Analysis of Query Matching Criteria and Resource Monitoring Models for Grid
Application Scheduling

Ronak Desai, Sameer Tilak, Bhavin Gandhi, Michael J. Lewis and Nael B. Abu-Ghazaleh
State University of New York, Binghamton NY 13902
{rdesai, sameer, bgandhi, mlewis, nael } @cs.binghamton.edu

Abstract

Making effective use of computational Grids requires
scheduling Grid applications onto resources that best
match them. Resource-related state (e.g., load, avail-
ability, and location), and demand-related state (number
and distribution of application resource requests) influ-
ence scheduling decision success. The scale of the Grid
makes collecting and maintaining detailed up-to-date
state information for all resources and requests imprac-
tical. Thus, concurrent distributed schedulers must make
scheduling decisions based on incomplete resource state in-
formation. In this paper, we evaluate the effect that the
criteria for selecting scheduling matches have on the suc-
cess of scheduling decisions. We focus on three criteria: in-
formation freshness, resource distance from requesters,
and past behavior. We evaluate the quality of the sched-
ule for various resource monitoring models, Grid load
models, and Grid overlay topologies. Among our find-
ings is the counter-intuitive result that favoring fresh-
ness can sometimes harm overall system performance;
a combination of resource distance and past schedul-
ing success performs best. We also evaluate a pure re-
source state pull model with caching, and discover that
pro-actively pushing dynamic state information to sched-
ulers is beneficial.'

1. Introduction

Realizing the potential of Grids requires effective mid-
dleware services that manage the complexity of the
environment and present useful abstractions to applica-
tions. Among these services is Grid application schedul-
ing, which matches application resource requests to re-
sources that can effectively meet them. This problem is
challenging because the environment is large scale, dis-

1 This research is supported by AFRL contract FA8750-04-1-0054, NSF
Award ACI-0133838, NSF Award CNS 0454298 and DOE Grant DE-
FG02-02ER25526.

tributed, heterogeneous, and dynamic. Users submit many
concurrent and possibly competing resource requests to dif-
ferent schedulers, causing resource states to vary signifi-
cantly in short periods of time.

To make appropriate decisions, schedulers need up-to-
date and accurate information about Grid resources of in-
terest. This information can be made available using either
the push model to periodically distribute summary informa-
tion out into the Grid, or the pull model to collect informa-
tion directly from resources on demand, to satisfy specific
requests. The push model may not directly lead to appli-
cation requests being satisfied, and may cause schedulers
to use stale (i.e. potentially inaccurate) information. On the
other hand, the pull model requires significant delay at ap-
plication run-time while the remote resource information is
collected. In terms of overhead, the pull model incurs the
cost of resource discovery with each query. In contrast, the
push model requires a constant overhead as each resource
provider periodically advertises its resource availability, and
the cost of this advertisement may be amortized over multi-
ple queries that use it. Caching may improve the pull model
performance, but may also lead to the use of outdated in-
formation, and scheduling may fail without pulling the re-
mote resource information again. Section 4 provides more
specific background and related work for Grid resource dis-
covery and query matching.

Resource monitoring algorithms require a dissemination
primitive to send resource information to schedulers (push
model) or requests to resources (pull model). Structured ap-
proaches, such as multicast, require significant overhead
to maintain the multicast backbone, and make it difficult
to disseminate information at different granularities. More-
over, brute force approaches such as flooding lead to ex-
cessive overhead. In previous work [1], we studied the use
of efficient probabilistic forwarding algorithms for dissemi-
nating resource information non-uniformly. Specifically, re-
sources send their information to update schedulers with a
frequency and granularity that is inversely proportional to
the distance between the resource and the scheduler (alter-
natively, the same algorithms can be used to send queries
non-uniformly from schedulers to resources in the pull
model). This model is described in more detail in Section 2.
The first contribution of this paper is to analyze the ef-
fectiveness and overhead of different resource monitoring

models (push, pull, and variants of each) using non-uniform
dissemination protocols.

