Analysisof Query Matching Criteria and Resource Monitoring M odelsfor Grid
Application Scheduling

Ronak Desai, Sameer Tilak, Bhavin Gandhi, Michael J. Lewis Hael B. Abu-Ghazaleh
State University of New York, Binghamton NY 13902
{rdesai, sameer, bgandhi, mlewis, na&@ks.binghamton.edu

Abstract vary significantly in short periods of time.

To make appropriate decisions, schedulers need up-to-
Making effective use of computational Grids requires date and accurate information about Grid resources. This
scheduling Grid applications onto resources that best fnatc information can be made available using either fhesh
them. Resource factors (e.g., load, availability, and lo- model to periodically distribute information out into the
cation), and demand factors (number and distribution of Grid, or thepull modelto collect information directly from

L h R resources on demand, to satisfy specific requests.
application resource requests) influence scheduling d@tis ty sp d

success. The scale of the Grid makes maintaining detailed '€ Push model may not directly lead to application
up-to-date information regarding all resources impraetic requests being satisfied, .and may cause _schedult_ars 10 use
P stale (i.e. old and potentially inaccurate) informatiom O

Thus, concurrent distributed schedulers must attempt ©Ohe gther hand, the pull model requires significant delay at
make scheduling decisions based on dynamic and potengppiication run-time while the remote resource infornatio
tially inconsistent resource state information. In this-pa s collected. Moreover, in terms of overhead, the pull model
per, we evaluate the effect that the criteria for selecting incurs the cost of resource discovery with each query. In
scheduling matches has on the success of scheduling decontrast, the push model requires a constant overhead as
cisions. We focus on three criteria: information freshness €ach resource provider periodically advertises its resour
resource distance from requesters, and past behavior; wevailability, and the cost of this advertisement may be amor
evaluate the quality of the schedule for various resource tized over multiple queries that use it. Caching may improve

o . . the pull model performance, but may also lead to the use
monitoring models, Grid loads, and Grid overlay topolo- of outdated information, and scheduling may fail without

gies. Among our findings is the counter-intuitive resultttha pulling the remote resource information again. In Sectlon |

favoring freshness can sometimes hinder overall systemye describe more specific background and related work for
performance; a combination of resource distance and pastGrid resource discovery and query matching.

scheduling success performs best. We also evaluate a pure ap underlying operation needed by resource monitor-
resource state pull model with caching, and demonstrateing algorithms is a protocol fodisseminatiorof resource
that proactively pushing dynamic state information to skhe data to multiple schedulers distributed across the overlay
ulers is beneficial with respect to several different evira ~ network. Structured approaches, such as multicast, equir
metrics. significant overhead to maintain the multicast backbone,
and make it difficult to disseminate information at differen
granularities. Moreover, brute force approaches such as
. flooding lead to excessive overhead. In previous work,
| Introduction we studied the use of efficient probabilistic forwarding
algorithms for disseminating resource information non-
Realizing the potential of Grids requires effective mid- uniformly. More specifically, resources send their informa
dleware services that manage the complexity of the en-tion to update schedulers with a frequency and granularity
vironment and present useful abstractions to applications that is inversely proportional to the distance between ¢he r
Among these services is Grid application scheduling, which source and the scheduler (alternatively, the same algasith
matches application resource requests to resources that cacan be used to send queries non-uniformly from schedulers
best meet them. This problem is challenging because theto resources in the pull model). This model is described in
scheduling has to be carried out in a large scale, distiihute more detail in Section Ill. The first contribution of this pap
heterogeneous, and dynamic environment. Many concurrents to analyze the effectiveness and overhead of different re
and possibly competing resource reservation requests arsource monitoring models (push, pull, and variants of each)
submitted to different schedulers, causing resourcesstate using different network-wide dissemination algorithms.

