
1

A Genetic Algorithms Approach to Modeling the
Performance of Memory-bound Computations

Mustafa M Tikir‡ Laura Carrington‡ Erich Strohmaier† Allan Snavely‡
mtikir@sdsc.edu lcarring@sdsc.edu estrohmaier@lbl.gov allans@sdsc.edu

‡Performance Modeling and Characterization Lab

San Diego Supercomputer Center
9500 Gilman Drive, La Jolla, CA

†Future Technology Group

Lawrence Berkeley National Laboratory
One Cyclotron Road, CA 94720

Abstract
Benchmarks that measure memory bandwidth, such as STREAM,
Apex-MAPS and MultiMAPS, are increasingly popular due to the
"Von Neumann" bottleneck of modern processors which causes
many calculations to be memory-bound. We present a scheme for
predicting the performance of HPC applications based on the
results of such benchmarks. A Genetic Algorithm approach is
used to "learn" bandwidth as a function of cache hit rates per ma-
chine with MultiMAPS as the fitness test. The specific results are
56 individual performance predictions including 3 full-scale pa-
rallel applications run on 5 different modern HPC architectures,
with various CPU counts and inputs, predicted within 10% aver-
age difference with respect to independently verified runtimes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Sys-
tems – modeling techniques, measurement techniques.

General Terms
Algorithms, Measurement, Performance

Keywords
Performance Modeling and Prediction, Memory Bound Applica-
tions, Machine Learning, Genetic Algorithms, Cache Bandwidth

1. Introduction
The “memory wall” [1] has become a significant factor in
the performance of many scientific applications due to
their increasing dataset sizes with associated large memory
footprints, which stress the memory hierarchy of today’s
machines. Moreover, the memory wall is exacerbated by
architectural trends whereby the system memory is physi-

cally fragmented while at the same time local memory hie-
rarchies become deeper. Indeed, a memory-intensive appli-
cation may spend most of its processing time moving data
up and down the memory hierarchy—and thus its time-to-
solution may primarily depend on how efficiently it uses
the memory subsystem of a machine. We call such applica-
tions “memory-bound” (note that they are not necessarily
main memory bound). Because the time-cost of a memory
operation today can be 10 or 100 times more compared to a
floating-point or other arithmetic operation, most scientific
applications are memory-bound by this definition. Recog-
nition of these trends has resulted in increasing popularity
for benchmarks to measure the memory performance of
machines, with an associated implication being the results
of these benchmarks convey some useful information about
likely application performance on the machines.
The MAPS (Memory Access Pattern Signature) [5]
benchmarks, which differ only in implementation details,
measure achievable bandwidth as a function of varying
spatial and temporal locality for a machine. For example,
Apex-MAP [3] is a synthetic benchmark that stresses a
machine’s memory subsystem according to parameterized
degrees of spatial and temporal locality. Among others, the
user provides two parameters, L and α, related to spatial
locality and temporal reuse respectively. Apex-MAP then
chooses a configurable number of indices into a data array
that are distributed according to α, using a non-uniform
random number generator. The indices are most dispersed
when α=1 (uniform random distribution) and become in-
creasingly crowded as α approaches 0. Apex-MAP then
performs L stride 1 references starting from each index.
This process is repeated a configurable number of times.
Parameter sweeps of Apex-MAP have been used to map
the locality space of certain systems with respect to L and
α. Figure 1 shows how bandwidth varies as a function of L
and α on a sample architecture.
For another example, MultiMAPS [5] is a memory bench-
mark similar to the STREAM [2] memory benchmark in
that it accesses a data array repeatedly; for MultiMAPS the
access pattern is varied in two dimensions of 1) stride and
2) size of the array (that is, effectively, varied spatial and
temporal locality). MultiMAPS measures the bandwidth

 (c) 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-
authored by a contractor or affiliate of the [U.S.] Gov-
ernment. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

SC07 November 10-16, 2007, Reno, Nevada, USA
(c) (c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

2

achieved by a simple loop template accessing 54 arrays of
increasing size ranging from 1 KB to 50 MB and 7 differ-
ent strides ranging from stride = 1 to stride = 64 by powers
of 2. The kernel of the benchmark traverses an array of
array_size by stride by_m for nreps times (as in Figure 2).

1 4 16 64 25
6

10
24 40
96

16
38

4

65
53

60.001
0.010

0.100
1.000

0.1

1.0

10.0

100.0

1000.0

10000.0

MB/s

L

a

Altix - 256 proc
3.00-4.00
2.00-3.00
1.00-2.00
0.00-1.00
-1.00-0.00

Figure 1. Apex-MAP parameter sweep for SGI Altix

Figure 2. Kernel from MultiMAPS; array size and stride in-
formation are input parameters.

Figure 3 plots partial results of MultiMAPS run on an Op-
teron processor1 and shows achievable bandwidth on this
machine as a function of stride and array size. In Figure 3,
there are plotted 3 bandwidth curves corresponding to the
bandwidths achieved for stride-2, stride-4 and stride-8
access patterns for different sizes of arrays. In this way of
plotting one notes clear “plateaus” corresponding to cache
levels and sizes.
Apex-MAPS and MultiMAPS results have both been pro-
jected for several machines that do not exist yet as part of
the DARPA HPCS [37] and DoD Technical Insertion [15]
projects. These projections have been done by analysis in
conjunction with architects and also via cycle-accurate si-
mulation. A salient feature of Figure 1 and Figure 3 is that
the bandwidth of today’s (and presumably tomorrow’s)
machines is apparently a complicated function of spatial
and temporal locality – which is not too surprising from
architectural trends. One would like to be able to take an
arbitrary memory-bound application, loop, or function,

1 Opteron configuration is a 2.8GHz with 2 level of caches where

L1 cache is a 64KB 2-way associative cache with 64 byte line
size and L2 cache is a 1MB 16-way associative cache with 64
byte line size.

measure its locality independently, and then read its ex-
pected bandwidth performance off of a MultiMAPS curve.
This would provide insight as to why it performs as it does
on existing machines and also predict how interaction with
the memory hierarchy is anticipated to affect its perfor-
mance on future machines. Indeed in previous work [4] we
provided a framework for exploring the exact question “is
the spatial and temporal locality of a loop, function, or ap-
plication predictive of its achieved bandwidth?” Limited
results in the affirmative were presented. However work of
Snir and Yu [38] showed that, in general, temporal locality
scores constrained to a be single number [0,1] are not
unique. In other words, different locality behaviors, and by
extension different cache hit rates, can get the same tem-
poral locality score if that temporal locality is constrained
to be a single number.

Memory Bandwidth vs. Size

0.E+00

2.E+03

4.E+03

6.E+03

8.E+03

1.E+04

1.E+04

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size of array in 8-byte words

M
em

or
y

B
an

dw
id

th
 (M

B
/s

)

MultiMAPS stride-two
MultiMAPS stride-four
MultiMAPS stride-eight

Figure 3. Sample MultiMAPS output for Opteron.

