlay topology. Each node acts as a resource
provider that accepts and runs applications from requesting
clients within the Grid, and also as a scheduler that may
need to find resources for queries that could not be locally
satisfied. Each node is characterized by a node descriptor
tuple(T, U, S), whereT refers to the Type of resource (e.g.
a cluster or a supercomputer),U refers to the available
resource Units (e.g. a 32-node cluster might contain 32
“units”) and S refers to the resource’s available time Slots
(e.g. a four hour block of time on a cluster node). This
characterization can be extended to represent heterogeneous
resources at a node as a vector of the resource types and
information. A query (or resource request) is characterized
by the same three parameters contained in a node descriptor.
A query contains the requested resource type (T ), the
required number of resource units (U ) and required time
slots (S). The use ofU allows us to model situations in
which more than one request uses a resource simultaneously
(this is different from other reservation schemes [4]). We

1Note that a node in our description corresponds to an aggregation of one
or more homogeneous resources such as a Condor pool with a Centralized
Manager or a cluster with a designated Cluster Manager.



useS to model application-specific time requirements, for
example, resource reservation for certain time periods. Note
thatU andS are described relative to a normalized standard
and can be re-mapped locally to the existing hardware
capabilities.

A. Architecture

The two main architectural components of our approach
are: (i) resource monitoring: this is the process of collecting
resource information for use in scheduling decisions. It can
be implemented via models such as push and pull. In either
model, a dissemination function is needed to “broadcast”
resource information (push model) or resource queries (pull
model) to other nodes in the network; (ii) query matching
and resource ranking: this component determines in what
order to request the matching resources for a given query.

We explore both the pull and push models of resource
monitoring in our study. More specifically, in the push
model, the information repositories are replenished proac-
tively by state information disseminated from the resource.
Alternatively, in the pull model, information is requested
explicitly by disseminating a request from a scheduler to
the resources (caching may be used to reuse collected
information or information requested by other nodes). One
of the contributions of the paper is to evaluate these
resource monitoring approaches under different conditions
and against different dissemination schemes.

We evaluate the Biased and Unbiased protocols de-
veloped in earlier work [1] as dissemination primitives.
These protocols use a probabilistic approach to disseminate
information more frequently to the nearby nodes than the
remote ones; thus, they capitalize on the intuition that
most queries are best matched to resources that are nearest
to them. In the Biased protocol, the dissemination (or
forwarding) probability at an intermediate node is inversely
proportional to that node’s distance from the source node.
The Unbiased protocol is simply gossipping: intermediate
nodes forward the information with constant probability
P . We refer interested readers to [1] and [2] for more
details; these works characterize the dissemination process
but do not address the query matching component of the
system, which we explore in this paper. As a result of
the dissemination, a subset of the total nodes collect the
disseminated information in their local repositories (push
model) or receive the request (pull model).

In general, the resource monitoring algorithm leads to
knowledge of multiple resources that can support a received
query. In the query matching component of the model, when
a query cannot be satisfied locally, a node consults its local
repository. Specifically, a generated query’s attributes are
matched against the attributes of the nodes in the local
repository. We use “equality” match for the resource type
attribute, and greater-than-or-equal-to match for resource
units and time slots; for example a node providing 20 slots
can match a requirement for 10 slots. All such candidate
nodes serve as inputs to a ranking function, which orders
them in decreasing order of their “fitness” for the scheduler.

