

Lecture 9
CSE11 Fall 2013
Active Objects

“Active Objects”

● What is an active object?
● Objectdraw library has a specialized version of a

more general structure
● Think of these as objects that can continuously

execute code
● They execute independently of one another

● The more general ideal is multiple “threads” of
control

What we've done so far
● Single “Thread” of execution with various

events
● WindowController Class handles events

public MyClass extends WindowController {

 public void onMouseClick
 {
 }

 public void onMouseDrag
 {
 }
 main(String [] ...)
 {
 java statements;
 }
}

mouse click

mouseDrag

mouse click

mouse click

Events

Active Objects

● Think about “flip book” animation.
● So far, we've used mouse clicks to cause

objects to move
● e.g. Balanced Pulley Programming Project

● What if the the WeightBox Objects moved “on
their own”?
● That is, under their program control

public WeightBox {
 public void run() {
 while (forever)
 {
 wait 0.1s;
 move self a little;
 }
 }

Define a “Run” method

public WeightBox {
 public void run() {
 while (forever)
 {
 wait 0.1s;
 move self a little;
 }
 }

● Yellow and Blue WeightBox Objects are executing
independently

● When in the same program, we call these independent
threads of execution

ColorBallController Example

● http://eventfuljava.cs.williams.edu/sampleProgs/ch9/textbook/ColorBallController/ColorBallController.html
● javac FallingBall.java ColorBallController.java
● java ColorBallController.java

http://eventfuljava.cs.williams.edu/sampleProgs/ch9/textbook/ColorBallController/ColorBallController.html

FallingBall Sample Code
public class FallingBall extends ActiveObject {
 // the image of the ball
 private FilledOval ballGraphic;
 // the canvas
 private DrawingCanvas canvas;

 public FallingBall(Location initialLocation, DrawingCanvas aCanvas) {
 canvas = aCanvas;
 ballGraphic = new FilledOval(initialLocation, SIZE, SIZE, canvas);
 start();
 }

 public void run() {
 while (ballGraphic.getY() < canvas.getHeight()) {
 ballGraphic.move(0, Y_SPEED);
 pause(DELAY_TIME);
 }
 ballGraphic.removeFromCanvas();
 }
 }

Basic Recipe of an Active Object

● define a class that extends ActiveObject

● include a start(); as the last statement of
the constructor

● define a run() method

● make sure to pause() during the run method
(so that people can see what happens)

Making the Graphics more Realistic

● Image – Java's notion of a pixel image

● use getImage() to load/open a pre-defined image and place
into a local or instance variable

● VisibleImage – like other graphical objects with similar
methods to place on a canvas. Requires an Image to be
defined.

● In objectdraw, Controller and WindowController
define getImage()
● Call this method in classes that extend these controller classes

See: FallingLogo.java, LogoController.java, 50px-UCSD_Seal.svg.png

Sample Falling UCSD Logos

 // the image of the logo
 private VisibleImage logoGraphic;
 // the canvas
 private DrawingCanvas canvas;

 public FallingLogo(Image logo, Location initialLocation, DrawingCanvas aCanvas) {
 canvas = aCanvas;
 logoGraphic = new VisibleImage(logo,initialLocation, canvas);
 start();
 }

FallingLogo.java “snippet”

$ javac FallingLogo.java LogoController.java
$ java LogoController

Thinking about how to get Active
Objects to Interact with Other Objects

● Suppose we wanted to count and display the
number of Logos that had fallen to or past bottom
of the screen

● Two possible approaches
● Controller knows how many logos have been created

(each click creates a new one)
– Could periodically check how many logos are still visible and

subtract #created - #visible
● Each logo object could tell the controller “I've reached

the bottom of the screen”

Evaluating these two approaches
● Controller Knows

● Pros: FallingLogo only needs to know to do two simple
things:
– How to Fall, Define Accessor method of isHidden()

● Cons: Controller must do more work
– Explicitly track all FallingLogo Instances

– Query them periodically (we haven't yet learned enough java to do
this efficiently)

● FallingLogo Reports Back
● Pros: Simplified Controller, Change reflected as soon

as logo hits the bottom of the canvas
● Cons: FallingLogo needs to know how to do more than

“just fall”

FallingLogo Reports Back

● This is often termed a “callback”
● What's needed

● Controller needs to define a method that
FallingLogo instances will call.
– Let's term this atBottom()

● FallingLogo needs to know
– Its Controller

● Pass a reference to the controller to the FallingLogo constructor

– Logically, call atBottom() method when it hides itself

See: FallingLogoCallback.java, LogoControllerCallback.java

When the Callback Happens

LogoControllerCallback

public void atBottom(){
 … increment count;
 … display new count;
}

FallingLogo

FallingLogo

FallingLogoCall back when
Logo at bottom

run

run

run

$ javac FallingLogoCallback.java LogoControllerCallback.java
$ java LogoControllerCallback

Making Animations Smooth

● So far the animations are
● move a fixed # of pixels
● pause -at least- n milliseconds

● Issue: when calling pause, it may take a while
for your code to start executing again
● Pause is at least, and may longer, and may be

significantly longer.

One way to solve
● What we are really trying to do define speed

● speed = dist/time

● In our case, speed = pixels/millisecond.
● Change logic of program

● Don't pause and then move
● Read the clock, figure out how long it has been

since you last read the clock (call that dt)

● Then distance to move is
– speed * dt

● You will practice this in a program after the midterm
$ javac FallingLogoCallbackTimed.java LogoControllerCallbackTimed.java
$ java LogoControllerCallbackTimed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

