

Lecture 6
CSE 11 Fall 2013

Classes

● Classes are abstractions
● They help us group actions (methods) and

state (data) in sensible ways
● Well defined classes make it easier to

understand and reason about a program

What is “State”?

● This information (or date) about an object that is specific to a
particular instance

– It can be used to differentiate one instance from another

● Example: Your Drivers license

– State of Issue (String, e.g. “California”)
– First Name, Last Name (String)
– Date of Birth (Integer)
– Address (String)
– Restrictions (like requiring corrective lenses) (boolean)
– Height (integer or double)
– License Number (String)

● One can define state that is specific to an entire class (every
instance in the class shares the same data)

These are called state variables

Methods

● Procedures, Functions, Actions
– Information that can retrieved from an instance

● Accessor Methods (retrieve the value of internal
variable)

– You can read the magnetic stripe on a license to get the
information in a digital form

– Actions that can change some or all of the state
variables (also called internal state)

● Mutator methods
– None defined on license itself.

FaceDrag Example from Book
● Two choices for how to move/show/etc a

face in your code

– As four individual pieces (face, eyes, mouth)

– Logically, as a single face (and leave the details
to something else)

● Suppose you had 10 faces to keep track of
on your canvas

● What if the face were more complicated
(eyelashes, ears, hat,..)

Code Walk Through

● FaceDrag – no face “class”
– http://eventfuljava.cs.williams.edu/sampleProgs/ch6/te

xtbook/FaceDrag/FaceDrag.java

● FunnyFace – a face class
– http://eventfuljava.cs.williams.edu/sampleProgs/ch

6/textbook/RevFaceDrag/FunnyFace.java

Understanding Instance Variables

● A class definition is a blueprint for HOW to
create objects

public class FunnyFace {

 private FramedOval head,eye;

 …

private FramedOval head;

● Each instance of FunnyFace will have it's own
head object.
– There is underlying storage (state) associated with

each instance

head

leftEye

rightEye

mouth

head

leftEye

rightEye

mouth

 Computer Memory

Blue Instance Green Instance

Why do you use instance variables?

● Each individual object needs some information
specific to it.
– location, size, number of elements, etc.

● That information needs to persist from the time
you construct the instance
– Can be used to communicate state among methods

● Use temporary variables for things that do not
have to persist beyond a particular method

Methods and Parameters

● dx and dy are the names you (as the
programmer) choice to call parameters passed
to you

● double dx; double is the type of the
parameter

public void move (double dx, double dy) {
 head.move (dx, dy);
 leftEye.move (dx, dy);
 rightEye.move (dx, dy);
 mouth.move (dx, dy);
}

Methods and Parameters

public void move (double dx, double dy) {
 head.move (dx, dy);
 leftEye.move (dx, dy);
 rightEye.move (dx, dy);
 mouth.move (dx, dy);
}

FunnyFace myface;

double deltaX = 45.0;
double deltaY = 75.0
 myface.move(deltaX, deltaY);

How are deltaX and deltaY
passed to the move method?

Temporary variables in methods

public void moveHalfWay (double dx, double dy) {
double halfX, halfY;

 halfX = dx/2;
 halfY = dy/2;
 head.move (halfX, halfY);
 leftEye.move (halfX, halfY);
 rightEye.move (halfX, halfY);
 mouth.move (halfX, halfY);
}

● If you do not need the variable when a method
ends, MAKE IT TEMPORARY!

● In this example, halfX and halfY are defined by the
parameters passed to the moveHalfWay method
● They are not needed once the method completes

Accessor Methods

● They provide information about a particular
object.

● Use accessor methods to
– Retrieve the value of an instance variable

– Provide a logical operation about the state
● e.g. Contains() in various examples, hidden(), etc.

– Does NOT change the state (value stored) in any
instance variable.

Constructors

● Instances do not exist unless they have been
constructed
– Constructors tell the Java runtime system to

allocate memory specific to a new instance

– Allows the programmer to initialize instance
variables based upon parameters passed to the
constructor

– A constructor can only be called with a new
statement.

● Java does not have a destructor (C++ does)

Constructors

● Are methods that have the same name as the
class

● Multiple constructor definitions are allowed as
long as their argument types differ from each
other

public class Sun {
 private Location initialLocation;
 private FilledOval sunShape;

 public Sun(Location initial, double diameter,
 DrawingCanvas canvas) {
 initialLocation = new Location(initial); // record location
 sunShape= new FilledOval(initial, diameter, diameter, canvas);
 }
...
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