Resource monitoring algorithms make available to
schedulers information regarding multiple matching re-
sources. The second contribution of this paper is to
explore the following questions: how should schedulers se-
lect which resource to schedule a query to, and what
effect does this query matching policy have on the perfor-
mance of the scheduler? We explore several criteria for
ranking the resources, including the distance of a match-
ing resource from the query generator (requester), the
freshness of resource’s information, the historical schedul-
ing success to the resource, as well as combinations of
these factors. The distance criterion helps in finding re-
sources in the vicinity of a requester to reduce data trans-
fer and application startup overhead. We evaluate the effect
of these factors on the scheduling success of different re-
source monitoring algorithms (including the effect of the
dissemination algorithm), overlay topologies, dissemina-
tion rates, offered application loads, and types of available
resources.

Section 3 experimentally evaluates the proposed query
matching policies under different resource monitoring mod-
els. Our main high-level observations are that the push ap-
proach reduces scheduling overhead and improves overall
query success. However, within satisfied queries, pulling
can improve schedules by freshening information. With
query matching, push performance approaches pull per-
formance, even in this respect. Furthermore, using fresh-
ness can unexpectedly lead to worse schedules because it
causes contention on the resources that most recently ad-
vertised their presence; the best matching criteria combines
hop count and historical scheduling success. We summarize
contributions and discuss future work in Section 5.

2. Resource Discovery Model

We consider a computational grid comprising a set of nodes
organized (possibly self-organized) in an overlay topology.
A node in our description corresponds to an aggregation
of one or more resources, such as a Condor pool with a
Centralized Manager, or a cluster with a designated Clus-
ter Manager.

A node is characterized by a node descriptor tu-
ple (T,U,S), where T refers to the Type of resource
(e.g. a cluster or a supercomputer), U refers to the avail-
able resource Units (e.g. a 32-node cluster might con-
tain 32 “units”) and S refers to the resource’s available
time Slots (e.g. a four hour block of time on a clus-
ter node). This characterization can be extended to repre-
sent heterogeneous resources at a node as a vector of the
resource types and information. A query (or resource re-
quest) is characterized by the same three parameters
contained in a node descriptor. A query contains the re-
quested resource type (1'), the required number of resource
units (U) and required time slots (.5). This abstraction of re-
source and query description can be extended to include
more attribute-value pairs to accommodate multi-attribute

queries. We model generic resources using type 7. The dis-
cretized values of U enable a resource to be shared con-
currently by multiple queries. The required time slots for a
query (S) can be estimated by schedulers based on time re-
quirements of similar queries as discussed elsewhere [2].
Note that U and S are described relative to a normal-
ized standard and can be re-mapped locally to the existing
hardware capabilities.

2.1. Architecture

The three main architectural components of our approach
are the Disseminator, the Query Resolver, and the Sched-
uler: The Disseminator is responsible for disseminating and
collecting resource information and queries. The Query Re-
solver performs query matching and resource ranking based
on the information collected by the Disseminator, and deter-
mines the order in which the matching resources should be
requested for a given query. Based on the ranks assigned by
the Query Resolver, the Scheduler contacts the correspond-
ing resources to schedule a given query. All nodes in the
topology run these three components, which we describe in
more detail below.

2.1.1. Disseminator: The Disseminator encapsulates the
dissemination function needed by both the push and the pull
models to distribute resource information (push) or resource
queries (pull) to other nodes in the network. We evaluate
the Biased and Unbiased protocols developed in our earlier
work [1] as dissemination primitives. These protocols use a
probabilistic approach to disseminate information more fre-
quently to nearby nodes than to remote nodes; thus, the pro-
tocols capitalize on the intuition that most queries are best
scheduled on nearby resources. In the Biased protocol, the
dissemination (or forwarding) probability at an intermediate
node is inversely proportional to that node’s distance from
the source node. The Unbiased protocol is equivalent to gos-
sipping: intermediate nodes forward the information with a
constant probability P. We refer interested readers to [1, 3]
for more details. This previous work characterizes the dis-
semination process but does not address query matching,
which we explore in this paper.

