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Abstract 
Benchmarks that measure memory bandwidth, such as STREAM, 
Apex-MAPS and MultiMAPS, are increasingly popular due to the 
"Von Neumann" bottleneck of modern processors which causes 
many calculations to be memory-bound. We present a scheme for 
predicting the performance of HPC applications based on the 
results of such benchmarks. A Genetic Algorithm approach is 
used to "learn" bandwidth as a function of cache hit rates per ma-
chine with MultiMAPS as the fitness test. The specific results are 
56 individual performance predictions including 3 full-scale pa-
rallel applications run on 5 different modern HPC architectures, 
with various CPU counts and inputs, predicted within 10% aver-
age difference with respect to independently verified runtimes.   

Categories and Subject Descriptors 
C.4  [Computer Systems Organization]: Performance of Sys-
tems – modeling techniques, measurement techniques. 

General Terms 
Algorithms, Measurement, Performance 

Keywords 
Performance Modeling and Prediction, Memory Bound Applica-
tions, Machine Learning, Genetic Algorithms, Cache Bandwidth 

1. Introduction 
The “memory wall” [1] has become a significant factor in 
the performance of many scientific applications  due to 
their increasing dataset sizes with associated large memory 
footprints, which stress the memory hierarchy of today’s 
machines. Moreover, the memory wall is exacerbated by 
architectural trends whereby the system memory is physi-

cally fragmented while at the same time local memory hie-
rarchies become deeper. Indeed, a memory-intensive appli-
cation may spend most of its processing time moving data 
up and down the memory hierarchy—and thus its time-to-
solution may primarily depend on how efficiently it uses 
the memory subsystem of a machine. We call such applica-
tions “memory-bound” (note that they are not necessarily 
main memory bound). Because the time-cost of a memory 
operation today can be 10 or 100 times more compared to a 
floating-point or other arithmetic operation, most scientific 
applications are memory-bound by this definition. Recog-
nition of these trends has resulted in increasing popularity 
for benchmarks to measure the memory performance of 
machines, with an associated implication being the results 
of these benchmarks convey some useful information about 
likely application performance on the machines. 
The MAPS (Memory Access Pattern Signature) [5] 
benchmarks, which differ only in implementation details, 
measure achievable bandwidth as a function of varying 
spatial and temporal locality for a machine. For example, 
Apex-MAP [3] is a synthetic benchmark that stresses a 
machine’s memory subsystem according to parameterized 
degrees of spatial and temporal locality. Among others, the 
user provides two parameters, L and α, related to spatial 
locality and temporal reuse respectively.  Apex-MAP then 
chooses a configurable number of indices into a data array 
that are distributed according to α, using a non-uniform 
random number generator. The indices are most dispersed 
when α=1 (uniform random distribution) and become in-
creasingly crowded as α approaches 0. Apex-MAP then 
performs L stride 1 references starting from each index. 
This process is repeated a configurable number of times. 
Parameter sweeps of Apex-MAP have been used to map 
the locality space of certain systems with respect to L and 
α.  Figure 1 shows how bandwidth varies as a function of L 
and α on a sample architecture. 
For another example, MultiMAPS [5] is a memory bench-
mark similar to the STREAM [2] memory benchmark in 
that it accesses a data array repeatedly; for MultiMAPS  the 
access pattern is varied in two dimensions of 1) stride and 
2) size of the array (that is, effectively, varied spatial and 
temporal locality). MultiMAPS measures the bandwidth 

 (c) 2007 Association for Computing Machinery. ACM 
acknowledges that this contribution was authored or co-
authored by a contractor or affiliate of the [U.S.] Gov-
ernment. As such, the Government retains a nonexclusive, 
royalty-free right to publish or reproduce this article, or to 
allow others to do so, for Government purposes only. 
 
SC07 November 10-16, 2007, Reno, Nevada, USA 
(c) (c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00 



2 
 

achieved by a simple loop template accessing 54 arrays of 
increasing size ranging from 1 KB to 50 MB and 7 differ-
ent strides ranging from stride = 1 to stride = 64 by powers 
of 2. The kernel of the benchmark traverses an array of 
array_size by stride by_m for nreps times (as in Figure 2). 
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Figure 1. Apex-MAP parameter sweep for SGI Altix 

 

 

Figure 2. Kernel from MultiMAPS; array size and stride in-
formation are input parameters. 

Figure 3 plots partial results of MultiMAPS run on an Op-
teron processor1 and shows achievable bandwidth on this 
machine as a function of stride and array size. In Figure 3, 
there are plotted 3 bandwidth curves corresponding to the 
bandwidths achieved for stride-2, stride-4 and stride-8 
access patterns for different sizes of arrays.  In this way of 
plotting one notes clear “plateaus” corresponding to cache 
levels and sizes. 
Apex-MAPS and MultiMAPS results have both been pro-
jected for several machines that do not exist yet as part of 
the DARPA HPCS [37] and DoD Technical Insertion [15] 
projects. These projections have been done by analysis in 
conjunction with architects and also via cycle-accurate si-
mulation. A salient feature of Figure 1 and Figure 3 is that 
the bandwidth of today’s (and presumably tomorrow’s) 
machines is apparently a complicated function of spatial 
and temporal locality – which is not too surprising from 
architectural trends. One would like to be able to take an 
arbitrary memory-bound application, loop, or function, 
                                                                 
1 Opteron configuration is a 2.8GHz with 2 level of caches where 

L1 cache is a 64KB 2-way associative cache with 64 byte line 
size and L2 cache is a 1MB 16-way associative cache with 64 
byte line size. 

measure its locality independently, and then read its ex-
pected bandwidth performance off of a MultiMAPS curve. 
This would provide insight as to why it performs as it does 
on existing machines and also predict how interaction with 
the memory hierarchy is anticipated to affect its perfor-
mance on future machines. Indeed in previous work [4] we 
provided a framework for exploring the exact question “is 
the spatial and temporal locality of a loop, function, or ap-
plication predictive of its achieved bandwidth?” Limited 
results in the affirmative were presented.  However work of 
Snir and Yu [38] showed that, in general, temporal locality 
scores constrained to a be single number [0,1] are not 
unique. In other words, different locality behaviors, and by 
extension different cache hit rates, can get the same tem-
poral locality score if that temporal locality is constrained 
to be a single number. 
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Figure 3. Sample MultiMAPS output for Opteron. 