Resource monitoring algorithms make available to sched-as well, and explore the interaction with the underlying
ulers information regarding multiple matching resources. dissemination algorithms.
The second contribution of this paper is to explore the Another decentralized resource discovery approach [4]
following question: how should schedulers select which uses reservations with two different matching schemes—
resource to schedule a query to, and what effect doesbest turn-around time and closest attribute match. In our
this query matching policy have on the performance of work, a requester matches queries locally to find a candidate
the scheduler? We explore several criteria for ranking the set of nodes that match all the query requirements, and then
resources, including the distance of the resource, théfres ranks this set. Our work also differs in that it does not
ness of the information, the historical scheduling suctess require exclusive resource reservation.
the resource, as well as combinations of these factors. We In the Flock-of-Condors approach [5;ondor pools
evaluate the effect of these factors on the scheduling sacce organized in a P2P structure using the Pastry routing
of different resource monitoring algorithms (includingeth protocol-disseminate resource information and sharitig po
effect of the dissemination algorithm), overlay topolagie cies (collectively called ClassAds [6]) to neighbors. Rool
dissemination rates, offered application loads, and tyjies contact one another to negotiate this resource sharing, Thu
available resources. this approach uses a combination of push and pull. The

Section IV experimentally evaluates the proposed queryauthors use turn-around time as the primary performance
matching policies under different resource monitoring mod metric. In contrast, we study various resource monitoring
els. Our main high-level observations are that the pushmodels and analyze the effects of query matching policies
approach reduces scheduling overhead and improves overathn several evaluation metrics, in a simulated environment.
guery success. However, within satisfied queries, pullii®su Grid Information Services [7] require resources to be
in slightly better schedules, because it acts on fresh-nfor registered with the MDS directory service. Clients query
mation. With query matching, push performance approacheshis service to obtain information about current resource
pull performance, even in this respect. Furthermore, usingstatus and sharing policy. Directory server organization,
freshness can unexpectedly lead to worse schedules becaugglicies for information dissemination, and resource sele
it causes contention on the resources that most recently adtion criteria are left unspecified.
vertised their presence; the best matching criteria coesbin Lv et.al. [8] propose random walks as an alternative to
hop count and historical scheduling success. We summarizeyuery flooding in unstructured P2P networksyalkerran-

contributions and discuss future work in Section V. dom walks help locate objects at lower overhead than TTL-
scoped flooding [9]. This approach relies on active object
1. Related Work replication in the overlay. Our search must consider dygami

information, not just static objects, but could potentiall

. . _ _ incorporate random walks to improve dissemination.
Our previous work introduced and characterized informa-

tion dissemination protocols; we designed and simulated)
non-uniform protocols that result in increased informatio |11. Resource Discovery Model
quality available at nearby nodes [1]. This helps keep

dissemination overhead low, while maintaining acceptable\ye model a computational Grid as a set of nddeganized
accuracy of information at places where needed. In fol-;, 54 overlay topology. Each node acts as a resource
lowup work, we showed that probabilistic dissemination oyider that accepts and runs applications from requgstin
protocols have complex coverage characteristics and ar%ients within the Grid, and also as a scheduler that may
not easily controllable. We proposed hybrid protocols peeq to find resources for queries that could not be locally
to enable better control over dissemination coverage [2]. satisfied. Each node is characterized by a node descriptor

This paper in_teg_rates the disse_mina_tion p_rotocols into atuple(T, U, S), whereT refers to the Type of resource (e.g.
resource monitoring and scheduling simulation framework. 5 "c|uster or a supercomputed), refers to the available

We significantly extend our previous work by studying and esource Units (e.g. a 32-node cluster might contain 32
evaluating resource monitoring models (push vs. pull). We «njts"y and S refers to the resource’s available time Slots
also study for the first time the influence of query matching (e.g. a four hour block of time on a cluster node). This
criteria on scheduling success.) characterization can be extended to represent heterogeneo

