Lecture 14
CSE11 Fall 2013
For loops, Do While, Break, Continue

General Loops Iin Java

* Look at other loop constructions

* VVery common while loop:

- do a loop a fixed number of times (MAX in the
example)
int count = 0;
while (count < MAX) {
// processing statements
count ++;

for loop

int count;

for (count=0; count < MAX; count++)

{

// processing statements

}

e The loop parameters are upfront
- A succinct way to “say” do the following “MAX times”

- You don't have to just increment by 1

e DiagonallL.oopGray2.java

for loop — general form

int count;

for (initial statement; test condition; update
statement)

{

// processing statements

}

e The loop parameters are upfront

- Don't have to read to the bottom of the loop to figure out is a standard
“counting loop”

- single digit letters are commonly used for loop indices.

e DiagonalL.oopGray2.java

How Is for loop “translated” into a
while loop?

for (initial statement; test condition;

)

// processing statements

This is Translated to:

initial statement;

while (test condition)

{

// processing statements

For loop steps

1)Initial statement executed
2)termination statement evaluated
3)if lterminated then

- execute statements
- execute update statement
- Go back to step 2)

The Loop Index

for (count=0; count < MAX; count++)

{

// processing statements

}

« count Iis the “loop index”, takes on values
-0,1,23,4,..... MAX-1

You don't have to just count up you
can count Down

for (count=MAX; count > 0; count--)

{

// processing statements

}

e count (the “loop index”), takes on values
- MAX, MAX -1, MAX -2, ..., 1

 NOTE: the difference between this and previous

- Both perform MAX loops

- loop index is “off by one”

» Always need to check starting and ending index for “errors”
(important for Arrays in next lecture)

e This is a common “bug” in loops

MAX + 1 iterations

for (count=0; count <= MAX; count++)

{

// processing statements

}

e count (the “loop index”), takes on values
- 0,1,2, ..., MAX

e NOTE: “MAX + 1” iterations

e get used to counting starting from 0, very common in
Java and C

Common Error

for (count=0; count <= MAX; count++);

{

// processing statements

}
e count (the “loop index”), takes on values

- 0,1,2, ..., MAX
e Processing statements executed exactly ONCE

- one ; can ruin your whole day :-(

Subversive but legal

* Confusing — takes longer to figure out what it does
e Can you guess the output?
* This might be a little too clever :-)

Loops with non-integer indexes

« Legal, but you may not get exactly what you expect

for (double count=0; count < MAX; count += 0.33333)
{

// processing statements

}
« count is the “loop index”, takes on values

- 0.0, 0.33333, 0.66666, 0.99999, 1.33332, 1.66665,

- May not be exactly what you intended because doubles are only
approximations of real numbers

e This is called round-off error

 When using non-integer loop indices, never check for exact equality as the
termination condition. e.g. count !=.999999)

Do...While

do
{

// processing statements

}

while (condition);

e Do loop guaranteed to be executed at least once
 DoWhileEx.java

NestedLoops

» Just like nested while loops

- You can nest a for loop inside of while loop and
vice-versa.

- When we do two-dimensional arrays, nested loops
are quite common

e Use this on your homework due friday

- Nest can go arbitrarily deep, but seldom do you
see more than three levels.

» Knitting.Java example from book

break and continue

e break and continue are special keywords
used inside of loops

- break — immediately stop processing the loop, go to
first statement that follows the entire loop.

- continue — stop processing this iteration of the loop. If a
for loop, execute the “update statement”, then go to the
top of the loop. While/do While, go to the top of the
loop

e Why write code with break and/or continue?

- special handling of particular cases become apparent

A common use of break

« Code is searching for the first occurrence of a particular
condition, but will only search for so long.

for (int1=0; 1 < MAX; I++)
{

If (Function(i) < 0)

break;

}
if (i < MAX)

System.out.printin(i);
else

System.out.printin(*Function is >= 0 “

Common Use of Continue

* You only want to process occurrences that
have (or have not) met a condition

Student pupil;
Course myClass;
while ((pupil = myClass.nextStudent()) != null)

{
1if (!pupil.tookMidterm())
continue;
// only proces if midterm was taken.
grade = pupil.computeGrade();
myClass.record(pupil.getName(),grade);
pupil.emailGrade(grade) ;

Formatted Printing

« System.out.format(“format string”, valuel, value?2, ...

valueN)
« Method supports a variable number of arguments

« format string has replaceable format elements

- The first replaceable element is assigned valuel, the
second value2, and so on.
« %<char> is a placeholder for the type for format to perform
* %d — format as an integer
« %f — format as floating point number
« %s — format as a string

Special Characters in the Format
string

« \n — newline

« \t—tab

o \r —return (no new line)
« Example strings

“%d : %f\n” — print first arg as an int, second as a float, print a newline.
_ System.out.format(“%d : %f \n”, j, vX);
Can specify fixed width, too

“0%5d” would format an integer using at least 5 spaces

a good “cheat-sheet” of format codes
_ http://alvinalexander.com/programming/printf-format-cheat-sheet

Example: FormatMe.java

http://alvinalexander.com/programming/printf-format-cheat-sheet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

