
  

Lecture 19
Programming Exceptions

CSE11 Fall 2013



  

When Things go Wrong

● We've seen a number of run time errors
● Array Index out of Bounds

– e.g., Exception in thread "main" 
java.lang.ArrayIndexOutOfBoundsException: 
2 at TestWNS.main(TestWNS.java:14)

● String Index out of Bounds
● Null Pointers <-- what does this mean?
● String format exceptions

● These are called Exceptions
● They are logic or other kind errors in your program



  

Throwing and Catching  Exceptions

● An exception is an object in java
● A method can generate an exception and tell 

whomever has invoked it
● This is called “throwing an exception”
● methods throw exceptions, classes do not

● A method can also intercept an exception and 
process (handle) it without the program failing.
● This is an “exception handler”
● The method is said to “catch the exception”



  

try ... catch

● A block of code can be “tried”
● if NO exceptions occur, the catch block (exception 

handler) is not invoked
● if an exception happens that is defined in the catch 

block(s), the program can gracefully handle the 
exception.

try {
 ..... code under normal circumstances
}
catch (Exception e)
{
.... code that executes when exception of type Exception occurs
};



  

A Very Simple Exception Handler
import java.util.*;
public class SimpleException {

public static void main(String[] args)
{

Scanner parser=new Scanner(System.in);
String input;
String [] vals;
System.out.println("Enter numbers: \n");
try {

while ((input = parser.nextLine()) != null)
{

System.out.format("I read number: %f \n",
Double.parseDouble(input));

}
} 
catch (NoSuchElementException err) {};

}
}

handles when we 
no more input. Not 
bad numbers



  

What happens when we type in a 
“bad” number

$ java SimpleException
Enter numbers: 

123.45
I read number: 123.450000 
this is not a number
Exception in thread "main" java.lang.NumberFormatException: For input string: "this is not a number"

at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:1241)
at java.lang.Double.parseDouble(Double.java:540)
at SimpleException.main(SimpleException.java:12)

Can we clean this up a bit with a better exception 
handler?

Stack trace:  our code on line 12, was calling Double line 540, 
was calling readJavaFormatString at line 1241  



  

A Digression on Stack Traces

● What is a stack?  
● it is like a stack of dishes,
● you can place something on top (push)
● You can remove only the top item (pop)
● you can tell when the stack is empty (but not how tall it is) 

bottom

top

new element

new element
push

top

pop
new top after 
pop

new top after push



  

The Call Stack

● Every time a method is invoked (called), a record of that 
call is placed on the call stack

● Local variables are allocated from the stack, too

● Nothing below the top can return until the top returns. 

main()

parseDouble()

readJavaFormatString()

new element
x.readJavaFormatString();

main()

parseDouble()

readJavaFormatString() Exception occurred here

A print out of the call stack at the time of an 
exception is call the stack trace



  

A Recursive Call Stack
● Same thing happens with recursive calls, you just 

have many copies on the call stack
● When the recursion hits the base case, the calls 

below it can return one-by-one

main()

recursiveMethod()

recursiveMethod()

new elementrecursiveMethod();

recursiveMethod()

main()

recursiveMethod()

recursiveMethod()

recursiveMethod()

recursiveMethod() base case

Each return removes the 
call from the call stack



  

Modified Simple Exception Handler
import java.util.*;
public class SimpleException2 {

public static void main(String[] args)
{

Scanner parser=new Scanner(System.in);
String input ="";
String [] vals;
System.out.println("Enter numbers: \n");
try {

while ((input = parser.nextLine()) != null)
{

System.out.format("I read number: %f \n",
Double.parseDouble(input));

}
} 
catch (NoSuchElementException err) {}
catch (NumberFormatException err)
{

System.out.format("I could not understand '%s' as a number\n", input);
System.out.format(" Error '%s' had reason '%s' \n", 

err.getClass().getName(), err.getMessage());
}

}
}

handles when we 
no more input. Not 
bad numbers

handles format errors



  

Multiple Catches for the same try 
block

● One can handle multiple exceptions with 
multiple catch blocks

● They are processed in the order they are 
defined

● The first catch block that matches the exception 
is the first and only catch block to execute.

● Rule of thumb: catch specialized errors first and 
more general errors later
● Why? Exceptions are Objects and are inherited



  

Exceptions create an inheritance 
Hierarchy

● HIGHEST Level view (Important for Checked 
vs. Unchecked Exceptions)

Object

Throwable

Error Exception

RunTimeException



  

Exceptions create an inheritance 
Hierarchy

● HIGHEST Level view (Important for Checked 
vs. Unchecked Exceptions)

Object

Throwable

Error Exception

RunTimeException



  

What are some “Throwable”s under 
the Error Class

● VirtualMachineError ( Java Interpreter runtime)
● OutOfMemoryError 
● StackOverflowError 

● AWTError (Problems with AWT Engine)

● LinkageError (Problems with finding other classes)
● NoClassDefError
● ClassFormatError

● Generally, System errors. 