This work takes a different approach on the same basic 
idea: the context is towards improving the accuracy for an 
automated framework that can predict the memory perfor-
mance of arbitrary loops, functions, and applications on 
arbitrary machines.  In our previous work  [4] we had re-
ported that while measuring spatial locality via tracing was 
not too expensive, calculating accurate reuse distances for 
temporal locality is significantly expensive for real applica-
tions; therefore they approximated reuse distance via simu-
lation of a series of temporal caches of increasing size.  Our 
latest observation is, if one can afford cache simulation to 
measure locality, one can also afford explicit simulation to 
predict cache hit rates on machines of interest.  Since Me-
taSim [5] uses cache simulation to produce temporal locali-
ty scores, it can also, at little additional expense (and well 
short of the expense of full cycle-accurate simulation) si-
mulate the same address stream against a target machine of 
interest.  If one has expected hit rates, perhaps one can then 
read off expected bandwidth from a surface, such as that 
shown in Figure 4, which plots bandwidths of the 3 Mul-
tiMAPS curves from Figure 3 as a function of their L1 and 
L2 cache hit rates (rather than stride and size). MultiMAPS 
hit rates are easily obtainable by either instrumenting Mul-
tiMAPS with performance monitoring tools, such as PAPI 
and TAU, as described by Moore et al [36] on an existing 
machine, or by simulating address sequence via MetaSim 
against  the cache structure of the machine if the machine 

call pmactimer(t1)                   !call the timer before the test 
do irep=1, nreps                      !repeat the test nreps times 
   do i=1, access_count, by_m !traverse the array by  by_m stride
      sum(1) = sum(1) + A(i)     !operation is one of summation     
   enddo 
enddo 
call pmactimer(t2)                   !call the timer after the test 
diff = t2 - t1                             !measure the time spent 
bw =(array_size*nreps)/diff    !calculate the bandwidth for the test
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has not been built yet.  Observed or predicted cache hit 
rates of applications to-be-predicted can be obtained in the 
same way. It is important to understand that obtaining 
cache-hit rates from counters or cache simulation is far less 
expensive than cycle-accurate simulation (which for full-
scale applications is a nearly hopeless task). 
Predicting application bandwidths using MultiMAPS and 
cache simulation is then the topic elaborated in what fol-
lows. The PMaC framework for performance prediction [5] 
has three primary components, 1) benchmarks such as Mul-
tiMAPS for characterizing machines (called Machine Pro-
files), 2) trace and simulation tools for collecting applica-
tion attributes including spatial and temporal locality and 
simulated cache hit rates (called Application Signatures), 
and 3) a tool for applying performance hypotheses on the 
second in light of the first (called Convolver). 

Figure 4. Measured bandwidth as function of cache hit rates 
for Opteron 

MetaSim tracer is a binary instrumentation tool used to 
capture each address generated by a loop or other program 
structure of interest during execution, and to calculate spa-
tial and temporal locality scores as well as cache hit rates 
for the address stream of every constituent basic block (se-
quence of instructions between branches). MetaSim tracer 
has recently become fast enough [39] such that the process 
is not unduly onerous to apply even for full applications. 
The slowdown of on-the-fly cache simulation is now on the 
order of 10-fold over un-instrumented execution and is 
many orders of magnitude faster than cycle-accurate simu-
lation, which can be up to one million-fold. After an appli-
cation has been processed by MetaSim, the output is a re-
port such as that shown in Table 1 for every constituent 
basic block.  MetaSim processes the address stream on the 
fly, counts the number of memory references in the block 
and computes a spatial and temporal locality score, as well 
as cache-hit rates for several different cache configurations 
in parallel (hit rates for only one machine is listed in the 
sample in Table 1).  The goal is to then read the expected 
bandwidth off of MultiMAPS results such as in Figure 4 
from a report such as that in Table 1. 
To be able to use cache hit rates to read off the bandwidth 
of an arbitrary loop along these lines, it is important to in-
vestigate two questions: 1) whether the cache hit rate space 

captured by MultiMAPS spans the space of those of loops 
from real applications and 2) whether bandwidths can be 
accurately interpolated from MultiMAPS when there is no 
closely-corresponding hit rates. In the remainder, we will 
address these two questions. 

2. Hit Rate Coverage of MultiMAPS 
Because of its usefulness for making comparisons among 
different processor’s memory hierarchy performances, 
MultiMAPS is included in the Department of Defense 
Technical Insertion synthetic benchmarks suite [7], and is 
planned for forthcoming inclusion in the HPC Challenge 
Benchmark suite [8]. As a hard requirement for its inclu-
sion in widely run benchmark suites—it must execute in 
under 1 hour on typical HPC machines; this time constraint 
limits the range of hit rates and corresponding bandwidths 
that can be measured. In practice, MultiMAPS captures 378 
bandwidths and associated cache hit rate tuples.  

Attribute Value 
Basic block number 1021 
Function name Calc 
Source line number 112 
Number of memory references 1.E10 
Number of floating-point operations 1.E8 
Spatial locality score 0.95 
Temporal locality score 0.85 
L1 cache hit rate for target system 98.5% 
L2 cache hit rate for target system 99.7% 

Table 1. Sample information collected by MetaSim tracer for 
a basic block. 