_ lamnitchi et.al. [3] proposed strategies for query process resources at a node as a vector of the resource types and
ing and evaluated their scheduling success using averagg,formation. A query (or resource request) is characterize

hop count between querier and resource. Our study includes,y, the same three parameters contained in a node descriptor.
this metric, in addition to the percentage of queries satis- p query contains the requested resource tyf®, (the

fied, anq the potential application startup overhead of Pre-required number of resource unit&) and required time
processing and resource reservation. We encapsulate theg|ots (5). The use ofU allows us to model situations in
best neighbor” heuristic in ouconfidence factoranking \hich more than one request uses a resource simultaneously

function component and consider the effect of two addi- s is different from other reservation schemes [4]). We
tional heuristics in ranking—distance between the request

and the resource, and the freshness of the disseminated INote that a node in our description corresponds to an agiipegast one

state information. Finally, whereas their approa.Ch is Wure or more homogeneous resources such as a Condor pool withtealCenl
pull-based, we study the effect of push-based dissemimatio Manager or a cluster with a designated Cluster Manager.

useS to model application-specific time requirements, for B. Ranking Heuristics

example, resource reservation for certain time periodse No

thatU and$S are described relative to a normalized standard \ne consider the following ranking heuristics:
and can be re-mapped locally to the existing hardware

capabilities. Hop Count (HC) captures the distance between a query

generator and a resource node along the overlay topology
(as received from the resource state push). Scheduling a
A. Architecture job near its “launch point” reduces data transfer time and

startup costs. Therefore, each node in the local repository

)) is assigned a Hop Count value in inverse proportion to that
The two main architectural components of our approachnode’s distance from the query generator.

are: (i) resource monitoring: this is the process of colliet Freshness (FR)indicates how up-to-date the information

resource information for use in scheduling decisions. ift ca . : . o
be implemented via models such as push and pull. In eitherS & the time of resource selection, using timestamps. We

model, a dissemination function is needed to “broadcast” use this heuristic expecting that fresh information about

resource information (push model) or resource queries (pul :gﬁgg{ge availability is more likely to be accurate and

model) to other nodes in the network; (ii) query matching T o

and resource ranking: this component determines in whatThe Confidence Factor (CF)heuristic captures a node’s

order to request the matching resources for a given query. experience with the nodes it scheduled to in the past. We
We explore both the pull and push models of resource expect that queries are more likely to be satisfied by a

monitoring in our study. More specifically, in the push node that previously satisfied similar types of queries. A

model, the information repositories are replenished proac scheduler’s confidence in a node increases when the node

tively by state information disseminated from the resource 1S Successfully reserved, and decreases when it denies a
Alternatively, in the pull model, information is requested feservation.
explicitly by disseminating a request from a scheduler to We use these three heuristics as components to derive an
the resources (caching may be used to reuse collected@verall rank for each resource provider, using the follayin
information or information requested by other nodes). One weighted average formula:
of the contributions of the paper is to evaluate these 1 1
resource monitoring approaches under different condition Rankap = W) Too T Wa TRt WsCFap (1)
and against different dissemination schemes. _ AB AB
We evaluate the Biased and Unbiased protocols de-Rankap is an overall (ank calculated at the query generator
veloped in earlier work [1] as dissemination primitives. 4 for resource providerB. HCxp is the Hop Count
These protocols use a probabilistic approach to disseminat distance betweer and B, F'R 45 represents the freshness
information more frequently to the nearby nodes than the Of information of 5 at A at ranking time, andC'Fap
remote ones; thus, they capitalize on the intuition that indicates noded’s confidence inB. This ranking formula
most queries are best matched to resources that are neare&@n be instantiated with different combinationsiof, we
to them. In the Biased protocol, the dissemination (or Present results for a handful of interesting possibilities
forwarding) probability at an intermediate node is invérse
proportional to that node’s distance from the source node.C. Resource Discovery Algorithm
The Unbiased protocol is simply gossipping: intermediate
nodes forward the information with constant probability The query matching and resource reservation components of
P. We refer interested readers to [1] and [2] for more the scheduler proceed as follows. First, the scheduler con-
details; these works characterize the dissemination psoce sults a local repository to identify the full set of candigat
but do not address the query matching component of thenodes that match the given query’s resource requirements.
system, which we explore in this paper. As a result of The scheduler applies the ranking formula described above
the dissemination, a subset of the total nodes collect theto each node in the candidate set, to create an ordered list of
disseminated information in their local repositories (pus candidates. A Reservation Request is then sent to the first
model) or receive the request (pull model). node in the list; the request specifies the query requiresnent
In general, the resource monitoring algorithm leads to including the resource type, number of resource units,
knowledge of multiple resources that can support a receivedand required time slots. The receiving node matches the
query. In the query matching component of the model, whenquery requirements against its current state as described
a query cannot be satisfied locally, a node consults its localby its local (T, U, S) tuple, to determine whether it can
repository. Specifically, a generated query’s attributess a accommodate this request. If it can, the node returns a
matched against the attributes of the nodes in the localReservation Accepted message. If the request cannot be
repository. We use “equality” match for the resource type satisfied, the node sends a Reservation Denied message,
attribute, and greater-than-or-equal-to match for resmur which removes the selected node from the scheduler’s list.
units and time slots; for example a node providing 20 slots The scheduler then proceeds similarly through remaining
can match a requirement for 10 slots. All such candidate candidate nodes. In the event of getting Reservation Denied
nodes serve as inputs to a ranking function, which ordersmessage from all the candidate nodes, resource reservation
them in decreasing order of their “fitness” for the scheduler component notifies the scheduler so that it can resubmit the