This work takes a different approach on the same basic
idea: the context is towards improving the accuracy for an
automated framework that can predict the memory perfor-
mance of arbitrary loops, functions, and applications on
arbitrary machines. In our previous work [4] we had re-
ported that while measuring spatial locality via tracing was
not too expensive, calculating accurate reuse distances for
temporal locality is significantly expensive for real applica-
tions; therefore they approximated reuse distance via simu-
lation of a series of temporal caches of increasing size. Our
latest observation is, if one can afford cache simulation to
measure locality, one can also afford explicit simulation to
predict cache hit rates on machines of interest. Since Me-
taSim [5] uses cache simulation to produce temporal locali-
ty scores, it can also, at little additional expense (and well
short of the expense of full cycle-accurate simulation) si-
mulate the same address stream against a target machine of
interest. If one has expected hit rates, perhaps one can then
read off expected bandwidth from a surface, such as that
shown in Figure 4, which plots bandwidths of the 3 Mul-
tiMAPS curves from Figure 3 as a function of their L1 and
L2 cache hit rates (rather than stride and size). MultiMAPS
hit rates are easily obtainable by either instrumenting Mul-
tiMAPS with performance monitoring tools, such as PAPI
and TAU, as described by Moore et al [36] on an existing
machine, or by simulating address sequence via MetaSim
against the cache structure of the machine if the machine

call pmactimer(t1) !call the timer before the test
do irep=1, nreps !repeat the test nreps times
 do i=1, access_count, by_m !traverse the array by by_m stride
 sum(1) = sum(1) + A(i) !operation is one of summation
 enddo
enddo
call pmactimer(t2) !call the timer after the test
diff = t2 - t1 !measure the time spent
bw =(array_size*nreps)/diff !calculate the bandwidth for the test

3

has not been built yet. Observed or predicted cache hit
rates of applications to-be-predicted can be obtained in the
same way. It is important to understand that obtaining
cache-hit rates from counters or cache simulation is far less
expensive than cycle-accurate simulation (which for full-
scale applications is a nearly hopeless task).
Predicting application bandwidths using MultiMAPS and
cache simulation is then the topic elaborated in what fol-
lows. The PMaC framework for performance prediction [5]
has three primary components, 1) benchmarks such as Mul-
tiMAPS for characterizing machines (called Machine Pro-
files), 2) trace and simulation tools for collecting applica-
tion attributes including spatial and temporal locality and
simulated cache hit rates (called Application Signatures),
and 3) a tool for applying performance hypotheses on the
second in light of the first (called Convolver).

Figure 4. Measured bandwidth as function of cache hit rates
for Opteron

MetaSim tracer is a binary instrumentation tool used to
capture each address generated by a loop or other program
structure of interest during execution, and to calculate spa-
tial and temporal locality scores as well as cache hit rates
for the address stream of every constituent basic block (se-
quence of instructions between branches). MetaSim tracer
has recently become fast enough [39] such that the process
is not unduly onerous to apply even for full applications.
The slowdown of on-the-fly cache simulation is now on the
order of 10-fold over un-instrumented execution and is
many orders of magnitude faster than cycle-accurate simu-
lation, which can be up to one million-fold. After an appli-
cation has been processed by MetaSim, the output is a re-
port such as that shown in Table 1 for every constituent
basic block. MetaSim processes the address stream on the
fly, counts the number of memory references in the block
and computes a spatial and temporal locality score, as well
as cache-hit rates for several different cache configurations
in parallel (hit rates for only one machine is listed in the
sample in Table 1). The goal is to then read the expected
bandwidth off of MultiMAPS results such as in Figure 4
from a report such as that in Table 1.
To be able to use cache hit rates to read off the bandwidth
of an arbitrary loop along these lines, it is important to in-
vestigate two questions: 1) whether the cache hit rate space

captured by MultiMAPS spans the space of those of loops
from real applications and 2) whether bandwidths can be
accurately interpolated from MultiMAPS when there is no
closely-corresponding hit rates. In the remainder, we will
address these two questions.

2. Hit Rate Coverage of MultiMAPS
Because of its usefulness for making comparisons among
different processor’s memory hierarchy performances,
MultiMAPS is included in the Department of Defense
Technical Insertion synthetic benchmarks suite [7], and is
planned for forthcoming inclusion in the HPC Challenge
Benchmark suite [8]. As a hard requirement for its inclu-
sion in widely run benchmark suites—it must execute in
under 1 hour on typical HPC machines; this time constraint
limits the range of hit rates and corresponding bandwidths
that can be measured. In practice, MultiMAPS captures 378
bandwidths and associated cache hit rate tuples.

Attribute Value
Basic block number 1021
Function name Calc
Source line number 112
Number of memory references 1.E10
Number of floating-point operations 1.E8
Spatial locality score 0.95
Temporal locality score 0.85
L1 cache hit rate for target system 98.5%
L2 cache hit rate for target system 99.7%

Table 1. Sample information collected by MetaSim tracer for
a basic block.

To investigate the first question above, i.e. whether Multi-
MAPS captures representative hit rates of real applications,
we first divided the hit rate space for some representative
L1 and L2 caches into 8 bins of increasing sizes. The bins
for each cache include percentile ranges of [100,99),
[99,98), [98,96), [96,92), [92,84), [84,68), [68,36), and
[36,0]. Using these bins, we counted the number of hit rate
tuples that fall into each bin for MultiMAPS and a set of
real HPC applications by putting both through the MetaSim
cache simulator. Thus, if the intersection of the bins from
MultiMAPS and the application set are not empty, one can
assume that MultiMAPS potentially represents at least part
of the tuples from real applications.
Figure 5 illustrates the hit rate coverage for MultiMAPS
and a set of real applications in terms of hit rate bins based
on simulation of an Opteron processor. The applications
are Hycom [9], Avus [10] and Overflow2 [11] from the
Department of Defense TI-07 benchmarks suite [7]. Each
point in Figure 5 indicates whether a bin includes one or
more hit rate tuples that correspond to the bin.
Figure 5 shows that the majority of the hit rate tuples cap-
tured by MultiMAPS are exhibited by the applications with
MultiMAPS covering an additional two bins that are hard-
to-exhibit in real codes. Figure 5 also illustrates how the hit
rate space covered by MultiMAPS intersects with the space
covered by the applications. It shows that these applica-

4

tions cover significantly more space than MultiMAPS. The
challenge remains in determining how to use the Multi-
MAPS results to predict the entire space of an application’s
constituent loop hit rates and bandwidths.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
L1 Hit Rate Bins

L2
 H

it
Ra

te
 B

in
s

Applications MultiMaps

Bin to Hit Rates
 1 --- [100,99)
 2 --- [99,98)
 3 --- [98,96)
 4 --- [96,92)
 5 --- [92,84)
 6 --- [84,68)
 7 --- [68,36)
 8 --- [36,0]

Figure 5. Hit rate space coverage for MultiMAPS and a set of
real applications.