To investigate the first question above, i.e. whether Multi-
MAPS captures representative hit rates of real applications, 
we first divided the hit rate space for some representative 
L1 and L2 caches into 8 bins of increasing sizes. The bins 
for each cache include percentile ranges of [100,99), 
[99,98), [98,96), [96,92), [92,84), [84,68), [68,36), and 
[36,0].  Using these bins, we counted the number of hit rate 
tuples that fall into each bin for MultiMAPS and a set of 
real HPC applications by putting both through the MetaSim 
cache simulator. Thus, if the intersection of the bins from 
MultiMAPS and the application set are not empty, one can 
assume that MultiMAPS potentially represents at least part 
of the tuples from real applications. 
Figure 5 illustrates the hit rate coverage for MultiMAPS 
and a set of real applications in terms of hit rate bins based 
on simulation of an Opteron processor. The applications 
are Hycom [9], Avus [10] and Overflow2 [11] from the 
Department of Defense TI-07 benchmarks suite [7]. Each 
point in Figure 5 indicates whether a bin includes one or 
more hit rate tuples that correspond to the bin. 
Figure 5 shows that the majority of the hit rate tuples cap-
tured by MultiMAPS are exhibited by the applications with 
MultiMAPS covering an additional two bins that are hard-
to-exhibit in real codes. Figure 5 also illustrates how the hit 
rate space covered by MultiMAPS intersects with the space 
covered by the applications. It shows that these applica-
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tions cover significantly more space than MultiMAPS. The 
challenge remains in determining how to use the Multi-
MAPS results to predict the entire space of an application’s 
constituent loop hit rates and bandwidths.  
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Figure 5. Hit rate space coverage for MultiMAPS and a set of 
real applications.  

3. Curve-fitting MultiMAPS Data 
Before proceeding to second question above (i.e. can Mul-
tiMAPS results be interpolated), we investigate curve-
fitting the MultiMAPS data for interpolation. 
We thought of two extremes of philosophy for fitting: 1) 
attempt to find an analytical model based on such processor 
attributes as clock-speed, bus-speed, cache-line length, 
replacement policy, latency, prefetch policy, number of 
outstanding memory references tolerated, TLB size etc. etc. 
that can explain the shape of the MultiMAPS curves. 2) 
Use a high-order polynomial (or some other technique such 
as Regression Splines) to do a Least Squares minimization 
to fit the observed data. The focus of our work is perfor-
mance prediction; it would certainly be an interesting in-
vestigation to attempt to attribute the features, such as the 
height of the plateaus, and the slopes of the drops, in plots 
such as Figures 1 and 3, to detailed architectural features of 
each processor on a case-by-case basis. That is outside the 
scope of this paper. We are interested mainly in seeing 
whether we can predict bandwidth of arbitrary loops as a 
function of their cache-hit rates. 
At the same time, while certainly a variety of statistical 
methods can be used to fit MultiMAPS curves we would 
prefer that the predictive function have a form and coeffi-
cients with plausible physical interpretation. Therefore, in 
what follows, we took a hybrid approach between the phi-
losophical extremes and chose to fit the MultiMAPS data 
with Equation  1 (derived in next subsection). 
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Where hi is the cache hit rate of a loop in the ith level of 
cache, ti is a function of hi and hi-1 and the latency of mem-
ory accesses to the ith level of cache, bi is the bandwidth 
sustainable by the ith level of cache at equilibrium (the pla-

teaus) and the pis are the exponential “damping functions” 
to model the drops. This is certainly not the only form of 
function we could consider, and the framework we describe 
next could be used with more architecturally detailed ana-
lytical functions containing parameters to capture more 
machine attributes and also we could consider using other 
statistical function-fitting methods. Such investigations are 
reserved for future work.  We chose this particular function 
simply because it preserves some attributes of the proces-
sors discernable from MultiMAPS plots (it uses the sus-
tainable bandwidths explicitly) and approximates a piece-
wise linear fit as a continuous function while attributing the 
parameters to either the plateau regions where bandwidths 
are sustained and latencies tolerated, or to the drops. 

3.1 Derivation of an Analytical Formula 
More specifically, for an HPC system with n levels (n in-
cluding the main memory level) of caches in the memory 
subsystem, we want a function F   

2 )   ( )n21 h,.......,h,h F  Bw =  

If we assume each cache level i has an average access time 
of ci cycles, for a given hit rate tuple (h1,h2,……hn), we can 
calculate the average time spent ti, in each cache level as in 
Equation 3 and the total time spent T, as in Equation 4  

3 )   ni1 for                c*)hh(t i1-iii ≤≤−=  
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=
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where hi corresponds to progressive hit rate of ith level 
cache and ci corresponds to the latency of memory accesses 
to the ith level. For our study, we use cumulative hit rates, 
thus hit rate for a cache level already includes the hit rate of 
the previous level, that is hi ≥ hi-1. Moreover, we represent 
the hit rates as 0 ≤ hi ≤ 1. Note that, the nth level cache is the 
main memory, thus the hit rate of the nth level is always 1 
for our purposes. For derivation, we also assign a cache at 
level 0 and assign  0 hit rate for this level, that is h0=0. 