B. Ranking Heuristics

We consider the following ranking heuristics:
Hop Count (HC) captures the distance between a query
generator and a resource node along the overlay topology
(as received from the resource state push). Scheduling a
job near its “launch point” reduces data transfer time and
startup costs. Therefore, each node in the local repository
is assigned a Hop Count value in inverse proportion to that
node’s distance from the query generator.
Freshness (FR)indicates how up-to-date the information
is, at the time of resource selection, using timestamps. We
use this heuristic expecting that fresh information about
resource availability is more likely to be accurate and
reliable.
The Confidence Factor (CF)heuristic captures a node’s
experience with the nodes it scheduled to in the past. We
expect that queries are more likely to be satisfied by a
node that previously satisfied similar types of queries. A
scheduler’s confidence in a node increases when the node
is successfully reserved, and decreases when it denies a
reservation.
We use these three heuristics as components to derive an
overall rank for each resource provider, using the following
weighted average formula:

RankAB = W1

1

HCAB

+ W2

1

FRAB

+ W3CFAB (1)

RankAB is an overall rank calculated at the query generator
A for resource providerB. HCAB is the Hop Count
distance betweenA andB, FRAB represents the freshness
of information of B at A at ranking time, andCFAB

indicates nodeA’s confidence inB. This ranking formula
can be instantiated with different combinations ofWi, we
present results for a handful of interesting possibilities.

C. Resource Discovery Algorithm

The query matching and resource reservation components of
the scheduler proceed as follows. First, the scheduler con-
sults a local repository to identify the full set of candidate
nodes that match the given query’s resource requirements.
The scheduler applies the ranking formula described above
to each node in the candidate set, to create an ordered list of
candidates. A Reservation Request is then sent to the first
node in the list; the request specifies the query requirements,
including the resource type, number of resource units,
and required time slots. The receiving node matches the
query requirements against its current state as described
by its local (T, U, S) tuple, to determine whether it can
accommodate this request. If it can, the node returns a
Reservation Accepted message. If the request cannot be
satisfied, the node sends a Reservation Denied message,
which removes the selected node from the scheduler’s list.
The scheduler then proceeds similarly through remaining
candidate nodes. In the event of getting Reservation Denied
message from all the candidate nodes, resource reservation
component notifies the scheduler so that it can resubmit the



request at a later time. We however, do not enforce any
specific policy regarding request re-submission.

IV. Experimental Evaluation

We use the Scalable Simulation Framework Network
(SSFNet) for all experiments [10]. The GT-ITM topology
generation tool [11] generates all simulation topologies,
which we then convert into a Domain Modeling Language
(DML) schema for use with SSFNet.

In our setup, a simulation cycle is 125 simulation
seconds; for the push model, at the beginning of each
simulation cycle, nodes disseminate resource information
using non-uniform protocols. We evaluate the performance
of various ranking functions across different non-uniform
protocols, including Unbiased (with probabilities 0.2, 0.5
and 0.8) and Biased protocols. Five seconds after the
dissemination, all the nodes generate queries at random
time offsets within a 10 second interval. For consistency
purposes, in the pure pull case, the nodes generate queries
at a random time between 5 to 15 seconds from the start
of the simulation cycle. Generated queries are then either
forwarded (in the pull case) or matched with resource
information in the local repository (for push or pull-with-
caching). The information, queries, responses, reservation
requests, and reservation replies are forwarded through the
overlay topology using shortest path routes, which are
maintained and updated at each node through the push
process. For the push model, the first few cycles in the
simulation are “warm-up cycles” consisting only of infor-
mation dissemination to populate local repositories. We do
not use such warm-up cycles for pure pull simulations.

The confidence factor for each node starts at0.5. When a
resource is successfully reserved, that provider’s confidence
value is increased by0.05; when a request is rejected, it is
decreased by0.05. Confidence values are bounded below
by 0 and above by1. We measure information freshness
in terms of simulation cycles rather than simulation clock
seconds. Therefore, all information received within the same
simulation cycle is considered equally fresh. The three
ranking values are normalized between 0 and 1 to allow
their weighted combination. When we consider multiple
factors, we give each of them equal weight. In the following
experiments, all nodes provide resources with the ten initial
resource units and 1000 resource time slots. Each node
is assigned one of three different resource types using a
uniform random distribution. All nodes generate one query
in each cycle, with resource unit and time slot values
selected randomly between1 and 5. This study considers
only dedicated Grid resources that are available throughout
the simulation, not resources that join or leave the Grid
dynamically. Upon being reserved, a resource’s available
units are reduced by the amount specified in the query, and
increased when the reservation ends.

