
CSE11 Fall 2013

Lecture 1

Topics Covered

● Class handout

● Is CSE11 the right class for you?

● A short history of programming languages

● Computer organization

● What is a procedural language?

● What is an object-oriented language?

● What is an object, a class, an instance

A Short History of Programming
● 1943 – The ENIAC. University of Pennsylvania

● Used for Artillery Projectile Calculations 19,000 Vacuum
Tubes

● Programmed in Assembly Language (Machine Code).

Assembly Language
● This is what CPU “understands”

● Here's an Intel x86 code snippet

● Not readable without comments

● Specific to brand particular hardware (Intel, ARM (what's
in many smartphones), PowerPC all different)

● Prone to errors. Slow to program. Essential Today.

1 pushl %ebp
2 movl %esp, %ebp
3 subl $4, %esp
4 movl $10, 4(%ebp)
5 leal 4(%ebp), %eax
6 addl $66, (%eax)
7 leave
8 ret

1950s, 1960s
● 1955: FORTRAN (Formula Translation)
● 1958: LISP (List Processing)
● 1959: COBOL (Common Business Oriented
Language)
● 1964: BASIC (Beginner's All Purpose Symbolic
Instruction Code)
● These were critical advances in programmability of
computers.

– English-like constructions
● Compare, Test, Jump → If

– Compiler/Interpreters translated automatically
to machine code

1970s,1980s
● 1970 – Pascal

– UCSD Pascal, and the p-System in 1978 made Pascal
portable

● 1972 – C
– This made the UNIX operating System practical
– Most of Linux kernel is in C

● 1978 – SQL (Structured Query Language)
– Program databases

● 1980 - C++ (C with “classes”)
● 1984 – MATLAB (Matrix Linear Algebra)
● 1987 – PERL (Practical Extraction and Reporting Language)
● Proliferation of Specialized Languages, Greatly improved the ease
with which complex algorithms could be expressed.

1990s

● 1991 – Python, Visual Basic
● 1991 – HTML (Hypertext Markup language)

– Websites
● 1995 – Java

– Rapid Application Development
– Object Oriented
– Loosely based upon C
– Simplified inheritance versus C++
– Portable (more on this later)

● Programmers uses the Language that is most suitable the
problem at hand.
● Even “Old” languages persist. e.g., FORTRAN is used on all
modern supercomputers. C is critical for *NIX operating
systems

Computer Organization

● Basic Computer operation is very
straightforward
● CPU – Central Processing Unit
● Memory

– Instructions
– Data

● Input/Output Devices (files, display)

The basic CPU “Loop“

CPU

Memory

Load A into Register A (RA)

Load B into Register B (RB)

Add RA,RB place in RC

Store RC into Location C

.

.

.

25

36

61

Memory Location 0

Memory Location 4

Memory Location 1036

Memory Location 1040
Memory Location 1044

Program
Counter

●Program Counter Starts at Location 0
●Reads Instruction
●Executes Instruction
●Advances to Loc 4
●Read Instruction
●Executes instruction
●Advances to Loc 8
●Continues

11

2

1

2

3

3

What are the important items

●Memory is Linear. Starts at 0

●Instructions (what the CPU is told to do) and Data (what it is supposed to
operate on) are both in memory

–Memory can either be CPU instructions OR Data

–The compiler usually separates the memory into two logical pieces
●Memory for instructions (sometimes called the code segment)
●Memory for data (sometimes called the memory segment)

●Assembly language enables the programmer to deal directly with the
Hardware (code and data)

●Eventually, what we program must end up into this structure. This is the
only format that the Computer understands

●This basic structure (and understanding it) can help you “demystify” what is
going on when you program

Memory that Stores Data

Memory

25

36

61.00

0.5

-0.866

0.866

0.5

C

S

E

1

1

Memory Location 0

Memory Location 4

int A;
int B;

double C;

R = new double[2][2];

S = “CSE11”;

Memory is Universal Storage.
What is stored on Location N is different for every program

Abstraction of Memory

● Data is stored in a linear set of memory locations on the
computer itself
● Languages let us declare the names and types of variables
that we want to use
● The compiler and runtime systems keeps track of exactly
where in memory a variable is located

– Nothing in the computer itself protects us from storing a
double in location N and then reading it back as if it
were an integer

● The same ideas apply to the “code” part of the program.