Intuitively, we can approximate the bandwidth achieved 
from each cache (and memory) based on the sustainable 
bandwidth for the cache and the fraction of time spent in 
the cache with respect to the total time spent. If each cache 
level i has a sustainable bandwidth of bi, in its simplest form 
based on this intuition, bandwidth for a given hit rate tuple 
(h1,h2,……hn) can be approximated with a function defined as 
in Equation 5.  
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More specifically, Equation 5 calculates the fraction of 
time spent in each cache level with respect to the total time 
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spent, and adds the same fraction of bandwidth from the 
cache level to the overall bandwidth. 
Even though Equation 5 seems a reasonable bandwidth 
predictor for a given hit rate tuple, previous investigations 
indicated that using such a simple calculation of bandwidth 
cannot accurately fit the observed drops in MultiMAPS 
curves from one level of cache to the next lower one (it 
does capture the plateaus in the curves accurately). More 
specifically, it does not fully capture the exponentially de-
caying aspect of cache penalties when data is falling almost 
completely out of cache. Moreover, we observed that the 
drops actually are steeper rather than smooth transitions 
that would result from a simple linear model of Equation 5 
and are not easily attributable to one or a few system 
attributes. Rather something non-linear happens that may 
be a complex function of machine attributes and other la-
tency-tolerating mechanisms of modern processors. 

 

Figure 6. Bandwidth as predicted by (simplistic) Equation 4 
for Opteron 

For a quantitative example, Figure 6  presents the band-
width surface for an Opteron predicted using the simple 
Equation 5 to compare to he shape of Figure 4, which is the 
measured bandwidth surface for the Opteron. The average 
absolute error between the bandwidths predicted using Eq-
uation 5 and measured (difference between data in Figure 4 
and Figure 6) is 54% with a standard deviation of 39%. 
As an approximation then, to handle the steep drops in 
MultiMAPS curves between caches, and thus to model 
more accurately, we add non-linear terms to Equation 5.  
Since we are seeking, not full explicability, but reasonable 
functional fidelity, to real or simulated MultiMAPS results, 
we add coefficients that only become significant when a hit 
rate drops below a certain cache hit rate (i.e. data starts to 
fall out of a cache level). The coefficients are exponential 
terms to fit the various drop patterns exhibited by different 
systems. In essence they are further cache miss penalty 
terms that come into play when a hit rate drops out of a 
cache level. We refer to these terms as penalties for caches 
and denote pi. Since the majority of the HPC systems we 
predicted have two levels of caches, in this study, we use 
only two non-zero non-linear terms, p1 and p2, for level 1 
and 2 caches and rest of the penalties are assumed 0. That 

is, pi = 0 for i = 3,4,…,n. The non-linear penalty factors are 
defined in Equation 6. 
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Where fi and xi are free parameters to Equation 6 and define 
the significance of the non-linear penalty term and the rate 
of drop from the ith level cache. 
To derive the final bandwidth function F, we include the 
non linear penalty terms as a multiplication factor in addi-
tion to the ti and bi terms in Equation 5. Finally, Equation 1 
above then embodies the full bandwidth prediction func-
tion. 

4. Genetic Algorithm to Model Bandwidths 
The next task then is to answer question 2) above. The hy-
pothesis is that we can fit free terms and coefficients of 
Equation 1 to instantiate a continuous function that closely 
agrees with the points measured by MultiMAPS and allows 
accurate interpolation between them. We used a genera-
tion-based Genetic Algorithm (GA) [12] to find coeffi-
cients that reduce the relative fitting error. We chose to use 
a GA from among many options from both statistics and 
machine learning due to the fact that GAs are particularly 
suited to multidimensional global search problems [13] 
with potentially multiple local minima. However we make 
no claim here that other machine learning approaches 
might not work equally well and the following scheme 
could be employed with other approaches in future work. 
The scheme, in essence, is to allow the GA to train on the 
MultiMAPS results for a machine, finding the best fit for 
the free parameters in Equation 1, then test the predictive 
power of the resulting function on arbitrary loops not used 
in the training process. 
The intuition is as follows: think of a certain (arbitrary) 
setting of parameters in Equation 1 as a “gene sequence”.  
A particular parameter setting corresponds to a gene. We 
start with a “generation”, a set of function instantiations of 
Equation 1 with parameters set. Classically then, GA in-
volves the following steps a) Mutation where some genes 
are varied, b) Crossover where some offspring are generat-
ed by combining genes of two different sequences, and c) 
Adaptation where (optionally) some gene sequences can be 
altered by some predetermined rules, and d) Fitness where 
some gene sequences are killed off because they fail some 
test. The survivors become the next generation and the 
process can iterate an arbitrary number of generations un-
less an entire generation dies.    
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Our Fitness test is simply the sum of the absolute relative 
error between the measured and modeled bandwidths for 
all points in MultiMAPS. For the implementation, we used 
the Genetic Algorithm Utility Library (GAUL) [14]. We 
used the generation-based evolution with the “island” mod-
el in GAUL—islands confer a greater probability of Cros-
sover to genes on the same island. Genes move between 
islands with some probability. We used 6 islands where 
two islands are assigned to three evolutionary schemes, 
namely Darwinian, Lamarckian or Baldwinian. Unlike the 
Darwinian scheme, the other two schemes support adapta-
tion in addition to mutation and crossover operations. Table 
2 lists the additional GA parameters we used to train for 
each target machine bandwidth function. After the 200th 
generation we chose the most-fit predictor (the choice of 
200 generations is somewhat arbitrary, in our observations 
genes exhibited little improved fitness afterwards). 

Parameter Value 
Population Size in Entities 10,000 
Generation Count 200 
Mutation Probability 0.8 
Two-Point Crossover Probability 0.8 
Migration Probability 0.01 

Table 2. Values of parameters used in GA training 

We evolved function fittings for the 5 HPC systems listed 
in Table 3. These systems are part of the Department of 
Defense’s High Performance Computing Modernization 
Program (HPCMP) [15]. 

Machine Name System Type HPCMP Center 
Falcon HP Opteron ASC2 
JVN Intel Xeon ARL3 
Eagle SGI Altix ASC 
Sapphire Cray XT3 ERDC4 
Kraken IBM P655 NAVO5 

Table 3. HPC systems for which bandwidth function is fitted. 