3. Curve-fitting MultiMAPS Data
Before proceeding to second question above (i.e. can Mul-
tiMAPS results be interpolated), we investigate curve-
fitting the MultiMAPS data for interpolation.
We thought of two extremes of philosophy for fitting: 1)
attempt to find an analytical model based on such processor
attributes as clock-speed, bus-speed, cache-line length,
replacement policy, latency, prefetch policy, number of
outstanding memory references tolerated, TLB size etc. etc.
that can explain the shape of the MultiMAPS curves. 2)
Use a high-order polynomial (or some other technique such
as Regression Splines) to do a Least Squares minimization
to fit the observed data. The focus of our work is perfor-
mance prediction; it would certainly be an interesting in-
vestigation to attempt to attribute the features, such as the
height of the plateaus, and the slopes of the drops, in plots
such as Figures 1 and 3, to detailed architectural features of
each processor on a case-by-case basis. That is outside the
scope of this paper. We are interested mainly in seeing
whether we can predict bandwidth of arbitrary loops as a
function of their cache-hit rates.
At the same time, while certainly a variety of statistical
methods can be used to fit MultiMAPS curves we would
prefer that the predictive function have a form and coeffi-
cients with plausible physical interpretation. Therefore, in
what follows, we took a hybrid approach between the phi-
losophical extremes and chose to fit the MultiMAPS data
with Equation 1 (derived in next subsection).

1) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

≠
=+

+∗∗= +

=
∑ 1 i if p

1 i if)p(p-
1b

T
t)h,.....,h,F(h

1-i

1ii
i

1

i
n21

n

i

Where hi is the cache hit rate of a loop in the ith level of
cache, ti is a function of hi and hi-1 and the latency of mem-
ory accesses to the ith level of cache, bi is the bandwidth
sustainable by the ith level of cache at equilibrium (the pla-

teaus) and the pis are the exponential “damping functions”
to model the drops. This is certainly not the only form of
function we could consider, and the framework we describe
next could be used with more architecturally detailed ana-
lytical functions containing parameters to capture more
machine attributes and also we could consider using other
statistical function-fitting methods. Such investigations are
reserved for future work. We chose this particular function
simply because it preserves some attributes of the proces-
sors discernable from MultiMAPS plots (it uses the sus-
tainable bandwidths explicitly) and approximates a piece-
wise linear fit as a continuous function while attributing the
parameters to either the plateau regions where bandwidths
are sustained and latencies tolerated, or to the drops.

3.1 Derivation of an Analytical Formula
More specifically, for an HPC system with n levels (n in-
cluding the main memory level) of caches in the memory
subsystem, we want a function F

2) ()n21 h,.......,h,h F Bw =

If we assume each cache level i has an average access time
of ci cycles, for a given hit rate tuple (h1,h2,……hn), we can
calculate the average time spent ti, in each cache level as in
Equation 3 and the total time spent T, as in Equation 4

3) ni1 for c*)hh(t i1-iii ≤≤−=

4) ∑
=

=
n

i 1
itT

where hi corresponds to progressive hit rate of ith level
cache and ci corresponds to the latency of memory accesses
to the ith level. For our study, we use cumulative hit rates,
thus hit rate for a cache level already includes the hit rate of
the previous level, that is hi ≥ hi-1. Moreover, we represent
the hit rates as 0 ≤ hi ≤ 1. Note that, the nth level cache is the
main memory, thus the hit rate of the nth level is always 1
for our purposes. For derivation, we also assign a cache at
level 0 and assign 0 hit rate for this level, that is h0=0.

Intuitively, we can approximate the bandwidth achieved
from each cache (and memory) based on the sustainable
bandwidth for the cache and the fraction of time spent in
the cache with respect to the total time spent. If each cache
level i has a sustainable bandwidth of bi, in its simplest form
based on this intuition, bandwidth for a given hit rate tuple
(h1,h2,……hn) can be approximated with a function defined as
in Equation 5.

5) i
1

i
n21 b

T
t

)h,.....,h,F(hBw ∗== ∑
=

n

i

More specifically, Equation 5 calculates the fraction of
time spent in each cache level with respect to the total time

5

spent, and adds the same fraction of bandwidth from the
cache level to the overall bandwidth.
Even though Equation 5 seems a reasonable bandwidth
predictor for a given hit rate tuple, previous investigations
indicated that using such a simple calculation of bandwidth
cannot accurately fit the observed drops in MultiMAPS
curves from one level of cache to the next lower one (it
does capture the plateaus in the curves accurately). More
specifically, it does not fully capture the exponentially de-
caying aspect of cache penalties when data is falling almost
completely out of cache. Moreover, we observed that the
drops actually are steeper rather than smooth transitions
that would result from a simple linear model of Equation 5
and are not easily attributable to one or a few system
attributes. Rather something non-linear happens that may
be a complex function of machine attributes and other la-
tency-tolerating mechanisms of modern processors.

Figure 6. Bandwidth as predicted by (simplistic) Equation 4
for Opteron

For a quantitative example, Figure 6 presents the band-
width surface for an Opteron predicted using the simple
Equation 5 to compare to he shape of Figure 4, which is the
measured bandwidth surface for the Opteron. The average
absolute error between the bandwidths predicted using Eq-
uation 5 and measured (difference between data in Figure 4
and Figure 6) is 54% with a standard deviation of 39%.
As an approximation then, to handle the steep drops in
MultiMAPS curves between caches, and thus to model
more accurately, we add non-linear terms to Equation 5.
Since we are seeking, not full explicability, but reasonable
functional fidelity, to real or simulated MultiMAPS results,
we add coefficients that only become significant when a hit
rate drops below a certain cache hit rate (i.e. data starts to
fall out of a cache level). The coefficients are exponential
terms to fit the various drop patterns exhibited by different
systems. In essence they are further cache miss penalty
terms that come into play when a hit rate drops out of a
cache level. We refer to these terms as penalties for caches
and denote pi. Since the majority of the HPC systems we
predicted have two levels of caches, in this study, we use
only two non-zero non-linear terms, p1 and p2, for level 1
and 2 caches and rest of the penalties are assumed 0. That

is, pi = 0 for i = 3,4,…,n. The non-linear penalty factors are
defined in Equation 6.

6) 2 1,ifor
T
1t

1

i xih-1
ih-1

-1
 if ip =∗

−

+

∗=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

e
e

Where fi and xi are free parameters to Equation 6 and define
the significance of the non-linear penalty term and the rate
of drop from the ith level cache.
To derive the final bandwidth function F, we include the
non linear penalty terms as a multiplication factor in addi-
tion to the ti and bi terms in Equation 5. Finally, Equation 1
above then embodies the full bandwidth prediction func-
tion.

