

CSE11 Lecture 20

Fall 2013

Recursion

Recursion
• recursion: The definition of an operation in terms of

itself.
– Solving a problem using recursion depends on solving

smaller or simpler occurrences of the same problem.

• recursive programming: Writing methods that call
themselves to solve problems recursively.

– An equally powerful substitute for iteration (loops)
– Particularly well-suited to solving certain types of

problems

Why learn recursion?
• "Cultural experience" – think differently about

problems

• Solves some problems more naturally than
iteration

• Leads to elegant, simplistic, short code (when
used well)

• Many programming languages ("functional"
languages such as Scheme, ML, and Haskell)
use recursion exclusively (no loops)

Simple Exercise
How many students total are directly to the left
of you in your "row" of the classroom?

– You can only see the person right next to you

– But, You can ask that person a question and
he/she can respond to you

– How can we solve this problem (recursively)?

You Person next
to You

?

Last
Person

Recursive algorithm
• Number of people to my left

– If there is someone to my left,
ask him/her how many people are to their left

• When they respond with a value N, then I will answer N
+ 1.

– If there is nobody to my left, I will answer 0.

You Person next
to You

?

Last AKA
Base Case

?

N N-1 0

?? ?

N+1 Call Stack

Recursion and cases
• Every recursive algorithm involves at least 2 cases:

– base case: A simple occurrence that can be answered directly.

– recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in
terms of smaller occurrences of the same problem.

– Some recursive algorithms have more than one base or
recursive case, but all have at least one of each

.
– A crucial part of recursive programming is identifying these

cases.
– Can also create/define Recursive Structures.

Complex objects

• How might you design a class called
NestedRects of graphical objects that look like
this?

• Requirements for the constructor:
– Like many graphical objects, takes 5 parameters:

• x and y describing coordinates of upper left
• width and height of outermost rectangle
• canvas

– Spacing between rectangles is 4 pixels

Constructor for NestedRects
public NestedRects (double x double y,
 double width, double height,
 DrawingCanvas canvas) {

new FramedRect(x, y, width, height, canvas);
while (width >= 8 && height >= 8) {

width = width - 8;
height = height - 8;
x = x + 4;
y = y + 4;
new FramedRect(x, y, width, height, canvas);

}
}

Making NestedRects Useful

• Say that we want NestedRects objects to
behave much like other graphical objects?

• NestedRects class should define methods like
– moveTo()

– removeFromCanvas()

But our constructor just draws the object

Need a way to keep track of entire collection of
nested rectangles

 Could use arrays for an iterative solution, but
lets pretend we don't know about arrays.

Challenges

• Need to keep track of the rectangles in the
collection

• Instance variables for each of the rectangles
won’t work:

FramedRect rectangle1, rectangle2;

We don’t know how many there will be until a user
specifies parameters when constructing one

A Recursive Solution

• A recursive structure consists of
– A base structure (the simplest form of the structure)
– A way to describe complex structures in terms of

simpler structures of the same kind

• Let’s change the way we think about
NestedRects
– Rather than a series of FramedRects…
– = outer FramedRect + a smaller NestedRects inside

NestedRects: a recursive def’n

public class NestedRects {
private FramedRect outerRect; // outermost rectangle
private NestedRects rest; // inner nested rects

public NestedRects(double x, double y,
 double width, double height,

 DrawingCanvas canvas) {
outerRect = new FramedRect(x, y, width, height, canvas);
if (width >= 8 && height >= 8) {

rest = new NestedRects(x+4, y+4, width-8,
 height-8, canvas);

} else {
rest = null; // nothing more to construct

}
}

// Move nested rects to (x, y)
public void moveTo(double x, double y) {

outerRect.moveTo(x, y);
if (rest != null) {

rest.moveTo(x+4, y+4);
}

}

// Remove the nested rects from the canvas
public void removeFromCanvas() {

outerRect.removeFromCanvas();
if (rest != null) {

rest.removeFromCanvas();
}

}
}

Tracing the execution of new NestedRects(50, 50, 19, 21, canvas);

C
all S

ta ck

A Better Recursive Solution?