Figure 7 presents the measured and modeled bandwidth 
curves of MultiMAPS on ERDC’s Cray XT3 processors 
(Sapphire). The measured MultiMAPS results plotted are 
the average of 5 runs. Figure 7 shows qualitatively that the 
majority of the modeled bandwidths using the function-fit 
closely agree with the measured bandwidths. It also shows 
that for the stride-2 curve, the modeled bandwidths slightly 
differ from the measured bandwidths in the L2 region. It is 
possible that in this case the GA should have been run 
beyond 200 generations as some “genes” had better predic-
tions for L2 cache stride 1 though worse predictions over-
all. However, overall relative error between the measured 
and modeled bandwidths is only 7.4%. 
At the next level of detail, Figure 8 shows error point by 
point for the stride 4 curve (stride 4 chosen for this “zoom-
in” example simply because most loops are neither all 
                                                                 
2 Aeronautical Systems Center 
3 Army Research Laboratory (ARL). 
4 Engineer Research and Development Center 
5 Naval Oceanographic V Center (NAVO) 

stride 1 or all long stride; stride 4 is a fairly typical average 
stride value). Figure 8 shows that the accuracy is high on 
the plateaus and not quite so high on the drops, which are 
the regions between two cache levels (a general trend of 
our results). Nevertheless the model on average is much 
more accurate than the simple version of Equation 4. 
Figure 9 presents the measured and modeled bandwidth 
curves for MultiMAPS on NAVO’s P655 processors (Kra-
ken). It shows that the modeled bandwidths using the GA-
evolved function fit for the machine are similar to the 
measured bandwidths. The overall relative error between 
the measured and modeled bandwidths is 3.6%. The results 
for the rest of the systems (Figure 10 through Figure 12) 
are of similar quality. Level of detail error point-by-point, 
such as in Figure 8 is omitted here for the rest of these sys-
tems due to space constraints. 
Table 4 summarizes the average absolute model error and 
standard deviation of each of the systems in Table 3. Over-
all the relative error is 6.4% and thus these function-fits 
seem reasonably representative of all the systems studied 
and certainly a large improvement on simplistic models 
such as Equation 4. Typically the model is very accurate on 
the plateaus and somewhat less so on the drops.  

 Falcon JVN Eagle Sapphire Kraken
Avg Error 
Std Dev. 

7.4% 
(18.3) 

3.8% 
(16.6) 

7.2% 
(16.1) 

8.2% 
(11.3) 

3.6 % 
(15.0) 

Table 4. Average absolute error and standard deviation of GA 
BW predictor for target systems. 

5. Genetic Algorithms to Predict Bandwidth 
We used the Integrated Performance Monitoring (IPM) 
[16] toolkit to instrument all loops and functions account-
ing for more than 95% of total execution time (a total of 
876 loops) in two parallel applications that experience very 
little communication and are highly memory bound on sys-
tems with very fast interconnects and high floating-point 
issue rate [6]. The applications are Hycom (with 124 tasks) 
and Overflow (with 128 tasks) and the systems are ERDC 
Cray XT3 and NAVO IBM P655. IPM uses performance 
counters to measure time spent by the application in memo-
ry, floating-point, I/O, and communications. 
We instrumented these same application’s loops and func-
tions with MetaSim and simulated their address streams 
against the cache configurations of the same machines. We 
then used the GA fit to predict bandwidth, and then calcu-
lated memory work time. 

HPC System Average ABS Error % 
Hycom Overflow 

ERDC Cray XT3 4.7 13.1 
NAVO IBM p655 1.3   7.2 

Table 5. Predicted bandwidth versus IPM measured error. 
Overall average error is 6.6%. 

Table 5 summarizes the average absolute errors between 
the bandwidth observed for these loops by IPM and the 
bandwidth predicted by the GA fit. The overall average 
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error (6.6%) is not much different from that achieved by 
the predictor on the MultiMAPS fitness test. Moreover, 
Table 5 also validates the notion that the performance of 
these memory-bound calculations on these machines is 
determined primarily by their cache hit rates.  We turn then 
to evaluating the efficacy of the function-fit within a per-
formance modeling framework that accounts for other per-
formance bottlenecks such as communications and I/O. 
We used the GA bandwidth function-fit for the five 
HPCMP systems listed in Table 3 to predict the runtimes of 

3 HPCMP applications (the two above plus one more) and 
with various CPU count and input data, including regimes 
not strictly (or only) memory bound, on these systems, by 
including the GA fit in the PMaC [5] performance predic-
tion framework. The fit was used within the framework to 
predict the time each application spends doing memory 
work, which is then added to time the framework predicts 
for floating-point work, communications, and I/O. 
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Figure 7. BWs for ERDC Cray XT3 (Absolute Error of 8.2%). 
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Figure 8. BWs error for stride-four curve from Figure 7 
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Figure 9. BWs for NAVO IBM P655 (Absolute Relative Error of 

3.6%). 
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Figure 10. BWs for ARL Xeon 3.6 GHz cluster (Absolute Error 

of 3.8%). 
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Figure 11. BWs for ASC Opteron (Absolute Error of 7.4%). 
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We used the MetaSim [5] tracer to simulate expected cache 
hit rates of the 5 target systems of all of the basic blocks in 
the applications. As mentioned above, MetaSim tracer 
works by using a binary instrumentor to trace and capture 
memory and floating-point operations performed by each 
basic block in the application. The tracer runs on a base 
system (we used Lemieux at PSC for this work) and cap-
tures the memory address stream of the running application 
on the base system. Additionally, the address stream ga-
thered is processed on-the-fly with a parallel cache simula-
tor to produce expected cache hit rates across a set of target 
memory hierarchies.  
The output from the MetaSim tracer corresponds to an ap-
plication signature containing information on the number 
of memory and floating-point operations performed by 
each basic block in an application as in Table 1.  These 
simulated cache hit rates are of course the input to the fit 
used by the framework to predict achievable bandwidths, 
and thus the total time for the memory work portion of the 
application’s total work.  
The fit is used by the convolver to take a basic block’s hit 
rates and calculate an expected memory bandwidth on the 
target machine. This bandwidth can be converted into time 
by dividing the number of memory references by it.  When 
combined with similar predictions for floating-point work, 
the resulting “serial computation time” is next used to in-
form the network simulator component about the relative 
ratio of per-processor (between communications events) 
computation progress rates compared to those of the base 
system. The final output of the simulator is the predicted 
execution time of the application on the target system. 