4. Genetic Algorithm to Model Bandwidths
The next task then is to answer question 2) above. The hy-
pothesis is that we can fit free terms and coefficients of
Equation 1 to instantiate a continuous function that closely
agrees with the points measured by MultiMAPS and allows
accurate interpolation between them. We used a genera-
tion-based Genetic Algorithm (GA) [12] to find coeffi-
cients that reduce the relative fitting error. We chose to use
a GA from among many options from both statistics and
machine learning due to the fact that GAs are particularly
suited to multidimensional global search problems [13]
with potentially multiple local minima. However we make
no claim here that other machine learning approaches
might not work equally well and the following scheme
could be employed with other approaches in future work.
The scheme, in essence, is to allow the GA to train on the
MultiMAPS results for a machine, finding the best fit for
the free parameters in Equation 1, then test the predictive
power of the resulting function on arbitrary loops not used
in the training process.
The intuition is as follows: think of a certain (arbitrary)
setting of parameters in Equation 1 as a “gene sequence”.
A particular parameter setting corresponds to a gene. We
start with a “generation”, a set of function instantiations of
Equation 1 with parameters set. Classically then, GA in-
volves the following steps a) Mutation where some genes
are varied, b) Crossover where some offspring are generat-
ed by combining genes of two different sequences, and c)
Adaptation where (optionally) some gene sequences can be
altered by some predetermined rules, and d) Fitness where
some gene sequences are killed off because they fail some
test. The survivors become the next generation and the
process can iterate an arbitrary number of generations un-
less an entire generation dies.

6

Our Fitness test is simply the sum of the absolute relative
error between the measured and modeled bandwidths for
all points in MultiMAPS. For the implementation, we used
the Genetic Algorithm Utility Library (GAUL) [14]. We
used the generation-based evolution with the “island” mod-
el in GAUL—islands confer a greater probability of Cros-
sover to genes on the same island. Genes move between
islands with some probability. We used 6 islands where
two islands are assigned to three evolutionary schemes,
namely Darwinian, Lamarckian or Baldwinian. Unlike the
Darwinian scheme, the other two schemes support adapta-
tion in addition to mutation and crossover operations. Table
2 lists the additional GA parameters we used to train for
each target machine bandwidth function. After the 200th
generation we chose the most-fit predictor (the choice of
200 generations is somewhat arbitrary, in our observations
genes exhibited little improved fitness afterwards).

Parameter Value
Population Size in Entities 10,000
Generation Count 200
Mutation Probability 0.8
Two-Point Crossover Probability 0.8
Migration Probability 0.01

Table 2. Values of parameters used in GA training

We evolved function fittings for the 5 HPC systems listed
in Table 3. These systems are part of the Department of
Defense’s High Performance Computing Modernization
Program (HPCMP) [15].

Machine Name System Type HPCMP Center
Falcon HP Opteron ASC2
JVN Intel Xeon ARL3
Eagle SGI Altix ASC
Sapphire Cray XT3 ERDC4
Kraken IBM P655 NAVO5

Table 3. HPC systems for which bandwidth function is fitted.

Figure 7 presents the measured and modeled bandwidth
curves of MultiMAPS on ERDC’s Cray XT3 processors
(Sapphire). The measured MultiMAPS results plotted are
the average of 5 runs. Figure 7 shows qualitatively that the
majority of the modeled bandwidths using the function-fit
closely agree with the measured bandwidths. It also shows
that for the stride-2 curve, the modeled bandwidths slightly
differ from the measured bandwidths in the L2 region. It is
possible that in this case the GA should have been run
beyond 200 generations as some “genes” had better predic-
tions for L2 cache stride 1 though worse predictions over-
all. However, overall relative error between the measured
and modeled bandwidths is only 7.4%.
At the next level of detail, Figure 8 shows error point by
point for the stride 4 curve (stride 4 chosen for this “zoom-
in” example simply because most loops are neither all

2 Aeronautical Systems Center
3 Army Research Laboratory (ARL).
4 Engineer Research and Development Center
5 Naval Oceanographic V Center (NAVO)

stride 1 or all long stride; stride 4 is a fairly typical average
stride value). Figure 8 shows that the accuracy is high on
the plateaus and not quite so high on the drops, which are
the regions between two cache levels (a general trend of
our results). Nevertheless the model on average is much
more accurate than the simple version of Equation 4.
Figure 9 presents the measured and modeled bandwidth
curves for MultiMAPS on NAVO’s P655 processors (Kra-
ken). It shows that the modeled bandwidths using the GA-
evolved function fit for the machine are similar to the
measured bandwidths. The overall relative error between
the measured and modeled bandwidths is 3.6%. The results
for the rest of the systems (Figure 10 through Figure 12)
are of similar quality. Level of detail error point-by-point,
such as in Figure 8 is omitted here for the rest of these sys-
tems due to space constraints.
Table 4 summarizes the average absolute model error and
standard deviation of each of the systems in Table 3. Over-
all the relative error is 6.4% and thus these function-fits
seem reasonably representative of all the systems studied
and certainly a large improvement on simplistic models
such as Equation 4. Typically the model is very accurate on
the plateaus and somewhat less so on the drops.

 Falcon JVN Eagle Sapphire Kraken
Avg Error
Std Dev.

7.4%
(18.3)

3.8%
(16.6)

7.2%
(16.1)

8.2%
(11.3)

3.6 %
(15.0)

Table 4. Average absolute error and standard deviation of GA
BW predictor for target systems.

5. Genetic Algorithms to Predict Bandwidth
We used the Integrated Performance Monitoring (IPM)
[16] toolkit to instrument all loops and functions account-
ing for more than 95% of total execution time (a total of
876 loops) in two parallel applications that experience very
little communication and are highly memory bound on sys-
tems with very fast interconnects and high floating-point
issue rate [6]. The applications are Hycom (with 124 tasks)
and Overflow (with 128 tasks) and the systems are ERDC
Cray XT3 and NAVO IBM P655. IPM uses performance
counters to measure time spent by the application in memo-
ry, floating-point, I/O, and communications.
We instrumented these same application’s loops and func-
tions with MetaSim and simulated their address streams
against the cache configurations of the same machines. We
then used the GA fit to predict bandwidth, and then calcu-
lated memory work time.

HPC System Average ABS Error %
Hycom Overflow

ERDC Cray XT3 4.7 13.1
NAVO IBM p655 1.3 7.2

Table 5. Predicted bandwidth versus IPM measured error.
Overall average error is 6.6%.

Table 5 summarizes the average absolute errors between
the bandwidth observed for these loops by IPM and the
bandwidth predicted by the GA fit. The overall average

7

error (6.6%) is not much different from that achieved by
the predictor on the MultiMAPS fitness test. Moreover,
Table 5 also validates the notion that the performance of
these memory-bound calculations on these machines is
determined primarily by their cache hit rates. We turn then
to evaluating the efficacy of the function-fit within a per-
formance modeling framework that accounts for other per-
formance bottlenecks such as communications and I/O.
We used the GA bandwidth function-fit for the five
HPCMP systems listed in Table 3 to predict the runtimes of

3 HPCMP applications (the two above plus one more) and
with various CPU count and input data, including regimes
not strictly (or only) memory bound, on these systems, by
including the GA fit in the PMaC [5] performance predic-
tion framework. The fit was used within the framework to
predict the time each application spends doing memory
work, which is then added to time the framework predicts
for floating-point work, communications, and I/O.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size in 8-byte words

Modeled MultiMAPS stride-two
Measured MultiMAPS stride-two
Modeled MultiMAPS stride-four
Measured MultiMAPS stride-four
Modeled MultiMAPS stride-eight
Measured MultiMAPS stride-eight

Figure 7. BWs for ERDC Cray XT3 (Absolute Error of 8.2%).

