CSE 11 START EARLY!
Fall 2013
Programming/Homework Assignment #7

Due: 2 December 2013, 11:00pm (electronic turnin) 200 points

This is a programming assignment and will be turned in electronically. You may develop your code on
your own machines, however, the code must run on lab machines and must be turned in from a lab
machine.

NO LATE ASSIGNMENTS WILL BE ACCEPTED
The Program — The Snake Game

This is a double programming assignment. It is intended to NOT be doable in a single night. It's long
with a non-optimized solution taking about 500 lines of code and white space (not including
comments). It's much more complex than any of your other programs but at the time of the assignment
we have already covered the critical material. This assignment synthesizes nearly everything covered
so far in CSE11.

The goal is to create a “snake” program that you play on you computer. To achieve this goal you will
be using linear arrays, rectangular arrays, activeObjects, callbacks, graphical user interfaces with java

Swing objects, for loops, while loops, boolean expressions, and good program design.

This is a much more substantial program than Cemetery and you should expect it take you more time.
Begin early. Ask questions. Be Patient and develop in stages

What the Final Game looks like when initialized and after being played for awhile

panelo
File File R
Score: 0 GAME OVER! Score: 380 E
High Score: 0 High Score: 380
||
n "n
|
« 1
|
||
|| | 1
|
| |
|
|
‘ New Game || Reset! ‘C} ‘ New Game H Reset! | L L)
Illustration 1: When Game First Begins Illustration 2: After playing for awhile

Basic rules/operation of the game

When the game begins, a snake that is one segment in length (the head) starts in the top center and
moves downwards automatically through the field. A user has two controls: turn right, turn left. The
snake moves forward under program control.

Every time the snake is turned (by the player), 1 segment is added to the snake. Every so often, a new
obstacle is placed randomly in the field. Every so often, the snake speeds up. The goal is to get as
many points as possible before running into an obstacle, the edge of the field, or the snake itself.

A slider controls the speed of the snake, game score and high score are kept track. A new game
(without resetting the high score) can be asked for at anytime.

The Major Classes
When creating a larger program, one has to figure out how to break up the problem into smaller
components. Since, this is likely the first big program you've ever created, this assignment guides you
through some of this process. Let's begin by looking at the most likely classes, and then expanding

* the Snake itself

* the grid (or field) over which the snake is slithering and obstacles are placed

* The graphical interface

There are two less clear classes at this stage.
* amover, which causes the snake to move under program control
* acoordinate class (basically X,Y coordinates)

The Snake Class (Snake.java)

There can be several approaches to designing a Snake. The following functions are clearly essential
* Create the Snake at a particular location
* Move the snake in a particular coordinate direction (e.g. north-south, east-west)
e Turn the snake left or right
* Grow the snake (add a segment to it).
* Determine if the Snake has run into itself.

What about displaying the Snake on the canvas? That's a good design question. This assignment
recommends that you do NOT make the Snake class a graphics object, but instead represent the snake
as a growing column of coordinates (See the Coord class below). Does the snake need to know the
boundaries of the field? Perhaps, but is a simpler design if the Snake does not understand either
boundaries or obstacles. Easier in the sense that a Snake could be used under a variety of game rules

The Snake as a list of (x,y) coordinates.
For simplicity, this assignment assumes that any time a snake is n segments long, each segment has the
same (unit) length. One way to think of this is that each segment of the snake takes up a single 1x1

block.

A good approach to the snake is to ignore graphics and think of the snake as occupying a list of squares

each at logical coordinate point (x,y). What may not be clear at this point is that we can think of the
coordinate system as integers only. When a snake moves, it moves 1 unit only. It is probably best
think of the snake as being on a coordinate plane that is infinite in all directions.

The Snake Head and Valid Movement

Suppose the Snake head is located at coordinate location (n,m) (n,m can be any integers). When the
snake head moves it cannot move along a diagonal. What does that mean? The next coordinate the
snake head can move to is limited to four coordinate locations: (n+1,m), (n-1,m), (n,m+1), or (n,m-1).

The is an additional caveat to this: The snake head cannot move in the direction of the body segment
right behind it.

The Snake Body

The body of the snake is similarly a set of coordinates. Like movement of the Snake head, each
subsequent segment can only be in one of four coordinate locations relative to the segment in front (or
behind it).

Before going on, let's talk about the Coord class

The Coord Class (Coord.java)

It is highly recommended that you create a Coord class where an instance of the class is an integer pair
(Lm). You probably want to write an equals() method and a toString() method, but this is not essential.
You can then represent the location of the Snake head and body segments is a list (array) of Coords.

It is very similar the Location class used in previous assignments, but the coordinates are integers
instead of doubles.

You probably also find it easier if you define two constructors for Coord, namely

Coord (int i, int j)

Coord (Coord initial)
The first constructs a coordinate pair from i,j, the second one constructs a copy from an existing
Coordinate instance.