5.1 Experimental Results 
We predicted the performance of the 3 large-scale scientific 
applications, Hycom, Avus and Overflow2, from TI-07 
Benchmark suite for several CPU counts ranging from 32 
to 128. Table 6 lists the input data size and the exact CPU 
counts for the applications we used in our experiments. 

Application Input Size CPU Counts 
HYCOM6 7Standard 59,80,96,124 
AVUS8 Standard 32,64,96,128 
OVERFLOW29 Standard 32,64,128 

Table 6. HPC Applications predicted. 

To ensure integrity of predictions, the actual runtimes of 
applications were measured by an independent team cited 
in the acknowledgments. The actual runtimes are given in 
Table 10.  Our access to the machines was limited to run-
ning MultiMAPS and other synthetic benchmarks [7] used 
by the network and I/O portions of the prediction frame-
work, Table 7 through Table 9 present the prediction re-
sults. For measuring accuracy improvement, we compare 
these predictions not only to real runtimes in Table 10 but 
                                                                 
6 HYbrid Coordinate Ocean Model 
7 Standard data size as defined by the TI-07 benchmark suite. 
8 AVUS is a CFD application. 
9 Overflow2 is a CFD application 

to results of Carrington et al [6] that used a simpler rule-
based memory model to predict a subset of these applica-
tion/machine combinations; we include their reported accu-
racy in parenthesis—because that study included fewer 
applications and machines, several fields are N/A in the 
following tables. 
Table 7 shows that our framework was able to predict the 
performance of Hycom within 10% for the majority of the 
cases. It also shows that the prediction error for Hycom 
ranges from 0.5% to 23.5% where the average absolute 
prediction error is 8.7% and the standard deviation is 6.0%. 
Overall, Table 7 suggests that the GA fit did not introduce 
much error in full system predictions for Hycom. On the 
subset of predictions that overlap with Carrington et al they 
achieved an average of 17.8% average error with 17.2% 
standard deviation for Hycom. There are a few cases where 
the GA was slightly less accurate than the simple model 
and these are bolded in Table 7. Note the GA removed 
some large outliers from the simple model. 

HPC Systems CPU Counts 
59 80 96 124 

ASC HP Opteron 0.5 
(23.1) 

9.6 
(13.3) 

5.9 
(NA) 

9.1 
(5.6) 

ARL Intel Xeon 6.6 
(1.6) 

5.4 
(5.9) 

2.6 
(NA) 

3.4 
(15.1) 

ASC SGI Altix 23.5 
(49.1) 

12.9 
(43.2) 

16.8 
(NA) 

8.4 
(39.2) 

ERDC Cray XT3 13.7 
(NA) 

15.8 
(NA) 

13.3 
(NA) 

11.8 
(NA) 

NAVO IBM P655 3.2 
(0.5) 

5.3 
(1.24) 

4.0 
(NA) 

1.3 
(16.2) 

Table 7. Absolute Prediction Error (%) for Hycom – Carring-
ton error shown in parenthesis 

Table 7 does show that the absolute prediction errors for 
ASC’s Altix and ERDC’s XT3 systems were higher for 
Hycom compared to the other systems. We believe that 
some of this error is due to the simplicity of our network 
model (and not the GA memory bandwidth fit). In the case 
of the XT3, the actual network topology is more complex 
than the commodity cluster fat tree networks supported by 
our in current network simulator’s model. Improving the 
fidelity of the network model is on our future research path. 
For the Altix, there are a few factors that contribute to er-
ror, the main one being the memory model’s handling of 
the cc-NUMA(cache-coherent non-uniform access) aspect 
of this system. This can affect both the memory subsystem 
behavior (as processors share memory) as well as the 
communications model. The model is currently not able to 
adequately capture these effects. Again, planned future 
research and additional model complexity may reduce the 
error of these predictions. 
Table 8 presents the prediction results for Avus on the tar-
get HPC systems in terms of absolute difference to reported 
runtimes. Table 8 shows that our framework was able to 
predict the performance of Avus within 15% for the ma-
jority of cases. It also shows that the prediction error for 
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Avus ranges from 0.1% to 19.7% where the average abso-
lute relative error is 8.8% and the standard deviation is 
6.4%.  Carrington et al had reported average 14.6% abso-
lute error on a subset of predictions (shown in parenthesis) 
with a standard deviation of 8.6%. There are no cases 
where GA does not predict Avus more accurately than the 
Carrington model. 
Table 8 shows that the absolute prediction errors for Avus 
on ASC’s Altix and ERDC’s XT3 systems do not exhibit 
the same behavior as in Table 7. Instead, it shows that the 
prediction errors on ASC’s Altix are quite accurate.  This is 
a result of the effect of the cc-NUMA complexity being 
reduced because not only does Avus have limited amounts 
of communication but the memory footprint of even the 
128 processor run still remains down in main memory. In 
the case of the larger error for the XT3, this is probably a 
result of the main memory plateau of the MultiMAPS 
curves being slightly lower than expected due to compiler 
inefficiencies on the benchmark. Investigations into varia-
tion in MultiMAPS data when using different compiler 
flags is also reserved for future research. 