In section IV-A, we study the ranking functions’ effect
on performance metrics by varying the information dis-
semination rate. We compare pull and push approaches,
and demonstrate the benefits of ranking with push. We
study and analyze the HC, CF-HC and CF-HC-FR ranking

combinations across different dissemination protocols. Our
results indicate, for example, that using confidence with hop
count (CF-HC) performs reasonably well with respect to all
performance criteria. We also make an interesting obser-
vation that despite the intuitive usefulness of freshness in
ranking, inclusion of freshness in ranking adversely affects
the overall performance when the information dissemination
rate is less than the query generation rate. In Section IV-C,
we study ranking under different system load scenarios.

In Section IV-D, we optimize the pull approach by
caching responses, and present simulation results comparing
pull-caching with the push-ranking approaches. We observe
the expected inherent trade-off between overhead and the
percentage of queries satisfied. We show that the push-
ranking approach is more controllable compared to the pull
approach. Push-ranking takes aresource-centricview and
allows the resource provider to control the tradeoff between
system overhead and the percentage of queries satisfied.
More specifically, a resource provider can reduce its dissem-
ination frequency to match the required query satisfaction.
Therefore, we believe that push-ranking distributes control
between providers and requesters, which is not possible
using a pure pull approach.

A. Study of Ranking parameters

Here we vary the information dissemination rate and
study its effect on the performance of several ranking
functions. We present simulation results for a transit stub
type random topology of600 nodes.

Figure 1 shows results for the case when the information
dissemination rate is equal to the query generation rate.
That is, each node disseminates information and generates
one query in each simulation cycle. Using information
dissemination increases the percentage of satisfied queries
compared to the pure pull approach. Specifically, for the
Unbiased 0.2 protocol, the percentage of queries satisfied is
increased by11%, as shown in Figure 1(a). Furthermore, the
total system overhead is reduced for Unbiased 0.5, Unbiased
0.8 and Biased protocols. Figure 1(b) shows that up to32%
reduction in overhead is achieved in the case of Unbiased
0.8. In this case, even though ranking improves query
satisfaction by merely1 or 2% (marginal improvement),
it reduces total system overhead. For example, Figure 1(b)
shows that Unbiased 0.5 with a CF-HC ranking function
results in additional reduction of up to14%2 compared to
pure push. Figure 1(d) shows that using ranking functions
helps find resources in the vicinity of query generators.
Figure 1(c) shows that yield (the inverse of the number of
reservation requests per satisfied query per query generating
node) is decreased compared to push when ranking func-
tions are used, because ranking functions cause aggressive
search for resources near the query generator. Figure 1(c)
shows that the performance of two ranking functions, CF-
HC and CF-HC-FR, are comparable, but HC alone doesn’t
perform well in terms of yield, compared to CF-HC.

2We derived percentage numbers from actual numerical data obtained
from simulations.



Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0.5

0.6

0.7

0.8

0.9

1

1.1

Protocols

Pe
rc

en
ta

ge
 Q

ue
ry

 S
at

isf
ie

d
Percentage Query Satisfied

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(a) Percentage Query Satisfied

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

20

40

60

80

100

120

140

160

180

200

Protocols

To
ta

l S
ys

te
m

 O
ve

rh
ea

d 
(#

 o
f P

ac
ke

ts
)

Total System Overhead

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(b) Total System Overhead

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Protocols

Yi
el

d

Yield

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(c) Yield

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

1

2

3

4

5

6

7

8

Protocols

Av
er

ag
e 

Nu
m

be
r o

f H
op

s

Average Number of Hops

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(d) Distance

Fig. 1. Dissemination rate = Query generation rate

Figure 2 shows results for the case when the information
dissemination rate is(1/5)th of the query generation rate.
In this case, nodes are divided into5 disjoint groups; the
first group disseminates information in simulation cycles
1, 6, 11 and so on, while the second group disseminates
information in simulation cycles2, 7, 12, etc. However,
each node generates a query in each simulation cycle.

