Lecture 7
CSE 11 Fall 2013

Method Signatures

(not covered in the book)

The name of method + order and types of arguments ==
Signature

Sun (Location iLoc, double dia; DrawingCanvas canvas)
- Sun(Location, double, DrawingCanvas)

Sun (double x, double y, double dia; DrawingCanvas
canvas)

- Sun(double, double, double, DrawingCanvas)

Java matches the signature of the method call with the
signature of the method definition to find the correct
method to call.

Methods, Logically

* Methods with the same name should perform
roughly the same function (logically)

 |f the same method name (but with a different
signature) does something completely
different

- Confusion about the logic of the program
- Difficult debugging/troubleshooting

* Don't try to be “clever”, if you need a different
method name, declare It.

Methods (Logically)

Methods with the same name should perform
roughly the same function (logically)

If the same method name (but with a different
signhature) does something completely different

- Confusion about the logic of the program
- Difficult debugging/troubleshooting

Don't try to be “clever”, if you need a different
method, declare it.

Method names should reflect what they do

Instances, Revisited

k\\\\

FilledOval head,
FilledOval leftEye;
FilledOval rightEye;
Line mouth;

public void moveto();
pubic void setColor();

FilledOval head;
FilledOval leftEye;
FilledOval rightEye;
Line mouth;

public void moveto();
pubic void setColor();

* Think of instances as not only having state variables
(instance variables), but also instance methods

 When a method is invoked (running) it knows which
Instance it is part of. The keyword this IS how you

reference the particular instance inside of a method

this

 refers to the “this instance” of an object

public class Key {

}

private Lock myLock;

public Key (Lock theLock) { // Constructor, typo in book
myLock = theLock; // Note: new is NOT used here
}
public Lock getMyLock() {
return myLock;

}

public class Lock {

public Key createKey() {
return new Key(this);

-/

Whichever Lock instance is being asked to run the
createKey() method

Lock and Key Objects

Keyl

Opens Lock Keyl
Opens Lock Key2 |\/|yLock:Lock1

MyLock=Lock?2

How example in book works

* Quick sample

Lock bikeLock, bikeLock2;
Key bikeKey, bikeKey2;

bikeLock = new Lock(); // need a lock instance
bikeKey = bikeLock.createKey(); // key to this lock

BikeLock2 = new Lock();
BikeKey2 bikeLock2.createKey();

if (bikeKey.getMyLock() == bikeLock)
System.out.println(“These are the same object”);

if (bikeKey2.getMyLock() == bikeLock)
System.out.println(“This should not print!”);

Putting It All together (From PR#2)

Class Name
Instance Variables
Methods

WeightBox
Line rope
FilledRect box;
void setColor(Color)
void hoist(double)
double getRopelLength()

Overloaded Methods

Same method name, Different method signature

Remember, Java distinguishes method signatures on types
In the argument list

- What you name your arguments is irrelevant!
Following have identical signatures

- Public Line (double x, double y, double endX,
double endY)

- Public Line (double x, double y, double length,
double angle)

If you declare both, it is an error! (they have the identical
signature)

Overloaded Methods

 Are VERY common
- Int Math.abs(int), double Math.abs(double), ...
 Are VERY useful

- Want absolute value? Math.abs (“easy to
remember and understand)

» Especially Constructors!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