Table 8. Absolute Prediction Error (%) for Avus – Carrington 
error shown in parenthesis 

Table 9 presents the prediction results for Overflow2 on the 
target HPC systems in terms of absolute relative difference 
to reported runtimes. As with Avus, Table 9 shows that our 
framework was able to predict the performance of Over-
flow2 within 15% for majority of the cases. It also shows 
that the prediction error for Overflow ranges from 1.9% to 
28.9% where the average absolute prediction error is 
11.3% and the standard deviation is 8.6%. Carrington et al 
had reported average absolute error of 11.9% with a stan-
dard deviation of 12.3%. Again there are a few instances 
where they did slightly better (shown in bold in Table 9). 
Table 9 shows that the prediction error of Overflow2 with 
32 processors on ARL’s Xeon is significantly higher com-
pared to the other predictions. This was due the fact that 
the reported actual execution time for Overflow2 is incor-
rect (all reported runtimes are provided by an independent 
teams at the HPCMP sites, to be cited in Acknowledge-
ments). This was concluded after analysis of the runtime 
results of several machines for this application and noting 
that the scaling from the 32 to 64 processor cases for the 
Xeon did not fit the normal observed behavior. 

HPC Systems CPU Counts 
32 64 128 

ASC HP Opteron 11.3 
(NA) 

13.7 
(NA) 

11.3 
(NA) 

ARL Intel Xeon 28.9 
(NA) 

13.6 
(NA) 

3.4 
(NA) 

ASC SGI Altix 15.9 
(6.12) 

18.8 
(22.0) 

27.1 
(NA) 

ERDC Cray XT3 8.1 
(NA) 

1.9 
(NA) 

6.3 
(NA) 

NAVO IBM P655 2.8 
(2.34) 

4.3 
(1.28) 

2.0 
(NA) 

Table 9. Absolute Prediction Error (%) for Overflow2– Car-
rington error shown in parenthesis 

The results overall indicate that the framework accurately 
predicts the performance of all applications on NAVO’s 
P655 system. They also show that our framework did a 
slightly better job predicting the performance of each ap-
plication on specific systems compared to other systems, 
such as Hycom on ARL’s Xeon or Overflow2 on ERDC’s 
XT3. Overall, results of our experiments show that the 
framework, when using the fitted bandwidth functions 
based on MultiMAPS data, is effective in predicting the 
performance of real applications on HPC systems within 
9.3% in overall average with respect to the actual reported 
times of these applications with 6.9% standard deviation. 
Figure 13 summarizes the overall results for each applica-
tion on the HPC systems. 

6. Related Work 

Several benchmarking suites have been proposed to 
represent the general performance of HPC applications. 
Probably the best known are the NAS Parallel [17] and the 
SPEC [18] benchmarking suites, the latter of which is often 
used to evaluate micro-architecture features of HPC sys-
tems. Both, however, are composed of “mini-applications”, 
and are, therefore, fairly complicated to relate to the per-
formance of general applications, as opposed to the simple 
benchmarks considered here. Gustafson and Todi [19] per-
formed seminal work relating “mini-application” perfor-
mance to that of full applications, but they did not extend 
their ideas to large scale systems and applications, as this 
paper does.  
McCalpin [20] showed improved correlation between sim-
ple benchmarks and application performance, but did not 
extend the results to parallel applications. Marin and Mel-
lor-Crummey [21] show a clever scheme for combining 
and weighting the attributes of applications by the results 
of simple probes, similar to what is implemented here, but 
their application studies were mostly focused on “mini ap-
plication” benchmarks, and were not extended to parallel 
applications and systems. 
Eeckhout et al use genetic algorithm for performance pre-
diction but only machine ranks are predicted, not cache 
miss rates or run times [41].  Phansalker and John predict 
cache miss rates but do not use genetic algorithms [42]. 

HPC Systems CPU Counts 
32 64 96 128 

ASC HP Opteron 11.2 
(21.3) 

13.5 
(22.4) 

13.1 
(NA) 

3.8 
(20.2) 

ARL Intel Xeon 18.3 
(28.1) 

14.7 
(20.4) 

19.7 
(NA) 

7.9 
(17.7) 

ASC SGI Altix 6.0 
(7.2) 

0.1 
(7.5) 

1.4 
(NA) 

5.4 
(NA) 

ERDC Cray XT3 15.6 
(NA) 

15.4 
(NA) 

15.5 
(NA) 

3.9 
(NA) 

NAVO IBM p655 1.7 
(3.5) 

2.1 
(6.4) 

3.5 
(NA) 

3.4 
(5.7) 
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Figure 13.  Average absolute prediction error for applications on HPC systems—count 1-4 refers to the CPU for each application 
as appropriate from tables. The overall average is 9.3% error with 6.9% standard deviation. 