2.1.2. Query Resolver (QR): When a query cannot be
satisfied locally, the Query Resolver consults its local repos-
itory. In the push model, dissemination leads to knowl-
edge of multiple resources that can support a query. The
QR matches the generated query’s attributes against the at-
tributes of the nodes in the local repository. We use “equal-
ity”” match for the resource type attribute, and greater-than-
or-equal-to match for resource units and time slots; for ex-
ample a node providing 20 slots can match a requirement
for 10 slots. All such candidate nodes serve as inputs to a
ranking function, which orders them in decreasing order of
their “fitness” for the scheduler. We consider the following
ranking criteria:

Hop Count (HC) captures the distance between a query
generator and a resource node along the overlay topology
(as received from the resource state push). Scheduling a job

near its “launch point” reduces data transfer time and startup
costs.

Freshness (FR) indicates how up-to-date the information
is, at the time of resource selection, using timestamps. We
use this heuristic expecting that fresh information about re-
source availability is more likely to be accurate and reliable.

The Confidence Factor (CF) heuristic captures a node’s ex-
perience with the nodes it scheduled to in the past. We ex-
pect that queries are more likely to be satisfied by a node
that previously satisfied similar types of queries. A re-
quester’s confidence in a provider node increases when the
provider accepts the request, and decreases when it rejects
the request.

We use these ranking criteria to derive an overall rank for
each resource provider, using the following weighted aver-
age formula:

Rankap =W, + Wsy + W3CFap (1)

1
FRap
Rank 4 p is an overall rank calculated at Query Generator
A for resource provider B. HC 45 is the Hop Count dis-
tance between A and B, F'Rp represents the freshness
of information of B at A at ranking time, and CF4p in-
dicates node A’s confidence in B. Because of the normal-
ization, the final rank ranges between 0 and 1. This rank-
ing formula can be instantiated with different combinations
of W;, we present results for a handful of interesting possi-
bilities.

In general, the rank of a resource provider can be a
complex value that is multi-dimensional and application-
dependant. Although, we currently compute rank using a
linear function of ranking heuristics, our scheme can be eas-
ily extended to more complex non linear functions.

HCap

2.1.3. Scheduler: In the pull model, the scheduler re-
ceives queries generated at other nodes and matches these
queries against its own node descriptor tuple. If query
matching is successful, it sends back a response to the query
generator. The scheduler (running on node 4) uses the can-
didate resource list prepared by QR (push model) or query
responses in the order they are received (pull model). The
scheduler then sends a resource request to the scheduler
running on the provider node (nodeg). The scheduler on
node g matches request against its own node descriptor tu-
ple. This matching is required because node4 may have
used stale information and resource state on nodep might
have changed. If matching is successful, the scheduler on
nodep can accommodate the given request. In this case, it
reduces available slots and sends back a request accepted
reply to node 4; otherwise it sends back a request rejected
reply. Upon receiving a request rejected reply, the sched-
uler on node 4 removes nodep from its candidate resource
list and proceeds to consider the remaining candidate nodes.
Upon receiving a request rejected message from all the can-
didate nodes, the scheduler can resubmit the request at a
later time. However, we do not enforce a policy regarding
request re-submission at this time.

3. Experimental Evaluation

In this section, we compare non-uniform pull with non-
uniform push and study effect of ranking on non-uniform
push using simulations. We use the Scalable Simulation
Framework Network (SSFNet) for all experiments.

We evaluate the performance of our ranking scheme
across non-uniform protocols [1], specifically Unbi-
ased (with probabilities 0.2, 0.5 and 0.8) and Biased
protocols. The selected probabilities for the unbiased pro-
tocol are representative of low, moderate and high net-
work coverage [3]. The biased protocol results in very
high coverage near the source and low coverage fur-
ther away. Nodes disseminate queries (pull) and informa-
tion (push) using non-uniform protocols. The following
four performance metrics characterize the effective-
ness of the schedule generated using the dissemination
protocols: percentage of queries satisfied, packet over-
head, distance of the selected node from the requester,
and yield. Five types of messages—namely, informa-
tion, query, query response, request, and request reply—are
forwarded through the overlay topology using short-
est path routes. On each node, packet overhead is calculated
in terms of the total number of messages forwarded dur-
ing the simulation. Yield is the ratio of satisfied query per
request.