request at a later time. We however, do not enforce anycombinations across different dissemination protocols: O
specific policy regarding request re-submission. results indicate, for example, that using confidence with ho
count (CF-HC) performs reasonably well with respect to all
performance criteria. We also make an interesting obser-
vation that despite the intuitive usefulness of freshness i
, } ranking, inclusion of freshness in ranking adversely affec
We use the Scalable Simulation Framework Network the overall performance when the information dissemimatio
(SSFNet) for all experiments [10]. The GT-ITM topology rate s less than the query generation rate. In Section IV-C,
generation tool [11] generates all simulation topologies, we study ranking under different system load scenarios.
which we then convert into a Domain Modeling Language | Section IV-D, we optimize the pull approach by
(DML) schema for use with SSFNet. _ . caching responses, and present simulation results congpari
In our setup, a simulation cycle is 125 simulation p|-caching with the push-ranking approaches. We observe
seconds; for the push model, at the beginning of eachihe expected inherent trade-off between overhead and the
simulation cycle, nodes disseminate resource informationpercentage of queries satisfied. We show that the push-
using non-uniform protocols. We evaluate the performanceyanking approach is more controllable compared to the pull
of various ranking functions across different non-uniform an5r0ach. Push-ranking takesresource-centricview and
protocols, including Unbiased (with probabilities 0.250. ajlows the resource provider to control the tradeoff betwee
and 0.8) and Biased protocols. Five seconds after thesystem overhead and the percentage of queries satisfied.
dissemination, all the nodes generate queries at randongre specifically, a resource provider can reduce its dissem
time offsets within a 10 second interval. For consistency jnation frequency to match the required query satisfaction
purposes, in the pure pull case, the nodes generate queriegherefore, we believe that push-ranking distributes asntr

at a random time between 5 to 15 seconds from the starfyeryween providers and requesters, which is not possible
of the simulation cycle. Generated queries are then e'therusing a pure pull approach.

