Lecture 9
CSE11 Fall 2013
Active Objects



“Active Objects”

 What Iis an active object?

* Objectdraw library has a specialized version of a
more general structure

* Think of these as objects that can continuously
execute code

 They execute independently of one another

 The more general ideal is multiple “threads” of
control



What we've done so far
» Single “Thread” of execution with various

events

 WindowController Class handles events

Events

.

mouseDrag

public MyClass extends WindowController ({

— ¥ public void onMouseClick

{
}

public void onMouseDrag

.

main(String [] ...)

{

java statements;

}




Active Objects

* Think about “flip book” animation.

e So far, we've used mouse clicks to cause
objects to move

e e.g. Balanced Pulley Programming Project

* What If the the WeightBox Objects moved “on
their own”?

 That is, under their program control



Define a “Run” method

public WeightBox { public WeightBox {
public void run() { public void run() {
while (forever) while (forever)
{ {
wait 0.1s; wait 0.1s;
[> move self a little; [> move self a little;
} }
} }

 Yellow and Blue WeightBox Objects are executing
Independently

* When in the same program, we call these independent
threads of execution



ColorBallController Example

 http://eventfuljava.cs.williams.edu/sampleProgs/ch¢
 javac FallingBall.java ColorBallController.java

 java ColorBallController.java


http://eventfuljava.cs.williams.edu/sampleProgs/ch9/textbook/ColorBallController/ColorBallController.html

FallingBall Sample Code

public class FallingBall extends ActiveObject {
// the image of the ball
private FilledOval ballGraphic;
// the canvas
private DrawingCanvas canvas;

[0}
~—

public FallingBall(Location initialLocation, DrawingCanvas aCanvas:
canvas = aCanvas;
ballGraphic = new FilledOval(initialLocation, SIZE, SIZE, canvas
start();

}

public void run() {
while (ballGraphic.getY() < canvas.getHeight() ) {

ballGraphic.move(0, Y SPEED);
pause (DELAY TIME);
}

ballGraphic.removeFromCanvas() ;




Basic Recipe of an Active Object

e define a class that extends ActiveObject

e Include a start(); as the last statement of
the constructor

e define a run () method

 make sure to pause () during the run method
(so that people can see what happens)



Making the Graphics more Realistic

« Image — Java's notion of a pixel image

« Use getImage () to load/open a pre-defined image and place
Into a local or instance variable

« VisibleImage — like other graphical objects with similar

methods to place on a canvas. Requires an Image to be
defined.

 In objectdraw, Controller and WindowController
define getImage ()

e Call this method In classes that extend these controller classes




Sample Falling UCSD Logos

File

Click to make a falling logo...

FallingLogo.java “snippet”

O

OO

O

// the image of the logo
private VisibleImage logoGraphic;
// the canvas
private DrawingCanvas canvas;

public FallingLogo(Image logo, Locse

canvas = aCanvas;
logoGraphic = new VisibleImage (
start();

$ javac FallingLogo.java
$ java LogoController

LogoController. java




Thinking about how to get Active
Objects to Interact with Other Objects

e Suppose we wanted to count and display the
number of Logos that had fallen to or past bottom

of the screen

e Two possible approaches

« Controller knows how many logos have been created
(each click creates a new one)

- Could periodically check how many logos are still visible and
subtract #created - #visible

« Each logo object could tell the controller “I've reached
the bottom of the screen”



Evaluating these two approaches

o Controller Knows

« Pros: FallingLogo only needs to know to do two simple
things:
- How to Fall, Define Accessor method of isHidden()

o Cons: Controller must do more work

- Explicitly track all FallingLogo Instances

- Query them periodically (we haven't yet learned enough java to do
this efficiently)

 FallingLogo Reports Back

« Pros: Simplified Controller, Change reflected as soon
as logo hits the bottom of the canvas

« Cons: FallingLogo needs to know how to do more than
“lust fall”



FallingLogo Reports Back

 This Is often termed a “callback”

 What's needed
« Controller needs to define a method that
FallingLogo instances will call.
- Let's term this atBottom()
 FallingLogo needs to know

- Its Controller
e Pass a reference to the controller to the FallingLogo constructor
- Logically, call atBottom() method when it hides itself

See: FallingLogoCallback.java, LogoControllerCallback.java



When the Callback Happens

‘run
LogoControllerCallback .
_ _ FallingLogo
public void atBottom(){
. lncrement count;

. display new count;

run
FallingLogo

run

Call back when " FallingLogo

Logo at bottom

$ javac FallingLogoCallback.java LogoControllerCallback. java
$ java LogoControllerCallback




Making Animations Smooth

e So far the animations are

 move a fixed # of pixels
e pause -at least- n milliseconds

* |ssue: when calling pause, it may take a while
for your code to start executing again

 Pause is at least, and may longer, and may be
significantly longer.



One way to solve
 What we are really trying to do define speed

e speed = dist/time
* |n our case, speed = pixels/millisecond.
* Change logic of program

 Don't pause and then move

* Read the clock, figure out how long it has been
since you last read the clock (call that dt)

* Then distance to move Is
- speed * dt
* You will practice this in a program after the midterm

$ javac FallingLogoCallbackTimed.java LogoControllerCallbackTimed.java
$ java LogoControllerCallbackTimed




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