The confidence factor (CF) value is constrained to the
range [0, 1], and begins at a neutral value of 0.5. We use
a simple feedback control scheme to adjust CF. When a
provider node accepts a request, the requester’s confidence
in that provider is increased by 0.05; when a provider re-
jects a request, confidence is decreased by 0.05. We mea-
sure information freshness in terms of simulation cycles
rather than simulation clock seconds. Therefore, we con-
sider all information received within the same simulation
cycle equally fresh. When we consider multiple criteria in
the ranking formula, each of them is assigned equal weight.

In the following experiments, we consider only dedi-
cated Grid resources that are available throughout the simu-
lation, not resources that join or leave the Grid dynamically.
We run simulations for 100 simulation cycles. So, the ini-
tial resource time slot value is set to 1000 on all providers.
Also, all nodes provide resources with 10 initial resource
units.

3.1. Study of Non-uniform Protocols

Figure 1 shows simulation results for a tree topology
of 100 nodes. In this simulation, each node generates one
query in each simulation cycle. In the push model, each
node also disseminates resource information in each cycle.
That is, the information dissemination rate is equal to the
query generation rate. Our observations are:

e With the increase in forwarding probability (for Un-
biased), more nodes receive queries (pull) or informa-
tion (push). Therefore, more queries are satisfied and

Percentage Query Satisfied

Total System Overhead

[

4
®
a

Percentage Query Satisfied
‘3 =]
9 o

o
N

o
@
a

6
Unb(p=0.2)

Unb(p=0.5)

Unb(p=0.8)
Protocols

Biased Flooding

(a) Percentage Query Satisfied

Yield

Total System Overhead

20

o
Unb(p=0.2)

B Push-CF-HC-FR

Unb(p=0.5) Unb(p=0.8)

Protocols

Biased Flooding

(b) Total System Overhead

Average Number of Hops

o.9-

. Pull
B Push

[Push-HC

EE Push-CF-HC
B Push-CF-HC-FR

0.8

0.7¢

0.6

0.51

Yield

0.4t

0.3

0.2t

0.1

o
Unb(p=0.2)

Unb(p=0.5)

Unb(p=0.8)
Protocols

Biased Flooding

(c) Yield

Average Number of Hops
W

© " Unb(p=0.2)

H
E Push-CF-HC-FR

Unb(p=0.5)

Unb(p=0.8)
Protocols

Biased Flooding

(d) Distance

Figure 1. Tree Topology: Dissemination rate = Query generation rate

more overhead is incurred. Using non-uniform proto-
cols with ranking (e.g. Unbiased 0.8, Biased), percent-
age queries satisfied approaches that of flooding at sig-
nificantly less overhead (Figure 1(a) and 1(b)).

Push satisfies more queries than pull across the board.
Specifically, for Unbiased 0.2 push satisfies 16% more
queries (Figure 1(a)) than pull. The reason is that in
push, a requester uses information collected over many
previous cycles whereas in pull, a query reaches out to
only a limited set of providers.

For low probabilities in Unbiased (0.2 and 0.5), the
dissemination (of information or query) is localized.
Thus, even though push and pull have equal dissemi-
nation overhead, total overhead of push is more than
pull in these two cases. This is because push satisfies
more queries than pull and therefore, more request and
request reply messages are processed. However, when
most of the nodes receive disseminated queries (in Un-
biased 0.8 pull, Biased, and flooding), all of the nodes
that can satisfy the query return query response. There-
fore, at higher probabilities, pull overhead surpasses
push overhead.

Pull always outperforms push in terms of yield (Fig-
ure 1(c)). In the pull model, a requester sends request
to a potential provider as soon as it receives first query

response. Because a potential provider generates a re-
sponse after considering up-to-date resource state in-
formation, the probability of a request being accepted
is high. This results in high yield for pull. For push,
the QR uses all the available information in the local
repository—including potentially stale information—
for preparing the candidate resource list for the sched-
uler. The scheduler utilizes this list and sends multiple
requests for each query, thereby resulting in low yield.

e Also, in pull, a requester receives first query response

from a nearby provider. Therefore, it is highly likely
that queries will be satisfied locally (at small distance).
For push without ranking, the QR adds matching re-
sources in the candidate list in random order, resulting
in possibly far away nodes being selected by the sched-
uler (Figure 1(d)).