Back to the Snake.
Now that you have a Coord class, the snake itself is just a list of occupied coordinate locations.

Moving the Snake

Think about what it means to move the Snake. This is probably the first “hard” thing to get right and
warrants significant testing to make sure you have your logic correct. To get this right, think about how
the coordinate of each subsequent segment relates to the one before it. e.,g. If you have snake of length
two and you move the head, what coordinate does the tail (next segment) become? If you do this
correctly, you can check that an asked for move is valid and move the Snake (logically) in less than 15
lines of code.

Growing the Snake

Growing the Snake is just like moving the snake, except that the tail “stays put”. A hint to make this
efficient is 1) move the snake, then add a tail segment if the snake hasn't reached its maximum length.
The professor's solution for growing the snake is less than 10 lines of code.

Other methods?

You may find some private methods useful. That's a design decision up to you. I would highly
recommend that your “move” and “grow” methods return booleans to indicate that what was asked for
was a valid move (or grow) request.

The GameGrid Class (GameGrid. java)

The GameGrid is the bounded X,Y coordinate plane that the Snake and obstacles are placed. Think
about it as “slots” that can be (a) empty, (b) have snake segments (or snake head), (c) have an obstacle.
The body and head of the snake occupy coordinate points on the Game grid.

Clearly the Snake moves along the GameGrid,But, the snake doesn't know about the GameGrid (or
game rules, it only knows how to grow and move on an infinite grid. For example, if you invoke a
move method on a Snake instance, the result might be that head would be outside the grid, or it would
have run into an obstacle, or the Snake ran into itself. Other than running into itself, the Snake as class
shouldn't need to know the specific rules of the game (or that there is grid boundary or obstacles)

Since the GameGrid class should enforce the rules of the game, it is logical that anything in the game
that wants to move the snake or grow the Snake would ask the GameGrid class to move the Snake (and
therefore also test all of the game rules in the process).

The GameGrid must also draw the grid (and snake) graphically. Part of the assignment is to figure out
a reasonable way to do this, but three hints are in order for moving or growing the snake:

1. Copy the the current set of segments of the snake (record its current position)

2. move (or grow the Snake), then check if the move or grow violates any of the game rules

3. If move (or grow) doesn't violate the any of the game rules, erase the snake and re-draw it in its
new position. If does violate the game rules, then don't move

The GameGrid will need to eventually tell the GUI when a move has occurred or when a rule of the
game has been violated. Hint: you want to call back to the GUI

The SnakeGame (SnakeGame. java)
This is the GUI interface for the game. It needs to display scores (high score) present buttons and a
speed slider, and indicate when a game is over.

Hint: Each time a New Game is requested, create a new GameGrid (which should in turn create a new
Snake instance)

The SnakeMover (SnakeMover.java)

The SnakeMover must move the Snake forward on a timed interval. It must also respond to “left” and
“right” keystroke commands from the user. In other words, it needs to respond to keyboard events and
run on a clock (Think activeObject). Detailed requirements of the game are given below. The
SnakeMover will make requests of the GameGrid to move or grow the Snake

Summary of Class Interactions

1. A Snake is list of logical coordinates. It knows nothing about graphics. It can be told to move,
grow, and report information about itself.

2. The GameGrid is the bounded X-Y playing field. It is the only object that directly moves/grows
the Snake. This is so it can enforce the rules of the game. It will also convert the logical X-Y
coordinates of the snake (and obstacles) to a graphics representation.

3. The SnakeMover is the automated mechanism of forcing the snake to move forward. The
SnakeMover will request the GameGrid to move the snake, or grow the snake. If the GameGrid
reports a successful move or grow, the SnakeMover reports this to the SnakeGame GUI

4. The SnakeGame is the Graphical interface that sets up the GameGrid, the mover, and responds
to user input.

5. Coord is a “helper” class.

Rules/Requirements of the Game

This is a long section, because there a many details to get right.

1. Game Setup

1.
2.

oA wW

8.
9.

10.

A Snake segment or obstacle is 10 pixels x 10 Pixels

The field size (NxM) should be relative to the current canvas size when a New Game is
requested. If a game is in progress and the window size is changed, the Field should NOT
change size or position. If window is resized and then the New Game button is pressed, the
field should be resized (larger or smaller) to fit the current canvas

Center the field on the canvas.

Empty parts of the field are colored White

The edge of the field is indicated by a black line (See Pictures above)

The head is colored differently from the snake body (Red for the Head, Green for the body
in the above, you may choose your own colors)

Obstacles are colored differently from the head,body, and empty parts of the field. Obstacles
are colored Black in the above, you may choose your own color)

You must provide a button for “New Game” and “Reset”

You must provide a speed slider to change the speed of the snake

Above the play field are labels for Score, High Score, and an indicator for when a game is
over. See Layout for the pictures above, your game should have the same layout

2. Game Initialization

1.
2.
3.
4.