forwarded (in the pull case) or matched with resource
information in the local repository (for push or pull-with-
caching). The information, queries, responses, reservati
requests, and reservation replies are forwarded through th
overlay topology using shortest path routes, which are Here we vary the information dissemination rate and
maintained and updated at each node through the puststudy its effect on the performance of several ranking
process. For the push model, the first few cycles in the functions. We present simulation results for a transit stub
simulation are “warm-up cycles” consisting only of infor- type random topology o600 nodes.
mation dissemination to populate local repositories. We do Figure 1 shows results for the case when the information
not use such warm-up cycles for pure pull simulations. dissemination rate is equal to the query generation rate.
The confidence factor for each node start8.at When a That is, each node disseminates information and generates
resource is successfully reserved, that provider's confide one query in each simulation cycle. Using information
value is increased bg.05; when a request is rejected, it is dissemination increases the percentage of satisfied guerie
decreased by.05. Confidence values are bounded below compared to the pure pull approach. Specifically, for the
by 0 and above byl. We measure information freshness Unbiased 0.2 protocol, the percentage of queries satisfied i
in terms of simulation cycles rather than simulation clock increased byt1%, as shown in Figure 1(a). Furthermore, the
seconds. Therefore, all information received within th@sa total system overhead is reduced for Unbiased 0.5, Unbiased
simulation cycle is considered equally fresh. The three 0.8 and Biased protocols. Figure 1(b) shows that uglté
ranking values are normalized between 0 and 1 to allow reduction in overhead is achieved in the case of Unbiased
their weighted combination. When we consider multiple 0.8. In this case, even though ranking improves query
factors, we give each of them equal weight. In the following satisfaction by merelyl or 2% (marginal improvement),
experiments, all nodes provide resources with the teralniti it reduces total system overhead. For example, Figure 1(b)
resource units and 1000 resource time slots. Each nodeshows that Unbiased 0.5 with a CF-HC ranking function
is assigned one of three different resource types using aresults in additional reduction of up tB1%? compared to
uniform random distribution. All nodes generate one query pure push. Figure 1(d) shows that using ranking functions
in each cycle, with resource unit and time slot values helps find resources in the vicinity of query generators.
selected randomly betweenand 5. This study considers Figure 1(c) shows that yield (the inverse of the number of
only dedicated Grid resources that are available throughou reservation requests per satisfied query per query gengrati
the simulation, not resources that join or leave the Grid node) is decreased compared to push when ranking func-
dynamically. Upon being reserved, a resource’s availabletions are used, because ranking functions cause aggressive
units are reduced by the amount specified in the query, andsearch for resources near the query generator. Figure 1(c)
increased when the reservation ends. shows that the performance of two ranking functions, CF-
In section IV-A, we study the ranking functions’ effect HC and CF-HC-FR, are comparable, but HC alone doesn't
on performance metrics by varying the information dis- perform well in terms of yield, compared to CF-HC.
semination rate. We compare pull and push approaches,
and demonstrate the benefits of ranking with push. We 2we derived percentage numbers from actual numerical datined
study and analyze the HC, CF-HC and CF-HC-FR ranking from simulations.

V. Experimental Evaluation

A. Study of Ranking parameters

Percentage Query Satisfied Total System Overhead

11

N
<]
S

. Pull
. Push
[Push-HC —
8 Push-CF-HC
B Push-CF-HC-FR

"

@

S
T

[
Y
5 o
T T

N

»

o
T

Percentage Query Satisfied
®
3
T

Total System Overhead (# of Packets)
o 5
3 3
T T

»
<]
T

N
o
T

)

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
Protocols Protocols

(a) Percentage Query Satisfied (b) Total System Overhead

Yield Average Number of Hops

. Pull
B Push

[Push-HC

8 Push-CF-HC
I Push-CF-HC-FR

B Push-CF-HC-FR

Yield
Average Number of Hops
IS

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
Protocols Protocols

(c) Yield (d) Distance

Fig. 1. Dissemination rate = Query generation rate

Figure 2 shows results for the case when the information Using freshness adds overhead, increases the mean dis-
dissemination rate i$1/5)"" of the query generation rate. tance of the selected resource, and decreases yield. We
In this case, nodes are divided infodisjoint groups; the attribute this to a locdlash crowdeffect. That is, all nodes
first group disseminates information in simulation cycles within some local region assign similar high preference to
1, 6, 11 and so on, while the second group disseminatesthe relatively few providers whose information is fresh.
information in simulation cycle®, 7, 12, etc. However, All nodes try to reserve resources on these few favored
each node generates a query in each simulation cycle. providers; clearly, not all can then be satisfied. Using CF or