3.2. Study of Ranking parameters

Figure 2 shows the performance results for a 600-node

transit-stub type random topology. The information dissem-
ination rate is equal to the query generation rate. Our obser-
vations for this topology are in line with tree topology’s re-
sults. For example, Figure 2(a) shows that for Unbiased 0.2,
push increases query satisfaction by 11% compared to pull.

Percentage Query Satisfied

Total System Overhead

H Push-CF-HC-FR

Percentage Query Satisfied

Unb(p=0.2) Unb(p=0.5) Unb(p=0.8)

Protocols

Biased

(a) Percentage Query Satisfied

Yield

Total System Overhead

80

601

B Push-CF-HC-FR
4o

20

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8) Biased
Pre s

ocol:

(b) Total System Overhead

Average Number of Hops

o.9-

o.8

0.7+

0.6

E Push-CF-HC-FR

Yield

0.5¢

0.4t

0.3

0.2t

0.1

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8) Biased

Protocols

(c) Yield

Average Number of Hops

. Pull
EE Push

[Push-HC

[EE Push—-CF-HC
Hl Push—-CF-HC-FR

Biased

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8)
Protocols

(d) Distance

Figure 2. Dissemination rate = Query generation rate

And, up to 32% reduction in overhead is achieved in the
case of Unbiased 0.8 (Figure 2(b)).

Ranking functions tend to improve the query satisfac-
tion ratio and reduce overhead. We experimented with all
possible ranking parameter combinations. We present re-
sults only for interesting combinations. The hop count (HC)
component of ranking functions favors nearby resource
providers, which results in selecting nearby provider nodes
and hence less overhead. For example, Figure 2(b) shows
that for Unbiased 0.5, push with a CF-HC ranking func-
tion reduces overhead by up to 14% compared to pure push.
Figure 2(d) shows that using ranking functions helps find
resources in the vicinity of query generators.

During simulation, all nodes adjust their CF values to
reflect their experiences with other provider nodes. After
some time, the CF component starts dominating the HC
component when used together. This domination of CF re-
sults in better yield for CF-HC combination compared to
only HC. Figure 2(c) shows that the performance of two
ranking functions, CF-HC and CF-HC-FR, are compara-
ble, but HC alone doesn’t perform well in terms of yield,
compared to CF-HC. When ranking is used, top ranked re-
sources are highly likely to accept a request, resulting in
better yield compared to pure push. Figure 2(c) shows that
for Unbiased 0.2, yield is improved when ranking is used
compared to pure push. However, for Unbiased 0.5, 0.8,

and Biased protocols, pure push results in better yield com-
pared to push-ranking. Because of high forwarding prob-
ability in these protocols and higher network connectivity,
nodes have information about more resources. We conjec-
ture that push with random resource selection outperforms
push-ranking in such cases, because all ranking functions
considered here cause aggressive search in the vicinity of
resource requesters.

To further study the effectiveness of ranking , we re-
duce the frequency of information dissemination. Figure 3
shows results for the case when the information dissemina-
tion rate is (1/5)*" of the query generation rate. The nodes
are divided into 5 disjoint groups; the first group dissemi-
nates information in simulation cycles 1, 6, 11 and so on,
while the second group disseminates information in simu-
lation cycles 2, 7, 12, etc. However, each node generates a
query in each simulation cycle. We note that push results
in higher percentages of queries satisfied than pull. For Un-
biased 0.5 push increases the percentage of queries satis-
fied by 10% (Figure 3(a)). Furthermore, push overhead is
reduced even more. Figure 3(b) shows that even for Unbi-
ased 0.2 push overhead is less than pull overhead. Overall,
push overhead is 35% to 80% less than pull overhead. Us-
ing any ranking function performs as well as pure push in
terms of the percentage of queries satisfied (Figure 3(a)).
Figure 3(b) shows that the CF-HC ranking function causes