Figure 2(a) shows that push protocols result in higher
percentages of queries satisfied, compared to pull. Unbiased
0.5 increases the percentage of queries satisfied by10%.
Furthermore, the system overhead for the push approach
is 35% to 80% less than pull. Using any ranking function
performs as well as pure push in terms of the percentage
of queries satisfied (Figure 2(a)). Figure 2(b) shows that
the CF-HC ranking function causes an additional reduction
of up to 20% of the total system overhead compared to
push, for the Unbiased 0.2 and Unbiased 0.5 protocols.
Figure 2(d) shows that ranking also reduces the mean
provider-generator distance. Using HC alone results in the
highest reduction in mean distance, but using the CF-
HC combination results in less overhead and better yield
compared to HC.

Using freshness adds overhead, increases the mean dis-
tance of the selected resource, and decreases yield. We
attribute this to a localflash crowdeffect. That is, all nodes
within some local region assign similar high preference to
the relatively few providers whose information is fresh.
All nodes try to reserve resources on these few favored
providers; clearly, not all can then be satisfied. Using CF or
HC does not result in this effect, because CF and HC cause
the formation of what we call local “node communities”.
When only CF is used, each query generator initially finds
appropriate providers without any bias. Once CF values are
learned, subsequent provider selection decisions are biased
based on these CF values. Query generators then end up
selecting the same provider that satisfied queries in the
past. Each node learns different CF values based on its
experiences with other nodes. This naturally distributes the
preferences, avoiding flash crowding. The CF-HC combi-
nation avoids flash crowding most effectively. HC forces
selection of nearby providers, keeping reservation requests
and replies forwarding overhead down. At the same time,
CF causes the formation of node communities. Thus, the
CF-HC combination results in the smallest overhead.



Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0.5

0.6

0.7

0.8

0.9

1

1.1

Protocols

Pe
rc

en
ta

ge
 Q

ue
ry

 S
at

isf
ie

d
Percentage Query Satisfied

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(a) Percentage Query Satisfied

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

20

40

60

80

100

120

140

160

180

200

Protocols

To
ta

l S
ys

te
m

 O
ve

rh
ea

d 
(#

 o
f P

ac
ke

ts
)

Total System Overhead

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(b) Total System Overhead

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Protocols

Yi
el

d

Yield

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(c) Yield

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

1

2

3

4

5

6

7

8

Protocols

Av
er

ag
e 

Nu
m

be
r o

f H
op

s

Average Number of Hops

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(d) Distance

Fig. 2. Dissemination rate = (1/5)th Query generation rate

B. Overlay Topologies

The proposed protocols and ranking functions can be
viewed as orthogonal to the overlay topology of forwarding
nodes. However, the overlay topology could have a signifi-
cant influence on the effectiveness of the protocols, so we
investigate several different topologies. In our experiments,
we observed similar trends across tree, dense-random (av-
erage node degree5.7) and sparse-random (average node
degree3.2) topologies. Due to space constraints, we are
presenting those results in [12].

C. Effect of system load variation

Previous experiments show results for asaturated
system load, wherein the average overall resource demand is
equal to the available resources. In anunder-saturatedsys-
tem, the number of resources exceeds demand. In anover-
saturatedsystem, resource demand exceeds supply. For the
following results, we kept the information dissemination
rate constant (equal to the query generation rate) and varied

the system load to study its effect on the performance of
ranking functions. To vary system load, we changed the
initial resource availability on all nodes.

1) Under-saturated System:For an under-saturated sys-
tem load, the resource units parameter is initialized to50
on all nodes. For queries, resource units and resource time
slot values were generated randomly between1 and5. Push
protocols result in almost100% query satisfaction, which is
1 or 2% higher than pull. At the same time, push overhead
is reduced by11% for Unbiased 0.2 protocol and by46%
for Biased protocol (Figure 3(a)). All ranking functions
further reduce overhead. In particular, for Unbiased 0.2
protocol using push with CF-HC ranking function, resulting
overhead is16% less than pure push. Figure 3(b) shows
that the mean provider-generator distance is also reduced by
ranking functions, compared to pure push, where providers
are selected randomly.