Programming Languages

• Convert high-level, human-understandable
instructions into a form that the computer
can execute

• Different kinds of languages make it easier (or
harder) to express these high-level
instructions

What came before Object-Oriented
Programming?

● FORTRAN introduced in 1955
● 25 years later, the first popular object-oriented
language appeared (C++)
● The basic abstraction is called procedural
programming

– It is the bedrock of computer programming
and you use elements of it all the time
(even in object oriented programming)

What is procedural programming?
● A program is organized as data and a set of
procedures (also called subprograms).

● For the program to do its job, the procedures are
called in the correct order

●This very much mirrors how data and code are
defined/organized in the computer

#include <stdio.h>
int square(int iA) { return iA * iA; }
int cube (int iA) { return iA * iA * iA; }
void main() {
 int A, squaredA, sixthA;
 A = 3;
 // Calculate A^6
 squaredA = square(A);
 sixthA = cube(squaredA);
 printf(“%d\n”, sixthA);
}

What are some of the “complaints”
of procedural programming

●Code was separated from the actual data
●Suppose you have

– Integer A
– 2 x 2 Matrix B

●You use one procedure to square an integer A (it's just
one multiplication)
●You use a different procedure to square matrix B (8
multiplies, 4 additions)
●In procedural programming, the author must explicitly
track whether he/she is squaring a number or a matrix
and the call the right piece of code to get the job done

Object-Oriented Programming

●Revisit integer A and Matrix B

●Suppose A and B knew “how to square themselves”?

●Instead of the programmer explicitly figuring out which
“squaring subprogram to call”, he/she would rely on
these variables (objects) to know how to perform the
operation properly on themselves.

●This would be called the squaring method

Function Calls vs Method
Invocations

• code: B = square(A)
• A function called “square” has an argument A.
• Whatever square does, it does it on A (the argument)
• Whatever square does, it returns something and stores it in B
• Square is a procedure or function

• code: B = A.square()
• An object called “A” has method called square
• Whatever square does, it does it to A.

• If A and B are the same kind of objects, then B.square() is valid

• Whatever square does, it returns and object and stores it in B
• Square is called a method

An “object” version of A^6
public class example1
{
private int myvalue;

 public example1(int iA) { myvalue = iA; } //constructor
 private int square() { return myvalue * myvalue; }
 private int cube () { return myvalue * myvalue * myvalue; }

 public static void main(String[] args) {
 example1 A, squaredA;
 A = new example1(3);
 squaredA = new example1(A.square());

// Calculate and print out A^6
 System.out.println(squaredA.cube());
 }

}

Objects, Classes, Methods,
Instances

● An object is a software construction that has both state and
behavior

– State is the data required to define the object
– Behavior are the methods or procedures that can be used to

manipulate the state
● Methods operate on an object's internal state and serve as the
primary mechanism for object-to-object communication.
● Hiding internal state and requiring all interaction to be performed
through an object's methods is known as data encapsulation — a
fundamental principle of object-oriented programming

Objects

● State is memory in the computer
● Methods are procedures
● We logically link these two together to create
an object
●Shorthand: Object = Data + Methods

Objects, Classes, Methods,
Instances

●A class is blueprint from which individual objects are created

●Suppose we have a bicycle class

– The internal state that might be used to define a particular
bike in the bicycle class are

● Color, wheel size, seat height, number of gears

– Methods that are used to control the bike
● pedal, brake, selectGear, turnRight, turnLeft, goStraight

●

Objects, Classes, Methods,
Instances

● An instance of a class is a specific object with state.
● eg. The following would be two different instances of the
bicycle class.

– RedBike = new Bicycle(RED,27);
– BlueBike = new Bicycle(BLUE,24);

● RedBike has color red and 27” wheels
● BlueBike has color blue and 24” wheels.
● Tell RedBike to brake and blueBike to turnLeft

– RedBike.brake()
– BlueBike.turnLeft()

●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide28
	Slide 14
	page15
	page16
	page17
	Slide27
	page18
	Slide 20
	Slide 21
	Slide 22
	Slide 23