A snake of length 1 (just a head) is created at the top of the field and in the middle.
The initial direction of movement is downwards

If the speed slider is more than the minimum, that should be the speed of snake.
No obstacles should be in the field

3. Snake Movement

1.
2.
3.

The “j” key should turn the snake left.

The “1” should turn the snake right.

Left and right are relative to the current forward direction of the Snake. For example if the
snake is currently moving downwards then a right turn would make the snake move towards
the left side of the screen. If the snake were moving upwards, a right turn would cause the
snake to move towards the right side of the screen

When the snake is turned by the user, it grows in the new direction. Only left or right turns
can make the snake grow longer

8.

5. If the user does nothing, the snake moves forward on its own.

Scoring and obstacles

1. Each time a snake grows a segment, 10 points should be added to the current score

2. The high score should keep track of scores between new games, if the current score would
be higher than the high score, the high score should update immediately.

3. Every 10" time the snake either moves or grows, a new obstacle should be randomly placed
in the field

4. The game is over if the snake hits the edge of the field, hits an obstacle or hits itself.

Timed movement

The slow speed moves the snake ~once/second

The fast speed moves the snake ~20 times per second

The speed of the snake should increase every 100 points until the maximum is reached.

The SnakeMover should not ever call pause for longer than 50ms.

As soon as the user “turns” the snake, the automated timer used by the snake mover should

reset

Reset Button

1. The speed should be reset to the slow speed

2. The high-score should be reset

3. The current game should stop immediately

Game Over

1. When the snake violates a rule of the game, all movement should stop and the GAME
OVER! Indicator should be shown.

These requirements may be amended/clarified during the assignment.

ik W

Development Strategy

This is a big program and you must develop in stages, the final program is roughly 500 lines of code.
Take a deep breath. And plan to work on this assignment in small chunks. Celebrate the progress as
you make it. What follows is a suggested plan of attack You should be looking to do 2-4 steps at a
time. Estimate of the whole project is somewhere between 10 and 20 hours. (You have TWO weeks).
If you find yourself getting stuck, ask for help. We really want you to succeed at this program. The
strategy is pretty detailed so that you can make good, measured progress. This is a challenging
assignment.

When vou get things working at various steps, make copies of your working code and store in a

safe place.

Forget about graphics as you start out. You need to get the Snake and Coord Classes coded
correctly. Together they total 125 — 150 lines of code.

Write the Coord class and test it. This shouldn't take too long, but make sure you can create
arrays of Random coordinates, print them out, compare them, and get the individual elements of
a Coordinate reliably.

Write the first edition of the Snake class that creates a snake, can retrieve the array of
coordinates that make up the snake, and print the coordinates.

Write a small testing program that creates a Snake and performs a sequence of 20 — 50 random
moves. Print out the coordinates after each move/grow. Verify that the coordinates are being
updated the way you think they should. Try giving your Snake invalid moves/grows and make
sure that it behaves properly.

10.

11.

12.

13.

14.

15.

16.

17.