2) Over-saturated System:For an over-saturated sys-
tem, the resource units parameter is initialized to5 on all
nodes. Here also, queries are generated by randomly select-
ing numbers between1 and5 as resource units and resource
time slots parameter values. Figure 4(a) shows that the



Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

50

100

150

200

250

Protocols

To
ta

l S
ys

te
m

 O
ve

rh
ea

d 
(#

 o
f P

ac
ke

ts
)

Total System Overhead

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(a) Total System Overhead

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

1

2

3

4

5

6

7

8

Protocols

Av
er

ag
e 

Nu
m

be
r o

f H
op

s

Average Number of Hops

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(b) Distance

Fig. 3. Under-saturated system, Dissemination rate = Query generation rate

push approach satisfies2% to 6% more queries compared
to pull. At the same time, push overhead is greater than
pull overhead (Figure 4(b)). The CF-HC ranking function
performed as well as pure push in terms of queries satisfied,
but with less overhead compared to pure push. Figure 4(d)
shows that all ranking functions outperform pure push in
terms of mean provider-generator distance. In particular,HC
beats CF-HC in this regard, but the CF-HC combination
results in better yield (Figure 4(c)).

D. Comparison with pull caching

Caching responses for past queries can help populate
information repositories and improve the performance of
pull. In our implementation of “pull-with-caching”, a query
generator and all intermediate nodes on the overlay topol-
ogy path traversed by the response, cache the response.
The query generator first consults the local information
repository populated by cached responses to find matching
resources. Only when no matching resource is found, or
reservation attempts on all matching resource providers are
unsuccessful, are queries forwarded through the overlay
topology in search of a required resource.

Compared to push, the pull approach with caching results
in lower overhead but with a smaller percentage of queries
satisfied. Whereas the information dissemination rate can
be varied to bound overhead, in the pull caching case,
the number of hops that the query is forwarded must be
restricted. This restriction limits the number of nodes that
are searched for matching resource, which in turn may
reduce the query satisfaction ratio.

For each protocol, the “break even” information dissem-
ination rate can be found, where the overhead of using
push with ranking is equal to pull caching, but at the
same time the number of queries satisfied is higher. Table I
indicates the percentage query satisfied and the total system
overhead (normalized with respect to pure pull overhead)
of pull with caching and push with CF-HC combination at
different frequencies for unbiased 0.2. For CF-HC(10)—an

TABLE I. Comparison of pull-caching with
push-ranking for unbiased 0.2

Overhead Percentage Query Satisfied
Pull 1.0000 82.03
Pull(caching) 0.3381 86.24
CF-HC(1) 1.1189 93.69
CF-HC(5) 0.4302 88.17
CF-HC(10) 0.3114 85.65
CF-HC(15) 0.2717 83.47
CF-HC(20) 0.2437 83.31

information dissemination rate of1 every 10 cycles—the
ranking parameters achieve the same performance as pull
with caching. We found that for the Unbiased 0.5 protocol,
the “break even” push rate is15; that is, at an information
dissemination rate of1 every 15 cycles, the pull-ranking
approach achieves the same performance as pull-caching
with ranking. (Due to space constraints, these results are
not included in a table or graph.)

Also, while using information dissemination, control
is distributed between providers and query generators.
Providers decide how aggressively information should be
disseminated and are able to adapt to low or high resource
utilization by varying the information dissemination rateto
attract more (or fewer) queries. In pull with caching, such
distributed control cannot be achieved.

