

Lecture 18
CSE11 – Fall 2013

Inheritance

What is Inheritance?

● Inheritance allows a software developer to derive a new class
from an existing one
● write code once, use many times (code reuse)

● Specialization

● extends is the java keyword that indicates inheritance

● The existing class is called the parent class, or superclass, or
base class

● The derived class is called the child class or subclass.

● As the name implies, the child inherits characteristics of the
parent

● That is, the child class inherits the methods and data defined for
the parent class

Inheritance Hierarchy
Person

UCSD_Person

Student

Undergrad Grad

Instructor

TA Professor

Tutor

? ?

Can Only have one
 Parent!

isA

● Defines an inheritance relationship
● Examples:

● UCSD_Person isA person
● Instructor isA UCSD_Person
● Student isA UCSD_Person
● Undergrad isA Student
● TA isA Instructor

● Transitive: TA isA UCSD_Person
● Undergrad isA Person

What do you get when you inherit
(extend a class)

● all methods and variables
● But, if a method/variable is private the subclass

cannot access the method/variable
● Private means private to the class in which the

method/variable is defined

● constructor(s) of your parent
● It's recursive, you get

method/variables/constructors of your parent,
grandparent, great-grandparent

the Object class

● Every java class is descended from the Object
class.

● Object defines a few interesting methods (and
hence ALL classes have these methods)
● getClass() - returns the runtime class
● toString() - returns a String Representation of the class
● equals() - method to determine if two objects are equal

to each other (Note the String class defines the
equals() method to be a character by character
comparison of two string objects)

Constructors

● The constructor for every parent class is called
whenever you do a new

● If your code does not supply it, the no-
parameter constructor of you parent is
implicitly inserted by the compiler as the first
line of your constructor

● Your constructor can explicitly call super(. ...) as
the first line of your subclass constructor. If it
does. it must be the first statement.

Hierarchy Revisited

Class 0 (Object)

Class 1

Class 2

private variables and methods
inherited variables and methods

private variables m
ethods

private variables m
ethods

Constructor of 2 Calls Constructor of 1. Constructor 1 Calls Constructor of 0.
This is so each layer of the hierarchy can initialize all private variables

Dynamic Method Invocation
● Java always uses the method defined “closest” to the class when the

instance was created

● Suppose ClassC extends ClassA
● ClassC is a subclass, ClassA is the superclass

● Both classes define methodX()

● Now suppose you declare
● ClassC myInstance = new ClassC();

● Which methodX() code is executed in
● MyInstance.methodX() ?

● Now Declare
● ClassA referAsA = myInstance;

● Which method is invoked via referAsA.methodX();

protected

● Private variables/methods are private to the class. They CANNOT
be seen by any subclasses

● Public variables/methods are available to all classes (including
subclasses)

● protected variables/methods are seen by subclasses, but not by
external classes

● Declare a method/variable as public, private or protected

● canvas is a protected variable of the WindowController Class

● This is why you can use it without declaring it

Overriding Method Defintions

● A subclass can redefine a method with the
identical signature of its superclass.

● There are times when you want to invoke the
method of your super class when (re)defining in
your subclass
● use the super.method()

● to invoke method() of your Superclass

●

final

● Have applied final to variables to make them
into constants

● You can apply final to methods to indicate
that they cannot be overridden by subclasses

● You can apply final to classes to indicate that
they cannot be extended
● e.g. public final class Math

abstract

● abstract methods are methods with no body
● They look a lot like interfaces
● To be useful, a subclass must provide an

implementation for abstract method
● If a class defines an abstract method, the class must

be defined as abstract

● Purpose: define a hierarchy of
methods/capability (outline of functionality)

● The AWT has many examples of abstract

● http://docs.oracle.com/javase/6/docs/api/java/awt/Toolkit.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