Figure 2(a) shows that push protocols result in higher HC does not result in this effect, because CF and HC cause
percentages of queries satisfied, compared to pull. Undbiase the formation of what we call local “node communities”.
0.5 increases the percentage of queries satisfied0By. When only CF is used, each query generator initially finds
Furthermore, the system overhead for the push approactappropriate providers without any bias. Once CF values are
is 35% to 80% less than pull. Using any ranking function learned, subsequent provider selection decisions aredias
performs as well as pure push in terms of the percentagebased on these CF values. Query generators then end up
of queries satisfied (Figure 2(a)). Figure 2(b) shows that selecting the same provider that satisfied queries in the
the CF-HC ranking function causes an additional reduction past. Each node learns different CF values based on its
of up to 20% of the total system overhead compared to experiences with other nodes. This naturally distribulies t
push, for the Unbiased 0.2 and Unbiased 0.5 protocols.preferences, avoiding flash crowding. The CF-HC combi-
Figure 2(d) shows that ranking also reduces the meannation avoids flash crowding most effectively. HC forces
provider-generator distance. Using HC alone results in theselection of nearby providers, keeping reservation regues
highest reduction in mean distance, but using the CF-and replies forwarding overhead down. At the same time,
HC combination results in less overhead and better yieldCF causes the formation of node communities. Thus, the
compared to HC. CF-HC combination results in the smallest overhead.

Percentage Query Satisfied Total System Overhead

11

N
<]
S

"

@

S
T

"

@

=]
T

N

5

o
T

o.9fF

N

»

o
T

. Pul
B Push

[Push-HC

B8 Push-CF-HC
E Push-CF-HC-FR

0.8

b

o

<]
T

@
<]

Percentage Query Satisfied

0.7
60

Total System Overhead (¥ of Packets)

40
0.6

20

05
Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
Protocols Protocols

(a) Percentage Query Satisfied (b) Total System Overhead

Yield Average Number of Hops

. Pull
B Push

[Push-HC

8 Push-CF-HC
I Push-CF-HC-FR

B Push-CF-HC-FR

Yield
Average Number of Hops
IS

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased
Protocols Protocols

(c) Yield (d) Distance

Fig. 2. Dissemination rate = (1/5)*"* Query generation rate

B. Overlay Topologies the system load to study its effect on the performance of
ranking functions. To vary system load, we changed the

The proposed protocols and ranking functions can beimtglal {Jesgurce availaét)iilsity O?ﬂ"f‘:” nodes.d 4
viewed as orthogonal to the overlay topology of forwarding)I r(; ?rr]-saturate yst_(te -oran Lf[n ?f'SattWﬁ‘te digys_
nodes. However, the overlay topology could have a signifi- em load, the resourceé units parameter Is Initializewo
cant influence on the effectiveness of the protocols, so we®" all nodes. For queries, resource units and resource time
investigate several different topologies. In our experitee S0t values were generated randomly betweemd5. Push
we observed similar trends across tree, dense-random (avProtocols result in almost00% query satisfaction, which is
erage node degree?) and sparse-random (average node 1 or 2% higher than pull. At the same time, push overhead

: : is reduced byl1% for Unbiased 0.2 protocol and b46%
greegsrgﬁg%) tttg)opsoeloggts“.tsDiLrjle[lt(ZJ].space constraints, we are for Biased protocol (Figure 3(a)). All ranking functions

further reduce overhead. In particular, for Unbiased 0.2
protocol using push with CF-HC ranking function, resulting
overhead is16% less than pure push. Figure 3(b) shows
that the mean provider-generator distance is also reduced b
Previous experiments show results forsaturated ranking functions, compared to pure push, where providers
system load, wherein the average overall resource demand iare selected randomly.
equal to the available resources. In@amder-saturatedys- 2) Over-saturated System:For an over-saturated sys-
tem, the number of resources exceeds demand. lovan tem, the resource units parameter is initializedston all
saturatedsystem, resource demand exceeds supply. For thenodes. Here also, queries are generated by randomly select-
following results, we kept the information dissemination ing numbers betweehand5 as resource units and resource
rate constant (equal to the query generation rate) anddvarie time slots parameter values. Figure 4(a) shows that the