• moveTo and removeFromCanvas require
checking whether rest is null

• Missing check will cause program to crash

• Can we write NestedRects to avoid the
check for null?

Two Kinds of NestedRects

• “Normal” recursive case
– outerRect

– rest

• A special “simplest” NestedRects: empty!

Define a new class, BaseRects,
representing an empty collection of
FramedRects

A Simple Base Class
(an Empty Nested Rect)

public class BaseRects extends NestedRects2 {

// Constructor has nothing to initialize

public BaseRects() { }

// Move nested rectangles to (x, y)

public void moveTo(double x, double y) { }

// Remove nested rectangles from canvas

public void removeFromCanvas() { }

}

A Base Class
(an Empty Nested Rect)

public class BaseRects extends NestedRects2 {

// Constructor has nothing to initialize

public BaseRects() { }

// Move nested rectangles to (x, y)

public void moveTo(double x, double y) { }

// Remove nested rectangles from canvas

public void removeFromCanvas() { }

}

Revised Recursive Class

public class NestedRects2 {
private FramedRect outerRect; // outermost rectangle
private NestedRects2 rest; // inner nested rects

public NestedRects2(double x, double y,
 double width, double height,

 DrawingCanvas canvas) {
outerRect = new FramedRect(x, y, width, height, canvas);
if (width >= 8 && height >= 8) {

rest = new NestedRects(x+4, y+4, width-8,
 height-8, canvas);

} else { // construct a base object
rest = new BaseRects();

}
}

// Move nested rects to (x, y)
public void moveTo(double x, double y) {

outerRect.moveTo(x, y);
rest.moveTo(x+4, y+4)

}

// Remove the nested rects from the canvas
public void removeFromCanvas() {

outerRect.removeFromCanvas();
rest.removeFromCanvas();

}
}

Evaluating
new NestedRects2(54, 54, 11, 13, canvas)

• Since objects of type BaseRects and
NestedRects2 know how to “moveTo” and
“removeFromCanvas” …

Checks for null are eliminated

'0' or Empty as the “base” case is often a
good starting place for recursion

Designing recursive structures

Recursive structures built by defining classes for
base and recursive cases
– Both implement same interface
– Base class

• No instance variable has same type as interface or class
• Generally easy to write

– Recursive class
• At least one instance variable has same type as interface of

class
• Care needed to be sure methods terminate

Recursive Methods (or
Algorithms)

• Can write recursive methods that are not
part of recursive structures

• SolveMe (N) --> X + SolveMe(N-1)

• A very common use of recursion are so-
called “divide and conquer” algorithms
– Solve two problems, each of 1/2 the size of

the original, then assemble the full answer
from both parts

– Sorting in Searching (Chapter 20)

Base case replaces Base class

Recursive methods

• Must include at least one base case

• Typically contain a conditional statement
– At least one case is a recursive invocation
– At least one case is a base case -- i.e., no

recursive invocation of the method

• Without a BASE case you will recurse
infinitely! (That's bad)

An example: Exponentiation
• Inspiration: Fast algorithms for exponentiation

important to RSA algorithm for public key
cryptography – calculate: Bk

• A simple (not fast!) recursive method:

// returns base raised to exponent as long as exponent >=0
public double simplePower(double base, int exponent) {

if (exponent == 0) {
return 1;

} else {
return base * simplePower(base, exponent-1);

}
}

An example: Exponentiation
• Inspiration: Fast algorithms for exponentiation

important to RSA algorithm for public key
cryptography – calculate: Bk

• A simple (not fast!) recursive method:

// returns base raised to exponent as long as exponent >=0
public double simplePower(double base, int exponent) {

if (exponent == 0) {
return 1;

} else {
return base * simplePower(base, exponent-1);

