

Lecture 10
Declarations and Scope

Declarations and Scope

● We have seen numerous “qualifiers” when
defining methods and variables
– public

– private

– static

– final

– (we'll talk about protected when formally
addressing inheritance)

Static

● Static means “associated and stored” with the
class
– Can modify a method declaration

– Can modify a class variable declaration

private static int bbb;

public static void main();

instances

Class

Some important properties of static

● An instance does NOT have to first be
constructed before invoking a static method or
accessing a static variable
– The storage for static variables and methods is

defined when the class is compiled with javac

– This is also why the main method must be
declared static

● No instance of the class has been constructed before
main() is invoked

● At run time “$ java MyClass” is making the
following method call

– MyClass.main(args)

What can be called where

Referring to Class Referring to an Instance

MyClass.aMethod(); anInstance.aMethod();

MyClass.aVariable; anInstance.aVariable;

MyClass.bMethod(); anInstance.bMethod();

MyClass.bVariable; anInstance.bVariable;

You can reference class variables and methods (those declared static) from an
instance.

You cannot reference instance variables or methods (those not declared static) without
first constructing an instance

Variable Initialization

● Java initializes class (static) and instance variables to “zero”
– static double x; // x == 0.0

– static char c; // c has ascii value 0

– static FilledOval f; // f references a null instance

– private int i; // i = 0 when an instance is
 // > constructed <

– static boolean b; // b has initial value of False

● Temporary variables are never initialized

– Good (defensive) coding never assumes that any variable is
initialized. Program should explicitly do this step

● Why? Other languages (e.g., C) do no default initialization.

public void f() {
r;
c;

}

Another view of the static modifier
● Static variables are stored with the class, the value

in the static variable is shared by all instances
● Non-static variables are stored with the instance

private int r;
static private Color c;
public void f() {

r;
c;

}

private int r;
static private Color c;
public void f() {

r;
c;

}

private Color c;
static private int r;
public void f() {

r;
c;

}

r

r

public void f() {
c;
r;

}

c

public void f() {
c;
r;

}

c

public void f() {
c;
r;

}

c

Class Definition

instances

Public vs. Private (access
modifiers)

● Public Variables and Methods can be
seen/called by all other classes

public int r;
private Color c;

Circle myCircle;
myCircle = new Circle(10);

myCircle.r; // valid

myCircle.c; // not valid

public class Circle Another Class

● private means that only instances of the class have access
to the variable

● If class B extends class A, B does NOT have access to A's
private variables

final

● final means “cannot be changed”

– We declare constants to be final
● Constants must also be declared static.

– Why? Because constants must be defined without any constructed
instances. That can only occur with the static modifier

– Math.E, Math.PI are static final. One does not need a Math instance to
reference E and PI.

– We conclude that Math.abs() must also be declared static since we can
call it without first constructing a Math instance

– http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html

– (Later, when describing inheritance, we'll learn about
declaring methods and classes to be final and what that
means)

Temp Variables and Statement Blocks

● It is legal to define a temporary variable inside
any statement block.

● Block B is contained in Block A (or B is nested
in A).
– A variable definition is relative to that block and

available to any blocks that is encloses
– i and k are available in Blocks A&B. j is only

available to block B.

{ // block A Start
int i = 50;
int k =100;
{ // block B Start

int j;
} // block B End
j=10; // < j is NOT defined

} // block A End

Scope of variables

● Scope defines when a variable is available.
● If myMethod() below is invoked, what does it

return?

public int myMethod()
{

int retval, itemp=100;
retval = itemp;
{

int retval, itemp = 75;
retval = itemp;

}
return retval;

}

ANS: 100

Scope of variables
● How java figures out which version of an

identifier is accessed (this is the scope)
● It looks into the current statement block, if the

variable is defined, it uses it. Otherwise it
looks into the next enclosing block. It keeps
looking at enclosing scopes (blocks)

public int myMethod()
{

int retval, itemp=100;
retval = itemp;
{

int temp = 75;
retval = itemp;

}
return retval;

}

What is scope

● When you have the same identifier name declared in
multiple statement blocks, Java has to figure out which one
of these identifier's storage should be used

● It gets the version of the identifier defined “closest” to
where it is used.

● Inside a statement block is first (and any enclosing
blocks),

● Then inside the method (temporary vars)

● Then inside the instance

● Then inside the class

● If it cannot find it in any of these “scopes”, the identifier is
not defined.

Which Identifier is “in Scope”?

● B and C are
defined in multiple
blocks

● When referenced
in a block, Java
must look up
which version of
the identifier is in
scope

public int myMethod()
{

int A;
int B;
int C;
{

int B;
{

int C;
A;
B;
C;

 }
 B;

}
 B;
}

What about instance variables.
Where are they available?

● Instance variables are
available to all methods and
constructors defined in the
class

● Same logic as the previous
slide.

● Just look at the enclosing
statement blocks

● Note B and C inside
constructor are Shadow
variables. This is bad.

public class myClass()
{

private int A;
private int B;
private int C;
public MyClass (){

int B;
{

int C;
A;
B;
C;

 }
 B;

}
 }

Why bad naming is confusing
● DO NOT name temporary variables the same

as instance or class variables
– Legal Java but very confusing

– This is called a shadow variable (and is usually a
very bad idea)

public class Scoper{
{

private int state;
public double scopedMethod()
{

double state = 99.9; // Shadows the instance var
return state;

}
public int scoop()
{

return state; // this is the instance variable
}

}

Revisit this

● This is read/translated as “this instance of the
class”

● You can use it access a the instance's version
of a shadowed variable

public class Shadow{
{

private String address;
public Shadow(String address)
{

this.address = address;
}

}

Instance variable Method argument

When to use instance versus
temporary variables

● Instance variables
– Data stored in the variable is needed by multiple

methods of the class
● e.g. mousePressed boolean in determining when to

drag an image

– Data stored in the variable is needed across
multiple invocations of the same method

● e.g. lastPoint in many of the onMouseDrag() methods

● Temporary variables
– “If you can, make a variable temporary!”

– Scratchpad storage, needed only for the duration
of a method call, and then can tossed away.

Coding Style Guide

● Why do we need coding style guidelines?
– A great deal of time as a programmer is spent

reading other people's code
● Code review
● Want to understand how an algorithm is implemented
● Need to debug code you didn't write
● Want to “steal” (borrow, copy) a subsection of code and

incorporate into your own
● Want to start from something existing and modify

– Adhering to a coding style makes is easier to
understand your own code

Coding Style Guide

● Indentation
– Tabs vs. Spaces (I recommend tabs)

– Where to put '{' and '}' for statement blocks

● Comments
– Informative, not redundant

● i=j; // Assign i the value of j <<- not a good
comments, adds nothing but clutter

– Not too many, not too sparse. Comment blocks of code

● Constant, variable, method, class naming
● See Style Guide

–

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