Percentage Query Satisfied

Total System Overhead

H Push-CF-HC-FR

Percentage Query Satisfied

Unb(p=0.2) Unb(p=0.5) Unb(p=0.8)

Protocols

Biased

(a) Percentage Query Satisfied

Yield

Total System Overhead (# of Packets)

183.19

@
o
T

N
o
T

-3
o
T

. Pull

@

]
T
b
c
@
il
I
[¢]

B Push-CF-HC-FR

I
S

@
<)

n
<]

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8)
Protocols

Biased

(b) Total System Overhead

Average Number of Hops

0.9

0.8

0.7

06
E Push-CF-HC-FR

Yield

0.5

0.4

0.3

0.2

0.1

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8)
Protocols

Biased

(c) Yield

)
T

o)
T

Average Number of Hops
%) S

. Pull
EE Push

[Push-HC

[EE Push—-CF-HC
Hl Push—-CF-HC-FR

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8)
Protocols

Biased

(d) Distance

Figure 3. Dissemination rate = (1/5)** Query generation rate

an additional reduction of up to 20% of the overhead com-
pared to push, for the Unbiased 0.2 and Unbiased 0.5 proto-
cols. Figure 3(d) shows that ranking also reduces the mean
provider-requester distance. Using HC alone results in the
highest reduction in mean distance, but using the CF-HC
combination results in less overhead and better yield than
HC.

Using freshness adds overhead, increases the mean dis-
tance of the selected resource, and decreases yield. We at-
tribute this to a local flash crowd effect. That is, all nodes
within some local region assign similar high preference
to the relatively few providers whose information is fresh.
All nodes try to secure resources on these few favored
providers; clearly, not all can then be satisfied. Using CF
or HC does not result in this effect, because CF and HC
cause the formation of what we call local “node communi-
ties.” When only CF is used, each query generator initially
finds appropriate providers without any bias. Once CF val-
ues are learned, subsequent provider selection decisions are
biased based on these CF values. Query generators then end
up selecting the same provider that satisfied queries in the
past. Each node learns different CF values based on its expe-
riences with other nodes. This naturally distributes the pref-
erences, avoiding flash crowding. The CF-HC combination
avoids flash crowding most effectively. HC forces selection
of nearby providers, keeping overhead down. At the same

time, CF causes the formation of node communities. Thus,
the CF-HC combination results in the smallest overhead.

3.3. Effect of system load variation

Previous experiments show results for a saturated sys-

Total System Overhead

235.23

g

I Pul

B Push

[Push-HC

[Push-CF-HC
B Push-CF-HC-FR

Total System Overhead (# of Packets)
@

O Unb(p=02)

Unb(p=0.5) Unb(p=0.8)
Protocols

Biased

Figure 4. Under-saturated system, Total Sys-
tem Overhead

tem load, wherein the average overall resource demand is
equal to the available resources. In an under-saturated sys-

tem, the number of resources exceeds demand. In an over-
saturated system, resource demand exceeds supply. For the
following results, we kept the information dissemination
rate constant (equal to the query generation rate) and var-
ied the system load to study its effect on the performance of
ranking functions. To vary system load, we changed the ini-
tial resource availability on all nodes. We present results for
random topology of 600 nodes.

3.3.1. Under-saturated System For an under-saturated
system load, the resource units parameter is initialized to 50
on all nodes. For queries, resource units and resource time
slot values were generated randomly between 1 and 5. Push
protocols result in almost 100% query satisfaction, which
is 1 or 2% higher than pull. At the same time, push over-
head is reduced by 11% for Unbiased 0.2 protocol and by
46% for Biased protocol (Figure 4). All ranking functions
further reduce overhead. In particular, for the Unbiased 0.2
protocol using push with CF-HC ranking function, the re-
sulting overhead is 16% less than pure push.