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

B
W

 (M
B

/s
)

error predicted

Figure 8. BWs error for stride-four curve from Figure 7

0

2000

4000

6000

8000

10000

12000

14000

16000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size in 8-byte words

Modeled MultiMAPS stride-two
Measured MultiMAPS stride-two
Modeled MultiMAPS stride-four
Measured MultiMAPS stride-four
Modeled MultiMAPS stride-eight
Measured MultiMAPS stride-eight

Figure 9. BWs for NAVO IBM P655 (Absolute Relative Error of

3.6%).

0

2000

4000

6000

8000

10000

12000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size in 8-byte words

Modeled MultiMAPS stride-two
Measured MultiMAPS stride-two
Modeled MultiMAPS stride-four
Measured MultiMAPS stride-four
Modeled MultiMAPS stride-eight
Measured MultiMAPS stride-eight

Figure 10. BWs for ARL Xeon 3.6 GHz cluster (Absolute Error

of 3.8%).

0

2000

4000

6000

8000

10000

12000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size in 8-byte words

Modeled MultiMAPS stride-two
Measured MultiMAPS stride-two
Modeled MultiMAPS stride-four
Measured MultiMAPS stride-four
Modeled MultiMAPS stride-eight
Measured MultiMAPS stride-eight

Figure 11. BWs for ASC Opteron (Absolute Error of 7.4%).

0

2000

4000

6000

8000

10000

12000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Size in 8-byte words

Modeled MultiMAPS stride-two
Measured MultiMAPS stride-two
Modeled MultiMAPS stride-four
Measured MultiMAPS stride-four
Modeled MultiMAPS stride-eight
Measured MultiMAPS stride-eight

Figure 12 BWs for ASC SGI Altix (Absolute Error of 7.2%).

8

We used the MetaSim [5] tracer to simulate expected cache
hit rates of the 5 target systems of all of the basic blocks in
the applications. As mentioned above, MetaSim tracer
works by using a binary instrumentor to trace and capture
memory and floating-point operations performed by each
basic block in the application. The tracer runs on a base
system (we used Lemieux at PSC for this work) and cap-
tures the memory address stream of the running application
on the base system. Additionally, the address stream ga-
thered is processed on-the-fly with a parallel cache simula-
tor to produce expected cache hit rates across a set of target
memory hierarchies.
The output from the MetaSim tracer corresponds to an ap-
plication signature containing information on the number
of memory and floating-point operations performed by
each basic block in an application as in Table 1. These
simulated cache hit rates are of course the input to the fit
used by the framework to predict achievable bandwidths,
and thus the total time for the memory work portion of the
application’s total work.
The fit is used by the convolver to take a basic block’s hit
rates and calculate an expected memory bandwidth on the
target machine. This bandwidth can be converted into time
by dividing the number of memory references by it. When
combined with similar predictions for floating-point work,
the resulting “serial computation time” is next used to in-
form the network simulator component about the relative
ratio of per-processor (between communications events)
computation progress rates compared to those of the base
system. The final output of the simulator is the predicted
execution time of the application on the target system.

5.1 Experimental Results
We predicted the performance of the 3 large-scale scientific
applications, Hycom, Avus and Overflow2, from TI-07
Benchmark suite for several CPU counts ranging from 32
to 128. Table 6 lists the input data size and the exact CPU
counts for the applications we used in our experiments.

Application Input Size CPU Counts
HYCOM6 7Standard 59,80,96,124
AVUS8 Standard 32,64,96,128
OVERFLOW29 Standard 32,64,128

Table 6. HPC Applications predicted.

To ensure integrity of predictions, the actual runtimes of
applications were measured by an independent team cited
in the acknowledgments. The actual runtimes are given in
Table 10. Our access to the machines was limited to run-
ning MultiMAPS and other synthetic benchmarks [7] used
by the network and I/O portions of the prediction frame-
work, Table 7 through Table 9 present the prediction re-
sults. For measuring accuracy improvement, we compare
these predictions not only to real runtimes in Table 10 but

6 HYbrid Coordinate Ocean Model
7 Standard data size as defined by the TI-07 benchmark suite.
8 AVUS is a CFD application.
9 Overflow2 is a CFD application

to results of Carrington et al [6] that used a simpler rule-
based memory model to predict a subset of these applica-
tion/machine combinations; we include their reported accu-
racy in parenthesis—because that study included fewer
applications and machines, several fields are N/A in the
following tables.
Table 7 shows that our framework was able to predict the
performance of Hycom within 10% for the majority of the
cases. It also shows that the prediction error for Hycom
ranges from 0.5% to 23.5% where the average absolute
prediction error is 8.7% and the standard deviation is 6.0%.
Overall, Table 7 suggests that the GA fit did not introduce
much error in full system predictions for Hycom. On the
subset of predictions that overlap with Carrington et al they
achieved an average of 17.8% average error with 17.2%
standard deviation for Hycom. There are a few cases where
the GA was slightly less accurate than the simple model
and these are bolded in Table 7. Note the GA removed
some large outliers from the simple model.

HPC Systems CPU Counts
59 80 96 124

ASC HP Opteron 0.5
(23.1)

9.6
(13.3)

5.9
(NA)

9.1
(5.6)

ARL Intel Xeon 6.6
(1.6)

5.4
(5.9)

2.6
(NA)

3.4
(15.1)

ASC SGI Altix 23.5
(49.1)

12.9
(43.2)

16.8
(NA)

8.4
(39.2)

ERDC Cray XT3 13.7
(NA)

15.8
(NA)

13.3
(NA)

11.8
(NA)

NAVO IBM P655 3.2
(0.5)

5.3
(1.24)

4.0
(NA)

1.3
(16.2)

Table 7. Absolute Prediction Error (%) for Hycom – Carring-
ton error shown in parenthesis

Table 7 does show that the absolute prediction errors for
ASC’s Altix and ERDC’s XT3 systems were higher for
Hycom compared to the other systems. We believe that
some of this error is due to the simplicity of our network
model (and not the GA memory bandwidth fit). In the case
of the XT3, the actual network topology is more complex
than the commodity cluster fat tree networks supported by
our in current network simulator’s model. Improving the
fidelity of the network model is on our future research path.
For the Altix, there are a few factors that contribute to er-
ror, the main one being the memory model’s handling of
the cc-NUMA(cache-coherent non-uniform access) aspect
of this system. This can affect both the memory subsystem
behavior (as processors share memory) as well as the
communications model. The model is currently not able to
adequately capture these effects. Again, planned future
research and additional model complexity may reduce the
error of these predictions.
Table 8 presents the prediction results for Avus on the tar-
get HPC systems in terms of absolute difference to reported
runtimes. Table 8 shows that our framework was able to
predict the performance of Avus within 15% for the ma-
jority of cases. It also shows that the prediction error for

9

Avus ranges from 0.1% to 19.7% where the average abso-
lute relative error is 8.8% and the standard deviation is
6.4%. Carrington et al had reported average 14.6% abso-
lute error on a subset of predictions (shown in parenthesis)
with a standard deviation of 8.6%. There are no cases
where GA does not predict Avus more accurately than the
Carrington model.
Table 8 shows that the absolute prediction errors for Avus
on ASC’s Altix and ERDC’s XT3 systems do not exhibit
the same behavior as in Table 7. Instead, it shows that the
prediction errors on ASC’s Altix are quite accurate. This is
a result of the effect of the cc-NUMA complexity being
reduced because not only does Avus have limited amounts
of communication but the memory footprint of even the
128 processor run still remains down in main memory. In
the case of the larger error for the XT3, this is probably a
result of the main memory plateau of the MultiMAPS
curves being slightly lower than expected due to compiler
inefficiencies on the benchmark. Investigations into varia-
tion in MultiMAPS data when using different compiler
flags is also reserved for future research.