You may want to implement a method that determines if the Coord intersects any part of the
Snake. That's just a friendly hint.
If you have the above working well, you ready to start on the game grid.
Create a GameGrid that is NxM where each element of the grid is a character. Use a "' for an
empty space, a “#” for a snake body part, an 'H' for the snake head. You don't have to
implement all aspects of the GameGrid at once
1. You need to initialize an empty grid, create a new Snake and place the snake at the top
center of the grid.
2. you need to implement move and grow methods in GameGrid that will move/grow a snake
AND check that the move/grow was valid (Stayed within the GameGrid)
Test this first edition of the GameGrid by reading input from the user. If the user hits “k” the
snake should move forward, hits “j” it should turn (and grow) left, hit “1” it should turn and
grow right. Use print statements liberally to see how things are going, but after each keystroke
draw out the game grid. This is primitive ascii graphics, but you will know right away if things
are going the way you expect them to go. Please note, there is no easy way in a java console
program to react to just a keypress, you have to hit the key and then return.
At this stage you should be able to move your snake under keyboard control and have it
turn/grow. The “graphics” should all be ascii (plain text).
Now it's probably time to make the first graphical version. Copy your current GameGrid into a
safe place. Now instead of ascii graphics have your GameGrid support objectdraw graphics and
work to get the graphics right. I would create test driver (e.g. SnakeTest) that is a
WindowController. It should create a GameGrid on the canvas. Still use your keyboard (+
return) to move the snake. You are simply moving from ascii graphics to objectdraw graphics.
Getting the graphics right means the each logical square on the GameGrid is 10x10 pixels.
When you have that working, It's time to build a SnakeMover class. Do this in two steps. First,
have the SnakeMover implement the KeyListener interface. If you have things working
correctly, j will turn the snake left, 1 will turn it right and k will move it forward. At this point
you have basic movement in a graphics environment working (We haven't even started on the
gui, yet). Note, you have to add the KeyListener to the canvas and you have to click on the
canvas to make the listener active.
The next step for SnakeMover is take away the manual “k” movement and make SnakeMover
an activeObject. Fix the timestep so that it automatically moves the snake forward every
second. Have the run loop pause for 50ms, if the “j” or “1” keys are not hit for twenty
consecutive pauses, then move the snake forward one. Reset that counter each time j or 1 is hit.
At this point, you have basic, automated snake movement with keyboard input working. Play
with your program for while. Check that updates are correct, drawing is correct and no
exceptions occur during testing.
Time to start on the GUI. If you have WindowController-based SnakeTest.java, copy it to
SnakeGame.java and edit appropriately so that it still works. Then you can lay out the
components so that the scores, buttons, and sliders show up where you want them. At this stage
I wouldn't add any actionListeners. Just get the layout to look right.
Next, make sure that when you hit the “New Game” button, things work as you expect (GAME
OVER! Goes away, score is zero, GameGrid is created.) You now need SnakeGame to be an
ActionListener.
If you've gotten to 15, you've have made excellent progress. The rest of the assignment makes
the game more fun. Honestly, you are on the downhill slope now. If you only get this far and
have no errors, your score for functionality is already in the 75 percent range.
Work in getting communication working between the SnakeMover and the GUI. The mover
needs to report to the GUI every time a valid move/grow is made. And It needs to tell the GUI

18.

19.

20.

when to put the GAME OVER! On the display.

Next add obstacles. Every 10" move/grow a new obstacle needs to be randomly placed on the
field. Create a method called addObstacle() in the GameGrid. Invoke the addObstacle() method
from GUI. You will have to also modify GameGrid to detect if the Snake moves into an
obstacle.

Add speed adjustment. Every 100 points, the speed should increase. One way to think about
this is there are 20 speed steps. Increase the speed by one speed step every 100 points. If you
want, if the game starts at speed level 10, it doesn't need to increase the speed to 11 until the
score is 1100.

Play your game. Enjoy the fruits of a long programming assignment.

Grading (total of 200 points)

160 points — Does your program compile and run properly. If all aspects are met, then you will
receive full credit. Various misfeatures or bugs will lose appropriate points. We will run your
program. Since the assignment does not specify particular signatures of methods, we can only
test your final product.

MAKE SURE IT COMPILES!

If your classes do not compile, the best you can receive on the entire project is 50 points. (25%
credit).

40 points — Commenting/indentation/style. Please see the Style guide. You Must put your
NAME:, LOGIN;:, ID: in every file you turn in. Please use ALL CAPS for the NAME, LOGIN,
ID labels.

Are you using private methods and variables?

Do you use accessor methods?

Are your methods overly long?

Are you repetitive in code?

Are the comments informative?

Are Variable names appropriate?

Are the classes defined used in a reasonable way?

Turning in your Program

YOU MUST BE ON THE . AB MACHINES FOR THIS TO WORK. PLEASE VERIFY
WELL BEFORE THE DEADILINE THAT YOU CAN TURNIN FILES

You will be using the “bundleP7” program that will turn in the following files
Coord.java
GameGrid.java
Snake.java
SnakeGame. java
SnakeMover.java

No other files will be turned in and and they must be named exactly as above.
BundleP7 uses the department's standard turnin program underneath.

To turn-in your program, you must be in the directory that has your source code and
then you execute the following

$ /home/linux/ieng6/cslle/public/bin/bundleP7

Some of you have had trouble turning in programs that compile properly or have turned
in the wrong version. To address this, a A HIGHLY Recommended sequence of
commands is the following: (You are not ready to turn in files if you get any errors)

$ rm -i *.class

$ javac Coord.java GameGrid.java Snake.java SnakeMover.java
SnakeGame. java

$ java SnakeGame

$ /home/linux/ieng6/cslle/public/bin/bundleP?7

The above will remove your compiled java classes (asking you
first if you want to remove them, say yes to *.class files don't
make a mistake and delete .java files!!!), then will compile the
files you are about to turn in.

You can turn in your program multiple times. The turnin program will ask you if you
want to overwrite a previously-turned in project. ONLY THE LAST TURNIN IS USED!

Suggestion: if you have classes that compile and do some or most of what is
specified, turn them in early. When you complete all the other aspects of the
assignment, you can turn in newer (better) versions.

Don't forget to turn in your best version of the assignment.

START EARLY! ASK QUESTIONS!
HAVE FUN PLAYING YOUR SNAKE GAME!