3.3.2. Over-saturated System For an over-saturated sys-
tem, the resource units parameter is initialized to 5 on all
nodes. Here also, queries are generated by randomly select-
ing numbers between 1 and 5 as resource units and resource
time slots parameter values.The push approach satisfies 2%
to 6% more queries compared to pull. At the same time,
push overhead is greater than pull overhead (Figure 5(b)).
This is because when the system used the pull approach,
few nodes return query responses upon receiving queries,
due to overloading. For push, requesters must make more
attempts to secure resource on providers. When the system
is overloaded, many requesters are competing for less re-
sources, causing rapid resource state changes. These rapid
changes make resource information used by providers stale.
The CF-HC ranking function performs as well as pure push
in terms of queries satisfied, but with less overhead com-
pared to pure push.

3.4. Comparison with pull caching

Caching responses for past queries can help populate in-
formation repositories and improve the performance of pull.
In our implementation of “pull-caching”, a requester and all
intermediate nodes on the overlay topology path traversed
by the response, cache the response. A requester first con-
sults cached information, and only once all attempts to se-
cure the resource using cached information fail, the query is
forwarded.

Compared to push-ranking, the pull-caching results in
lower overhead but with a smaller percentage of queries sat-
isfied. Whereas the information dissemination rate can be
varied to bound overhead, in the pull-caching case, the num-
ber of hops that the query is forwarded must be restricted.
This restriction limits the number of nodes that are searched
for matching resources, which in turn may reduce the query
satisfaction ratio.

For each protocol, the “break even” information dissemi-
nation rate can be found, where the overhead of using push-
ranking is equal to pull-caching, but at the same time the

Overhead | Percentage Query Satisfied
Pull 1.0000 82.03
Pull-caching 0.3381 86.24
CF-HC(1) 1.1189 93.69
CF-HC(5) 0.4302 88.17
CF-HC(10) 0.3114 85.65
CF-HC(15) 0.2717 83.47

Table 1. Comparison of pull-caching with
push-ranking for unbiased 0.2

number of queries satisfied is higher. Table 1 indicates the
percentage of queries satisfied and the total system over-
head (normalized with respect to pure pull overhead) of
pull-caching and push with the CF-HC combination at dif-
ferent frequencies for unbiased 0.2. For CF-HC(10)—an in-
formation dissemination rate of once every 10 cycles—the
ranking parameters achieve the same performance as pull-
caching. We found that for the Unbiased 0.5 protocol, the
“break even” push rate is 15. The Push-ranking approach
is more controllable compared to the pull approach. Push-
ranking takes a resource-centric view and allows the re-
source provider to control the tradeoff between system over-
head and the percentage of queries satisfied. More specifi-
cally, a resource provider can reduce its dissemination fre-
quency to match the required query satisfaction. Therefore,
we believe that push-ranking distributes control between
providers and requesters, which is not possible using a pure
pull approach.

4. Related Work

Tamnitchi et.al. [4] proposed pull strategies for query
processing and evaluated scheduling success using average
hop distance travelled by a query. Our study includes this
metric, in addition to the percentage of queries satisfied,
and the potential overhead of resource selection. We en-
capsulate their “best neighbor” heuristic in our confidence
factor ranking component and consider the effect of two ad-
ditional heuristics in ranking—higher preference to nearby
resources, and freshness of the disseminated state informa-
tion. Finally, whereas their approach is purely pull-based,
we study the effect of push-based dissemination as well,
and explore the interaction with the underlying dissemina-
tion algorithms.

Another decentralized resource discovery approach [5]
uses reservations with two different matching schemes—
best turn-around time and closest attribute match. In our
work, a requester matches queries locally to find a candi-
date set of nodes that match all the query requirements, and
then ranks this set. Furthermore, in this model a resource is
reserved exclusively for one query, whereas in our model, a
resource can be concurrently shared by multiple requests.