Table 8. Absolute Prediction Error (%) for Avus – Carrington
error shown in parenthesis

Table 9 presents the prediction results for Overflow2 on the
target HPC systems in terms of absolute relative difference
to reported runtimes. As with Avus, Table 9 shows that our
framework was able to predict the performance of Over-
flow2 within 15% for majority of the cases. It also shows
that the prediction error for Overflow ranges from 1.9% to
28.9% where the average absolute prediction error is
11.3% and the standard deviation is 8.6%. Carrington et al
had reported average absolute error of 11.9% with a stan-
dard deviation of 12.3%. Again there are a few instances
where they did slightly better (shown in bold in Table 9).
Table 9 shows that the prediction error of Overflow2 with
32 processors on ARL’s Xeon is significantly higher com-
pared to the other predictions. This was due the fact that
the reported actual execution time for Overflow2 is incor-
rect (all reported runtimes are provided by an independent
teams at the HPCMP sites, to be cited in Acknowledge-
ments). This was concluded after analysis of the runtime
results of several machines for this application and noting
that the scaling from the 32 to 64 processor cases for the
Xeon did not fit the normal observed behavior.

HPC Systems CPU Counts
32 64 128

ASC HP Opteron 11.3
(NA)

13.7
(NA)

11.3
(NA)

ARL Intel Xeon 28.9
(NA)

13.6
(NA)

3.4
(NA)

ASC SGI Altix 15.9
(6.12)

18.8
(22.0)

27.1
(NA)

ERDC Cray XT3 8.1
(NA)

1.9
(NA)

6.3
(NA)

NAVO IBM P655 2.8
(2.34)

4.3
(1.28)

2.0
(NA)

Table 9. Absolute Prediction Error (%) for Overflow2– Car-
rington error shown in parenthesis

The results overall indicate that the framework accurately
predicts the performance of all applications on NAVO’s
P655 system. They also show that our framework did a
slightly better job predicting the performance of each ap-
plication on specific systems compared to other systems,
such as Hycom on ARL’s Xeon or Overflow2 on ERDC’s
XT3. Overall, results of our experiments show that the
framework, when using the fitted bandwidth functions
based on MultiMAPS data, is effective in predicting the
performance of real applications on HPC systems within
9.3% in overall average with respect to the actual reported
times of these applications with 6.9% standard deviation.
Figure 13 summarizes the overall results for each applica-
tion on the HPC systems.

6. Related Work

Several benchmarking suites have been proposed to
represent the general performance of HPC applications.
Probably the best known are the NAS Parallel [17] and the
SPEC [18] benchmarking suites, the latter of which is often
used to evaluate micro-architecture features of HPC sys-
tems. Both, however, are composed of “mini-applications”,
and are, therefore, fairly complicated to relate to the per-
formance of general applications, as opposed to the simple
benchmarks considered here. Gustafson and Todi [19] per-
formed seminal work relating “mini-application” perfor-
mance to that of full applications, but they did not extend
their ideas to large scale systems and applications, as this
paper does.
McCalpin [20] showed improved correlation between sim-
ple benchmarks and application performance, but did not
extend the results to parallel applications. Marin and Mel-
lor-Crummey [21] show a clever scheme for combining
and weighting the attributes of applications by the results
of simple probes, similar to what is implemented here, but
their application studies were mostly focused on “mini ap-
plication” benchmarks, and were not extended to parallel
applications and systems.
Eeckhout et al use genetic algorithm for performance pre-
diction but only machine ranks are predicted, not cache
miss rates or run times [41]. Phansalker and John predict
cache miss rates but do not use genetic algorithms [42].

HPC Systems CPU Counts
32 64 96 128

ASC HP Opteron 11.2
(21.3)

13.5
(22.4)

13.1
(NA)

3.8
(20.2)

ARL Intel Xeon 18.3
(28.1)

14.7
(20.4)

19.7
(NA)

7.9
(17.7)

ASC SGI Altix 6.0
(7.2)

0.1
(7.5)

1.4
(NA)

5.4
(NA)

ERDC Cray XT3 15.6
(NA)

15.4
(NA)

15.5
(NA)

3.9
(NA)

NAVO IBM p655 1.7
(3.5)

2.1
(6.4)

3.5
(NA)

3.4
(5.7)

10

-30

-20

-10

0

10

20

30

A
SC

 O
pt

er
on

A
R

L
X

eo
n

A
SC

 A
lti

x

ER
D

C
 X

T3

N
A

V
O

 P
65

5

A
SC

 O
pt

er
on

A
R

L
X

eo
n

A
SC

 A
lti

x

ER
D

C
 X

T3

N
A

V
O

 P
65

5

A
SC

 O
pt

er
on

A
R

L
X

eo
n

A
SC

 A
lti

x

ER
D

C
 X

T3

N
A

V
O

 P
65

5

hycom avus overflow

%
 P

re
di

ct
io

n
Er

ro
r

count1 count2 count3 count4

Figure 13. Average absolute prediction error for applications on HPC systems—count 1-4 refers to the CPU for each application
as appropriate from tables. The overall average is 9.3% error with 6.9% standard deviation.