}
}

Rules for writing recursive methods

• Write the base case
– No recursive call

• Write the recursive case
– All recursive calls should go to simpler cases
– Simpler cases must eventually reach base

case

Applying rules to simplePower

• Base case: exponent == 0
– Returns 1
– Correct answer for raising base to the 0th power

– No recursive invocation

• Recursive case: uses else clause
– Recursive call involves smaller value for exponent
– Recursive calls eventually reach base case of 0:

exponent greater than 0 to start and always goes
down by 1

Rules of Exponents

• Simple algorithm took advantage of these
rules:
– base0 = 1
– baseexp+1 = base * baseexp

• New algorithm will make use of this rule:
– Basem*n = (basem)n

Let m = 2, n = exp/2

baseexp= (base2)exp/2

Faster exponentiation

public double fastPower(double base, int exponent) {
if (exponent == 0) {

return 1;
} else if (exponent%2 == 1) { // odd exponent

return base * fastPower(base, exponent-1);
} else {

return fastPower(base* base, exponent/2);
}

}

baseexp= (base2)exp/2

Tracing fastPower

fastPower(3, 16)
= fastPower(9, 8)
= fastPower(81, 4)
= fastPower(6561, 2)
= fastPower(43046721, 1)
= 43046721 * fastPower(43046721, 0)
= 43046721 * 1
= 43046721

Only 5 multiplications!
Division by 2 is fast and easy for computers

Towers of Hanoi

1

2

3

4

Move all disks from left to right peg
Move one at a time
Can only put smaller disks on empty or larger disks

Base Case

1

Move all disks from left to right peg
Move one at a time
Can only put smaller disks on empty or larger disks

Source Aux Dest

1st Recursive Move

1

Move All Disks from Left Tower to Right Tower =
 Move 2,3,4 to Middle (Recursive) + Move 1 to Right (base)

 Then move Disks 2,3,4 (Recursive) to the Right Tower

Source Dest Aux

2

3

4

1

2

Move 2,3,4 is a smaller
Version move 1,2,3,4

BUT Destination is Changed!

Suppose we've accomplished
Step

1

Aux Source Dest

2

3

4

1 2After has completed, then do . Howework
explores this. Note both of these are recursive.

1

Recursive Move

1

To Move 2,3,4 to the Right Tower
 = Move 3,4 to the left tower + move 2 the Right Tower

Dest Source Aux

2

3

4

2

Recursive Move

1

Moving 3,4 from middle tower to left tower

Dest Source Aux

23

4

Recursive Move

1

Can Now move 2 to the Right Tower

Aux Source Dest

23

4

Recursive Move

1

Move 3,4 to the Right Tower
 = Move 4 to middle + move 3 to the Right
 Then move 4 to the right

Source Aux Dest

2

3

4

Recursive Move

1

Finishing

Source Aux Dest

2

3 4

Recursive Move

1

Move 4 to the Right (No recursion needed)

Source Aux Dest

2

3

4

Recursive Move

1

Move all disks from left to right peg
Move one at a time
Can only put smaller disks on empty or larger disks

Aux Source Dest

2

3

4

	Slide 1
	Recursion
	Why learn recursion?
	Exercise
	Recursive algorithm
	Recursion and cases
	Complex objects
	Constructor for NestedRects
	Making NestedRects Useful
	Challenges
	A Recursive Solution
	NestedRects: a recursive def’n
	PowerPoint Presentation
	Slide 14
	Slide 15
	Slide 16
	A Better Recursive Solution?
	Two Kinds of NestedRects
	A Simple Base Class
	Slide 20
	Revised Recursive Class
	Slide 22
	Evaluating new NestedRects(54, 54, 11, 13, canvas)
	Slide 24
	Designing recursive structures
	Recursive Methods
	Base case replaces Base class
	An example: Exponentiation
	Slide 29
	Rules for writing recursive methods
	Applying rules to simplePower
	Rules of Exponents
	Faster exponentiation
	Tracing fastPower
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