In the Flock-of-Condors approach [6], Condor pools—
organized in a P2P structure using the Pastry routing

Percentage Query Satisfied
0.8

Total System Overhead

W Pull

B Push

1 Push-HC

I Push-CF-HC
B Push-CF-HC-FR

0.75F

071

Percentage Query Satisfied

Unb(p=0.2) Unb(p=0.5) Unb(p=0.8)

Protocols

Biased

(a) Percentage Query Satisfied

Total System Overhead (# of Packets)

160]- . P

=1 Push-CF-HC
M Push-CF-HC-FR

140

1201

100+

80

60}

40t

20

Unb(p=0.2)

Unb(p=0.5) Unb(p=0.8)
Protocols

Biased

(b) Total System Overhead

Figure 5. Over-saturated system: Dissemination rate = Query generation rate

protocol-disseminate resource information and shar-
ing policies (collectively called ClassAds [7]) to neighbors.
Pools contact one another to negotiate resource shar-
ing. Thus, this approach uses a combination of push and
pull. The authors study turn-around time as the primary per-
formance metric. In contrast, we study various resource
monitoring models and analyze the effects of query match-
ing policies on several evaluation metrics.

Grid Information Services [8] require resources to be
registered with the MDS directory servers. Resources use
a soft-state protocol to periodically update their informa-
tion in directory servers. Clients use an enquiry protocol to
obtain information about current resource status and shar-
ing policy from directory servers. Resource monitoring and
discovery services use the directory service, however Direc-
tory servers’ organization, policies for information dissem-
ination, and resource selection criteria are left unspecified.

The Network Weather Service (NWS) [9] is a resource
performance forecasting system. It uses time-series data
about past resource performance to statistically derive a pre-
diction of resource status in next time interval. In our model,
prediction data can be disseminated to enable schedulers in
making intelligent placement decisions.

SWORD [10] is scalable wide-area resource discovery
system. Although, it strives to provide similar function-
ality, there are significant architectural differences. While
SWORD uses DHT over a structured overlay, we assume
an unstructured network and use gossiping protocols.

5. Conclusions and Future Work

In this paper, we investigate the effect of resource track-
ing models and resource ranking policies on scheduler de-
cisions. We use probabilistic protocols for proactive and re-
active resource tracking and evaluate the effectiveness of
three different ranking criteria and their combinations on the
quality of schedules across different topologies, push fre-
quencies, and offered application loads. Our results show
that in general, the combination of distance and past his-
tory leads to favorable schedules compared both with push

and with the other two ranking combinations. We also show
that including freshness in ranking can sometimes result in
a “local flash crowd” and harm overall performance. In fu-
ture work, we plan to use the feedback received through ap-
plication requests to effect the dissemination policy and ul-
timately to build adaptive dissemination protocols that re-
act to the changing Grid conditions, thereby further helping
schedulers make the most effective placement decisions.

References

[1] V. Iyengar, S. Tilak, N. B. Abu-Ghazaleh, and M. J. Lewis,
“Nonuniform Information Dissemination for Dynamic Grid
Resource Discovery,” NCA, 2004.

J. Cao, S. Jarvis, S. Saini, D. Kerbyson, and G. Nudd,
“ARMS: An agent-based resource management system for
grid computing,” Scientific Programming, 2002.

B. Gandhi, S. Tilak, M. J. Lewis, and N. B. Abu-Ghazaleh,
“Controlling the Coverage of Grid Information Dissemina-
tion Protocols,” NCA, 2005.

A. Tamnitchi, I. Foster, and D. Nurmi, “A peer-to-peer ap-
proach to resource location in grid environments,” in HPDC,
2002.

S. Tangpongprasit, T. Katagiri, H. Honda, and T. Yuba, “A
time-to-live based reservation algorithm on fully decentral-
ized resource discovery in grid computing.”

A. R. Butt, R. Zhang, and Y. C. Hu, “A Self-Organizing
Flock of Condors,” SC ’03, November 15-21, 2003.

R. Raman, M. Livny, and M. Solomon, “Matchmaking: Dis-
tributed resource management for high throughput comput-
ing,” in HPDC, 1998.

K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. Foster,
“Grid information services for distributed resource sharing,”
in HPDC-10, 2001.

R. Wolski, N. T. Spring, and J. Hayes, “The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing,” Future Generation Computer Sys-
tems, vol. 15, no. 5-6, pp. 757-768, 1999.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat,
“Design and Implementation Tradeoffs for Wide-Area Re-
source Discovery,” HPDC-14, July 2005.

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