 ASC HP
Opteron

ARL Intel
Xeon

ASC SGI
Altix

ERDC Cray
XT3

NAVO IBM
P655

AVUS 3610,1762,1185,886 4406,2278,1487,1149 5366,2503,1662,1245 3743,1864,1245,944 5585,2793,1871,1409
HYCOM 1358,910,824,635 2111,1607,1351,1052 2148,1456,1241,980 1718,1267,1070,820 2508,1442,1222,1245
OVERFLOW 6121,3260,1721 8259,3576,1911 3556,1907,1086 5829,2799,1412 7254,3695,1911

Table 10. Measured execution times (seconds) of applications on target HPC systems (increasing CPU count)

The use of detailed or cycle-accurate simulators in perfor-
mance evaluation has been used by many researchers
[22][23]. Detailed simulators are normally built by manu-
factures during the design stage of architecture to aid in the
design. For parallel machines, two simulators might be
used, one for the processor and one for the network. These
simulators have the advantage of automating performance
prediction from the user’s standpoint. The disadvantage is
that these simulators are proprietary and often not available
to HPC users and Centers. Also, because they capture all
the behavior of the processors, simulations can take up-
wards of 1,000,000 times, than the real runtime of the ap-
plication [24]. Direct execution methods are commonly
used to accelerate architectural simulations [25] but they
still can have large slowdowns. To avoid these large com-
putational costs, cycle-accurate simulators are usually only
used to simulate a few seconds of an application. This
causes a modeling dilemma, for most scientific applications
the complete behavior cannot be captured in a few seconds
of a production run.
Cycle-accurate simulators are limited to modeling the be-
havior of the processor for which they were developed, so
they are not applicable to other architectures. In addition,
the accuracy of cycle-accurate simulation can be question-
able. Gibson et al [26] showed that simulators that model
many architectural features have many possible sources for
error, resulting in complex simulators that produce greater
than 50% error. This work suggested that simple simulators
are sometimes more accurate than complex ones.

In the second area of performance evaluation, functional
and analytical models, the performance of an application
on the target machine can be described by a complex ma-
thematical equation. When the equation is fed with the
proper input values to describe the target machine, the cal-
culation yields a wall clock time for that application on the
target machine. Various flavors of these methods for de-
veloping these models have been researched. Below is a
brief summary of some of this work but due to space limi-
tations it is not meant to be inclusive of all.
Saavedra [27] proposed applications modeling as a collec-
tion of independent Abstract FORTRAN Machine tasks.
Each abstract task was measured on the target machine and
then a linear model was used to predict execution time. In
order to include the effects of memory system, they meas-
ured miss penalties and miss rates to include in the total
overhead. These simple models worked well on the simpler
processors and shallower memory hierarchies of the mid
90’s. The models now need to be improved to account for
increases in the complexity of parallel architectures includ-
ing processors, memory subsystems, and interconnects.
For parallel system predictions, Mendes [28] proposed a
cross platform approach. Traces were used to record the
explicit communications among nodes and to build a di-
rected graph based on the trace. Sub-graph isomorphism
was then used to study trace stability and to transform the
trace for different machine specifications. This approach
has merit and needs to be integrated into a full system for
applications tracing and modeling of deep memory hierar-
chies in order to be practically useful today.

11

Simon [29] proposed to use a Concurrent Task Graph to
model applications. A Concurrent Task Graph is a directed
acyclic graph whose edges represent the dependence rela-
tionship between nodes. In order to predict the execution
time, it was proposed to have different models to compute
the communication overhead, (FCFS queue for SMP and
Bandwidth Latency model for MPI) with models for per-
formance between communications events. As above, these
simple models worked better in the mid 1990’s than today.
Crovella and LeBlanc [30] proposed complete, orthogonal
and meaningful methods to classify all the possible over-
heads in parallel computation environments and to predict
the algorithm performance based on the overhead analysis.
Our work adopts their useful nomenclature.
Xu, Zhang, and Sun [31] proposed a semi-empirical multi-
processor performance prediction scheme. For a given ap-
plication and machine specification, the application first is
instantiated to thread graphs which reveal all the possible
communications (implicit or explicit) during the computa-
tion. They then measured the delay of all the possible
communication on the target machine to compute the
elapsed time of communication in the thread graph. For the
execution time, of each segment in the thread graph be-
tween communications, they use partial measurement and
loop iteration estimation to predict the execution time. The
general idea of prediction from partial measurement is
adopted here. Abandah and Davidson [32], and Boyd et al
[33] proposed hierarchical modeling methods for parallel
machines that is kindred in spirit to our work, and was ef-
fective on machines in the early and mid 90’s.
A group of expert performance modelers at Los Alamos
have been perfecting the analytical model of applications
important to their workload for years [34]. These models
are quite accurate in their predictions, although the me-
thods for creating them are time consuming and not neces-
sarily easily done by non-expert users [35].

7. Conclusions

A function predicting achievable bandwidth from cache hit
rates, developed using GA methods, can closely model
observed bandwidths as a function of cache hit rates on
many of today’s HPC architectures. More importantly, for
memory-bound applications, the function can allow inter-
polation so that if one has measured or simulated cache hit
rates for loops and/or basic blocks, one can predict band-
width with useful accuracy. Using this approach we mod-
eled the achieved bandwidths of loops from two real appli-
cations within 6.6% and then did a larger set of more com-
plex predictions (accounting for other computational work
besides just memory work) on 3 large scale applications,
with more processor counts and inputs, at 9.3% accuracy
and 6.9% standard deviation.
One might reasonably ask “is this level of accuracy use-
ful?” No doubt the answer depends on the proposed use of
the models. For performance ranking, one might wonder
“what is the probability the prediction framework creates

an inversion by saying one machine is faster than another
when in fact it is slower?” This certainly is possible when
relative performance is within the margin of error. Howev-
er, Table 10 gives the real runtimes of the applications on
the machines while Table 11 below distills that data to give
the average relative speed and standard deviation of ma-
chine speeds relative to Kraken. It will be seen that these
machines are all separated by average 7% relative speed on
average so that a predictive framework with less than 10%
error has a relatively low probability of producing inver-
sions between performance-similar machines, an even low-
er probability of inverting machines that are not perfor-
mance similar (though individual inversions in cases where
the machines performance is very close can still occur). In
this study comprised of 56 predictions there were 5 inver-
sions produced in cases where the difference in actual run-
times of the machines was less than 5% and 5 more inver-
sions where the difference in actual runtimes was less than
12% and no other inversions. We refer the reader to Chen
et al [40] for a more thorough treatment of inversion prob-
ability.

 Falcon JVN Eagle Sapphire Kraken
Avg. Error
Std Dev.

-31.6%
(13.2)

-7.0%
(13.9)

-19.3%
(19.3)

-26.6%
(8.5)

0%
(0)

Table 11. Average percent relative speed (negative is faster)
and standard deviation of machines to Kraken

Acknowledgments
This work was supported in part by the DOE Office of Science
through the SciDAC2 award entitled Performance Engineering
Research Institute, in part by NSF NGS Award #0406312 entitled
Performance Measurement & Modeling of Deep Hierarchy Sys-
tems, in part by NSF SCI Award #0516162 entitled The NSF
Cyberinfrastructure Evaluation Center, and in part by the DOD
High Performance Computing Modernization Program.

References
[1] W. A. Wulf and S. A. McKee, Hitting the memory wall:

implications of the obvious. SIGARCH Computer. Architec-
ture News, 23 (1), pp 20-24. March 1995.

[2] J. McCalpin, “Memory bandwidth and machine balance in
current high performance computers”. IEEE Technical
Committee on Computer Architecture Newsletter.

[3] E. Strohmaier and H. Shan, Architecture independent per-
formance characterization and benchmarking for scientific
applications. In International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunica-
tion Systems. 2004. Volendam, The Netherlands.