● Usually, we don't catch these errors



  

What are Some Runtime Exceptions

●       ArithmeticException

●       ArrayStoreException

●       ClassCastException

●       EmptyStackException

●       IllegalArgumentException

●         IllegalParameterException

●         IllegalThreadStateException

●         NumberFormatException

●       IndexOutOfBoundsException

●       MissingResourceException

●       NegativeArraySizeException

●       NoSuchElementException

●       NullPointerException

●       RasterFormatException

●       SecurityException

●       SystemException

●       UndeclaredThrowableException

●       UnsupportedOperationException



  

Some Runtime Exceptions

RuntimeException

ArithmeticException

IllegalArgumentException

StringIndexOutOfBoundsException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

NumberFormatException



  

Are there other reasons to program 
with Exceptions?

● Yes!
● It can be much simpler to program the main logic of 

the code WITHOUT testing for all special cases at 
every step

● Then catch exceptions when they occur
● Basic idea is the code runs properly most of the 

time, and code logic should favor getting the 
common case “right” (and debugged)



  

Checked vs. Unchecked Exceptions

● Java exception classes are categorized as either 
"checked" or "unchecked". 
●  categorization affects compile-time behavior only;
●  Exceptions are handled identically at runtime. Java 

determines determine in which category each exception 
is defined.

● An unchecked exception is any class that IS A 
SUBCLASS of RuntimeException (as well as 
RuntimeException itself).

● A checked exception is any class that is NOT A 
SUBCLASS of RuntimeException. 



  

Some Checked Exceptions

● IOException

●       ChangedCharSetException

●       CharConversionException

●       EOFException

●       FileNotFoundException

●       InterruptedIOException

●       MalformedURLException

●       ObjectStreamException

●       ProtocolException

●       RemoteException

● TooManyListenersException

●  UnsupportedAudioFileException



  

Java Complains about Checked 
Exceptions

● With unchecked exceptions, we don't have to 
do anything, they will propagate

● If one calls (invokes) methods that throw 
checked exceptions
● The caller. i.e., the code that invokes the method 

that throws a checked exception must either
– explicitly catch the checked exception 
– (re)throw the exception via throws method modifier

● It's a compiler error if you do NOT catch or re-
throw a Checked Exception.



  

finally

● not covered in book
● A finally clause always executes after try...catch 

block.  
● Enables clean-up processing after either normal 

operation OR an exception has occurred

● The default finally block is empty
try {
... normal code
}
catch (ExceptionClass1 err) { ... exception code }
catch (ExceptionClass2 err) { ... exception code }
finally {
   ..... clean up code
};

Always 
Executes



  

Some clarifying exercises
Is there anything wrong with the following exception handler 
as written? Will this code compile?

try {

} catch (Exception e) {
    
} catch (ArithmeticException a) {
    
}

What exception types can be caught by the following handler?

catch (Exception e) {
     
}

What is “bad” about using this type of exception handler? 



The Concept of a Stream

● Use of files
● Store Java classes, programs
● Store pictures, music, videos
● Can also use files to store program I/O

● A stream is a flow of input or output data
● Characters
● Numbers
● Bytes



The Concept of a Stream

● Streams are implemented as objects of special 
stream classes
● Class Scanner
● Object System.out



3 Streams in Unix

● Standard input (stdin in C)
● Standard output (stdout in C)
● Standard error (stderr in C)

● These are available in the unix shell
% program < inputfile

– Send the input file as the stdin to the program

% program > outputfile
– Send the output of a program to a file

% program1 | program2
– Send the output of program1 to the input of program2

● (this is called a pipe)



Why Use Files for I/O

● Keyboard input, screen output deal with 
temporary data
● When program ends, data is gone

● Data in a file remains after program ends
● Can be used next time program runs
● Can be used by another program



Text Files and Binary Files
● All data in files stored as binary digits

● Long series of zeros and ones
● Files treated as sequence of characters called 

text files
● Java program source code
● Can be viewed, edited with text editor

● All other files are called binary files 
● Movie, music files
● Access requires specialized program



Text Files and Binary Files



Creating a Text File

● Class PrintWriter defines methods needed 
to create and write to a text file
 Must import package java.io

● To open the file 
 Declare stream variable for referencing the stream

 Invoke PrintWriter constructor, pass file 
name as argument

 Requires try and catch blocks



Creating a Text File

● File is empty initially
 May now be written to with method println

● Data goes initially to memory buffer
 When buffer full, goes to file

● Closing file empties buffer, disconnects from 
stream



Creating a Text File

● When creating a file
● Inform the user of ongoing I/O events, program 

should not be "silent"
● A file has two names in the program

● File name used by the operating system
● The stream name variable

● Opening, writing to file overwrites pre-existing 
file in directory


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	The Concept of a Stream
	Slide 24
	3 Streams in Unix
	Why Use Files for I/O
	Text Files and Binary Files
	Slide 28
	Creating a Text File
	Slide 30
	Slide 31