V. Conclusions and Future Work

In this paper, we investigate the effect of resource ranking
policies on scheduler decisions. We evaluate the effective-
ness of probabilistic push protocols across different push
frequencies, offered application loads, and three different
ranking combinations. Our results show that in general, the



Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0.5

0.6

0.7

0.8

0.9

1

1.1

Protocols

Pe
rc

en
ta

ge
 Q

ue
ry

 S
at

isf
ie

d
Percentage Query Satisfied

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(a) Percentage Query Satisfied

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

20

40

60

80

100

120

140

160

Protocols

To
ta

l S
ys

te
m

 O
ve

rh
ea

d 
(#

 o
f P

ac
ke

ts
)

Total System Overhead

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(b) Total System Overhead

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Protocols

Yi
el

d

Yield

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(c) Yield

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
0

1

2

3

4

5

6

7

8

Protocols

Av
er

ag
e 

Nu
m

be
r o

f H
op

s

Average Number of Hops

Pull
Push
Push−HC
Push−CF−HC
Push−CF−HC−FR

(d) Distance

Fig. 4. Oversaturated system: Dissemination rate = Query ge neration rate

combination of distance and past history leads to favorable
schedules compared both with push and with the other
two ranking combinations. We also show that including
freshness in ranking can sometimes hinder performance. In
future work, we plan to use the “feedback” received through
application requests to effect the dissemination policy and
ultimately to build adaptive dissemination protocols thatre-
act to the changing Grid conditions, thereby further helping
schedulers make the most effective placement decisions.

References

[1] V. Iyengar, S. Tilak, N. B. Abu-Ghazaleh, and M. J. Lewis,“Nonuni-
form Information Dissemination for Dynamic Grid Resource Discov-
ery,” Proc. of The 3rd IEEE International Symposium on Network
Computing and Applications, Boston, MA, August 2004.

[2] B. Gandhi, S. Tilak, M. J. Lewis, and N. B. Abu-Ghazaleh, “Con-
trolling the Coverage of Grid Information Dissemination Protocols,”
Proc. of The 4th IEEE International Symposium on Network Com-
puting and Applications, pp. 267–270, Boston, MA, August 2005.

[3] A. Iamnitchi, I. Foster, and D. Nurmi, “A peer-to-peer approach
to resource location in grid environments,” inSymp. on High
Performance Distributed Computing, Aug. 2002. [Online]. Available:
citeseer.ist.psu.edu/article/iamnitchi02peertopeer.html

[4] S. Tangpongprasit, T. Katagiri, H. Honda, and T. Yuba, “Atime-
to-live based reservation algorithm on fully decentralized resource
discovery in grid computing.” [Online]. Available: http://www.
internetconference.org/ic2003/PDF/paper/tangpongprasit-sanya%.pdf

[5] A. R. Butt, R. Zhang, and Y. C. Hu, “A Self-Organizing Flock of
Condors,”SC ’03, November 15-21, 2003, Phoenix, AZ.

[6] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
resource management for high throughput computing,” inProc. of the
7th IEEE International Symposium on High Performance Distributed
Computing (HPDC7), Chicago, IL, July 1998.

[7] K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. Foster, “Grid
information services for distributed resource sharing,” in 10th IEEE
International Symp. on High Performance Distributed Computing
(HPDC-10), San Fransisco, CA, 2001, pp. 181–194.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,”SIGMETRICS
Perform. Eval. Rev., vol. 30, no. 1, pp. 258–259, 2002.

[9] “The gnutella protocol specification v0.4,” http://www9.limewire.
com/developer/gnutellaprotocol 0.4.pdf.

[10] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski, “Towards realistic
million-node internet simulations,” inProc. of the International
Conference on Parallel and Distributed Processing Techniques and
Applications, June 1999.

[11] E. Zegura and K. Calvert, “GT Internetwork Topology Models (GT-
ITM),” http://www.cc.gatech.edu/projects/gtitm/.

[12] R. Desai, S. Tilak, B. Gandhi, M. Lewis, and N. Abu-Ghazaleh,
“Analysis of Query Matching Criteria and Resource Monitoring
Models for Grid Application Scheduling, Binghamton University,
Comp. Science Tech. Report,” http://grid.cs.binghamton.edu.