[4] J. Weinberg, M. O. McCracken, A. Snavely, E. Strohmaier,
Quantifying Locality In The Memory Access Patterns of
HPC Applications. SC 05. November 2005, Seattle, WA.

[5] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia,
A. Purkayastha, A Framework for Application Performance
Modeling and Prediction. SC 02. November 2002., Balti-
more MD.

[6] L. Carrington, M. Laurenzano, A. Snavely, R. Campbell, L.
Davis, How well can simple metrics represent the perfor-
mance of HPC applications? SC 05. November 2005, Seat-
tle, WA.

12

[7] Department of Defense, High Performance Computing Mod-
ernization Program. Technology Insertion 07.
http://www.hpcmo.hpc.mil/Htdocs/TI/.

[8] HPC Challenge Benchmarks, http://icl.cs.utk.edu/hpcc/.
[9] R. Bleck, An oceanic general circulation model framed in

hybrid isopycnic-cartesian coordinates. Ocean Modelling, 4,
55-88. 2002.

[10] C. C. Hoke, V. Burnley, C. G. Schwabacher, Aerodynamic
Analysis of Complex Missile Configurations using AVUS
(Air Vehicles Unstructured Solver). Applied Aerodynamics
Conference and Exhibit. August 2004, Providence, RI.

[11] P. G. Buning, D. C. Jespersen, T. H. Pulliam, G. H. Klopfer,
W. M. Chan, J. P. Slotnick, S. E. Krist, and K. J. Renze,
Overflow Users Manual, Langley Research Center, 2003.
Hampton, VA.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Boston, MA. 1989.

[14] Reference Guide for The Genetic Algorithm Utility Library.
http://gaul.sourceforge.net/gaul_reference_guide.html.2005.

[15] High Performance Computing Modernization Program,
http://www.hpcmo.hpc.mil.

[16] D. Skinner, Performance monitoring of parallel scientific
applications, Lawrence Berkeley National Laboratory,
LBNL/PUB—5503. May 2005. Berkeley, CA.

[17] D. Bailey, J. Barton, T. Lasinski, H. Simon, “The NAS pa-
rallel benchmarks”, International Journal of Supercomputer
Applications, 1991.

[18] SPEC, http://www.spec.org/.
[19] J. Gustafson and R. Todi, “Conventional benchmarks as a

sample of the performance spectrum”, Hawaii International
Conference on System Sciences, 1998.

[20] J. McCalpin, “Memory bandwidth and machine balance in
current high performance computers”, IEEE Technical
Committee on Computer Architecture Newsletter.

[21] G. Marin and J. Mellor-Crummey, “Cross-architecture per-
formance predictions for scientific applications using para-
meterized models”, SIGMETRICS Performance 04, 2004.

[22] R.S., Ballansc, J.A. Cocke, and H.G. Kolsky, The Lookah-
ead Unit, Planning a Computer System, (McGraw-Hill, New
York, 1962).

[23] G.S. Tjaden and M.J. Flynn, “Detection and Parallel Execu-
tion of Independent Instructions”, IEEE Trans. Comptrs.,
vol. C-19 pp. 889-895, 1970.

[24] J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D. Tullsen,
“Converting Thread-Level Parallelism to Instruction-Level
Parallelism via Simultaneous Multithreading”, ACM Trans-
actions on Computer Systems, August, 1997.

[25] B. Falsafi and D.A. Wood, “Modeling Cost/Performance of a
Parallel Computer Simulator”, ACM Transactions on Model-
ing and Computer Simulation, vol. 7:1, pp. 104-130, 1997.

[26] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J.Hennessy, and
M. Heinrich,” FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop”, The 9th International Conference on Arc-

hitectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), November, pp. 49-58, 2000.

[27] R.H. Saavedra and A.J. Smith, “Analysis of Benchmark
Characteristics and Benchmark Performance Prediction”,
TOCS14, vol. 4, pp. 344-384, 1996.

[28] C.L. Mendes and D.A. Reed, ”Integrated Compilation and
Scalability Analysis for Parallel Systems”, IEEE PACT,
1998.

[29] J. Simon and J. Wierun, “Accurate Performance Prediction
for Massively Parallel Systems and its Applications”, Euro-
Par, vol. 2, pp. 675-688, 1996.

[30] M.E. Crovella and T.J. LeBlanc, “Parallel Performance Pre-
diction Using Lost Cycles Analysis”, SuperComputing 1994,
pp. 600-609, 1994.

[31] Z. Xu, X. Zhang, L. Sun, “Semi-empirical Multiprocessor
Performance Predictions”, JPDC, vol. 39, pp. 14-28, 1996.

[32] G. Abandah, E.S. Davidson, “Modeling the Communication
Performance of the IBM SP2”, Proceedings Int'l Parallel
Processing Symposium, April, pp. 249-257, 1996.

[33] E.L. Boyd, W. Azeem, H.H. Lee, T.P. Shih, S.H. Hung, and
E.S. Davidson, “A Hierarchical Approach to Modeling and
Improving the Performance of Scientific Applications on the
KSR1”, Proceedings of the 1994 International Conference on
Parallel Processing, vol. 3, pp. 188-192, 1994.

[34] A. Hosie, L. Olaf, H. Wasserman, “Scalability Analysis of
Multidimensional Wavefront Algorithms on Large-Scale
SMP Clusters”, Proceedings of Frontiers of Massively Paral-
lel Computing ’99, Annapolis, MD, February, 1999.

[35] A. Spooner and D. Kerbyson, “Identification of Performance
Characteristics from Multiview Trace Analysis”, Proc. Of
Int. Conf. On Computational Science (ICCS), part 3 2659,
pp. 936-945, 2003.

[36] S. Moore, D. Cronk, F. Wolf, A. Purkayastha., P. Teller, R.
Araiza, M. Aguilera, J. Nava, “Performance Profiling and
Analysis of DoD Applications using PAPI and TAU”, DoD
HPCMP UGC 2005, IEEE, Nashville, TN, June, 2005.

[37] High Productivity Computer Systems,
www.highproductivity.org

[38] M. Snir, and Jing Yu, “On the Theory of Spatial and Tem-
poral Locality”, Technical Report No. UIUCDCS-R-2005-
2611, University of Illinois at Urbana-Champaign, Urbana,
IL, July 2005.

[39] X. Gao. PhD Thesis. 2006. University of California Comput-
er Science Department.

[40] Y. Chen and A. Snavely: Metrics for Ranking the Perfor-
mance of Supercomputers, Cyberinfrastructure Technology
Watch Journal: Special Issue on High Productivity Computer
Systems, J. Dongarra Editor, Volume 2 Number 4, February
2007.

[41] E. Ïpek,, S. McKee, R. Caruana, B. R. de Supinski,, and
Schulz, M. 2006. Efficiently exploring architectural design
spaces via predictive modeling. SIGPLAN Not. 41, 11 (Nov.
2006), 195-206. DOI=
http://doi.acm.org/10.1145/1168918.1168882

[42] A. Phansalkar, L. K. John. Performance Prediction using
Program Similarity, Proceedings of SPEC Benchmark Work-
shop 2006.