C. Effect of system load variation

Total System Overhead

Average Number of Hops

Total System Overhead (# of Packets)
Average Number of Hops

o
Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8) Biased Unbiased (p=0.2) Unbiased (p=0.5)
Protocols Pr

Unbiased (p=0.8) Biased
Is

otocol

(a) Total System Overhead (b) Distance

Fig. 3. Under-saturated system, Dissemination rate = Query generation rate

push approach satisfi€$ to 6% more queries compared . . _
to pull. At the same time, push overhead is greater than TABLE I. Comparison of pull-caching with
pull overhead (Figure 4(b)). The CF-HC ranking function push-ranking for unbiased 0.2

performed as well as pure push in terms of queries satisfied, o
but with less overhead compared to pure push. Figure 4(d) = Olvggg)%ad Percentag;(g;ery Satisfigd
shows that all ranking functions outperform pure push in _ - -
terms of mean provider-generator distance. In particti&r, Pull(caching)| 0.3381 86.24
beats CF-HC in this regard, but the CF-HC combination | CF-HC(1) 1.1189 93.69
results in better yield (Figure 4(c)). CF-HC(5) 0.4302 88.17
CF-HC(10) 0.3114 85.65
D. Comparison with pull caching CF-HC(15) 0.2717 33.47
CF-HC(20) 0.2437 83.31

Caching responses for past queries can help populat
information repositories and improve the performance of
pull. In our implementation of gull-with-caching, a query
generator and all intermediate nodes on the overlay topol-information dissemination rate df every 10 cycles—the
ogy path traversed by the response, cache the responséanking parameters achieve the same performance as pull
The query generator first consults the local information with caching. We found that for the Unbiased 0.5 protocol,
repository populated by cached responses to find matchinghe “break even” push rate is5; that is, at an information
resources. Only when no matching resource is found, ordissemination rate of every 15 cycles, the pull-ranking
reservation attempts on all matching resource providers ar approach achieves the same performance as pull-caching
unsuccessful, are queries forwarded through the overlaywith ranking. (Due to space constraints, these results are
topology in search of a required resource. not included in a table or graph.)

Compared to push, the pull approach with caching results Also, while using information dissemination, control
in lower overhead but with a smaller percentage of queriesis distributed between providers and query generators.
satisfied. Whereas the information dissemination rate canProviders decide how aggressively information should be
be varied to bound overhead, in the pull caching case,disseminated and are able to adapt to low or high resource
the number of hops that the query is forwarded must be utilization by varying the information dissemination rate
restricted. This restriction limits the number of nodesttha attract more (or fewer) queries. In pull with caching, such
are searched for matching resource, which in turn maydistributed control cannot be achieved.
reduce the query satisfaction ratio.

For each protocol, the “break even” information dissem-
ination rate can be found, where the overhead of using
push with ranking is equal to pull caching, but at the
same time the number of queries satisfied is higher. Table I In this paper, we investigate the effect of resource ranking
indicates the percentage query satisfied and the totalmyste policies on scheduler decisions. We evaluate the effective
overhead (normalized with respect to pure pull overhead)ness of probabilistic push protocols across different push
of pull with caching and push with CF-HC combination at frequencies, offered application loads, and three differe
different frequencies for unbiased 0.2. For CF-HC(10)—an ranking combinations. Our results show that in general, the

V. Conclusions and Future Work

Percentage Query Satisfied
11

Total System Overhead

B Push-CF-HC-FR | -

o.9fF -

0.8 -

Percentage Query Satisfied

0.7 -

Unbiased (p=0.2) Unbiased (p=0.5) Unbiased (p=0.8)

Protocols

Biased

(a) Percentage Query Satisfied

Yield

Total System Overhead (# of Packets)

b
@
S

N

5

o
T

N

»

=]
T

B

5]

<]
T

@
<]

60

20

Unbiased (p=0.2)

Unbiased (p=0.5) Unbiased (p=0.8) Biased

Protocols

(b) Total System Overhead

Average Number of Hops

B Push-CF-HC-FR

Yield

Unbiased (p=0.2) Unbiased (p=0.5; Unbiased (p=0.8) Biased
I

)
Protocols

(c) Yield

Fig. 4. Oversaturated system: Dissemination rate = Query ge

Average Number of Hops

Unbiased (p=0.2)

. Pull
B Push

[Push-HC

8 Push-CF-HC
I Push-CF-HC-FR

Unbiased (p=0.5) Unbiased (p=0.8)
Protocols

Biased

(d) Distance

neration rate

combination of distance and past history leads to favorable [4] S. Tangpongprasit, T. Katagiri, H. Honda, and T. Yuba, tifne-
schedules compared both with push and with the other
two ranking combinations. We also show that including
freshness in ranking can sometimes hinder performance. In[5] A. R. Butt, R. Zhang, and Y. C. Hu, A Self-Organizing Floof
future work, we plan to use the “feedback” received through
application requests to effect the dissemination policgt an
ultimately to build adaptive dissemination protocols theat
act to the changing Grid conditions, thereby further hajpin
schedulers make the most effective placement decisions.

References

(1]

(2]

(3]

V. lyengar, S. Tilak, N. B. Abu-Ghazaleh, and M. J. Lewisonuni-
form Information Dissemination for Dynamic Grid Resourcisdv-
ery,” Proc. of The 3rd IEEE International Symposium on Network
Computing and ApplicationsBoston, MA, August 2004.

B. Gandhi, S. Tilak, M. J. Lewis, and N. B. Abu-GhazalelGch-
trolling the Coverage of Grid Information Disseminatiorofercols,”
Proc. of The 4th IEEE International Symposium on Network Com
puting and Applicationspp. 267-270, Boston, MA, August 2005.
A. lamnitchi, I. Foster, and D. Nurmi, “A peer-to-peer @pach

to resource location in grid environments,” i8ymp. on High
Performance Distributed Computingug. 2002. [Online]. Available:
citeseer.ist.psu.edu/article/iamnitchi0O2peertopémit.

(6]

(7]

(8]
El

(10]

(11]
[12]

to-live based reservation algorithm on fully decentralizesource
discovery in grid computing.” [Online]. Available: httpaww.
internetconference.org/ic2003/PDF/paper/tangporsifpsanya%.pdf

Condors,”SC '03 November 15-21, 2003, Phoenix, AZ.

R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distited
resource management for high throughput computingPric. of the
7th IEEE International Symposium on High Performance Ohsted
Computing (HPDC7)Chicago, IL, July 1998.

K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. t€qs‘Grid
information services for distributed resource sharing,10th IEEE
International Symp. on High Performance Distributed Cotmmu
(HPDC-10) San Fransisco, CA, 2001, pp. 181-194.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networkS/GMETRICS
Perform. Eval. Rey.vol. 30, no. 1, pp. 258-259, 2002.

“The gnutella protocol specification v0.4,” http://wv@dimewire.
com/developer/gnutellarotocol0.4.pdf.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski, “Towsds realistic
million-node internet simulations,” irfProc. of the International
Conference on Parallel and Distributed Processing Techesgjand
Applications June 1999.

E. Zegura and K. Calvert, “GT Internetwork Topology Masl (GT-
ITM),” http://www.cc.gatech.edu/projects/gtitm/.

R. Desai, S. Tilak, B. Gandhi, M. Lewis, and N. Abu-Ghara
“Analysis of Query Matching Criteria and Resource Monitgyi
Models for Grid Application Scheduling, Binghamton Unisity,
Comp. Science Tech. Report,” http://grid.cs.binghan&dua.