 ASC HP 
Opteron 

ARL Intel  
Xeon 

ASC SGI  
Altix 

ERDC Cray  
XT3 

NAVO IBM 
P655 

AVUS 3610,1762,1185,886 4406,2278,1487,1149 5366,2503,1662,1245 3743,1864,1245,944 5585,2793,1871,1409
HYCOM 1358,910,824,635 2111,1607,1351,1052 2148,1456,1241,980 1718,1267,1070,820 2508,1442,1222,1245
OVERFLOW 6121,3260,1721 8259,3576,1911 3556,1907,1086 5829,2799,1412 7254,3695,1911

Table 10. Measured execution times (seconds) of applications on target HPC systems (increasing CPU count) 

The use of detailed or cycle-accurate simulators in perfor-
mance evaluation has been used by many researchers 
[22][23]. Detailed simulators are normally built by manu-
factures during the design stage of architecture to aid in the 
design. For parallel machines, two simulators might be 
used, one for the processor and one for the network. These 
simulators have the advantage of automating performance 
prediction from the user’s standpoint. The disadvantage is 
that these simulators are proprietary and often not available 
to HPC users and Centers. Also, because they capture all 
the behavior of the processors, simulations can take up-
wards of 1,000,000 times, than the real runtime of the ap-
plication [24]. Direct execution methods are commonly 
used to accelerate architectural simulations [25] but they 
still can have large slowdowns. To avoid these large com-
putational costs, cycle-accurate simulators are usually only 
used to simulate a few seconds of an application. This 
causes a modeling dilemma, for most scientific applications 
the complete behavior cannot be captured in a few seconds 
of a production run.  
Cycle-accurate simulators are limited to modeling the be-
havior of the processor for which they were developed, so 
they are not applicable to other architectures. In addition, 
the accuracy of cycle-accurate simulation can be question-
able. Gibson et al [26] showed that simulators that model 
many architectural features have many possible sources for 
error, resulting in complex simulators that produce greater 
than 50% error. This work suggested that simple simulators 
are sometimes more accurate than complex ones. 

In the second area of performance evaluation, functional 
and analytical models, the performance of an application 
on the target machine can be described by a complex ma-
thematical equation. When the equation is fed with the 
proper input values to describe the target machine, the cal-
culation yields a wall clock time for that application on the 
target machine. Various flavors of these methods for de-
veloping these models have been researched. Below is a 
brief summary of some of this work but due to space limi-
tations it is not meant to be inclusive of all. 
Saavedra [27] proposed applications modeling as a collec-
tion of independent Abstract FORTRAN Machine tasks. 
Each abstract task was measured on the target machine and 
then a linear model was used to predict execution time. In 
order to include the effects of memory system, they meas-
ured miss penalties and miss rates to include in the total 
overhead. These simple models worked well on the simpler 
processors and shallower memory hierarchies of the mid 
90’s. The models now need to be improved to account for 
increases in the complexity of parallel architectures includ-
ing processors, memory subsystems, and interconnects. 
For parallel system predictions, Mendes [28] proposed a 
cross platform approach. Traces were used to record the 
explicit communications among nodes and to build a di-
rected graph based on the trace. Sub-graph isomorphism 
was then used to study trace stability and to transform the 
trace for different machine specifications. This approach 
has merit and needs to be integrated into a full system for 
applications tracing and modeling of deep memory hierar-
chies in order to be practically useful today. 
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Simon [29] proposed to use a Concurrent Task Graph to 
model applications. A Concurrent Task Graph is a directed 
acyclic graph whose edges represent the dependence rela-
tionship between nodes. In order to predict the execution 
time, it was proposed to have different models to compute 
the communication overhead, (FCFS queue for SMP and 
Bandwidth Latency model for MPI) with models for per-
formance between communications events. As above, these 
simple models worked better in the mid 1990’s than today. 
Crovella and LeBlanc [30] proposed complete, orthogonal 
and meaningful methods to classify all the possible over-
heads in parallel computation environments and to predict 
the algorithm performance based on the overhead analysis. 
Our work adopts their useful nomenclature. 
Xu, Zhang, and Sun [31] proposed a semi-empirical multi-
processor performance prediction scheme. For a given ap-
plication and machine specification, the application first is 
instantiated to thread graphs which reveal all the possible 
communications (implicit or explicit) during the computa-
tion. They then measured the delay of all the possible 
communication on the target machine to compute the 
elapsed time of communication in the thread graph. For the 
execution time, of each segment in the thread graph be-
tween communications, they use partial measurement and 
loop iteration estimation to predict the execution time. The 
general idea of prediction from partial measurement is 
adopted here. Abandah and Davidson [32], and Boyd et al 
[33] proposed hierarchical modeling methods for parallel 
machines that is kindred in spirit to our work, and was ef-
fective on machines in the early and mid 90’s.  
A group of expert performance modelers at Los Alamos 
have been perfecting the analytical model of applications 
important to their workload for years [34]. These models 
are quite accurate in their predictions, although the me-
thods for creating them are time consuming and not neces-
sarily easily done by non-expert users [35]. 

7. Conclusions 

A function predicting achievable bandwidth from cache hit 
rates, developed using GA methods, can closely model 
observed bandwidths as a function of cache hit rates on 
many of today’s HPC architectures. More importantly, for 
memory-bound applications, the function can allow inter-
polation so that if one has measured or simulated cache hit 
rates for loops and/or basic blocks, one can predict band-
width with useful accuracy. Using this approach we mod-
eled the achieved bandwidths of loops from two real appli-
cations within 6.6% and then did a larger set of more com-
plex predictions (accounting for other computational work 
besides just memory work) on 3 large scale applications, 
with more processor counts and inputs, at 9.3% accuracy 
and 6.9% standard deviation. 
One might reasonably ask “is this level of accuracy use-
ful?”  No doubt the answer depends on the proposed use of 
the models. For performance ranking, one might wonder 
“what is the probability the prediction framework creates 

an inversion by saying one machine is faster than another 
when in fact it is slower?” This certainly is possible when 
relative performance is within the margin of error. Howev-
er, Table 10 gives the real runtimes of the applications on 
the machines while Table 11 below distills that data to give 
the average relative speed and standard deviation of ma-
chine speeds relative to Kraken.  It will be seen that these 
machines are all separated by average 7% relative speed on 
average so that a predictive framework with less than 10% 
error has a relatively low probability of producing inver-
sions between performance-similar machines, an even low-
er probability of inverting machines that are not perfor-
mance similar (though individual inversions in cases where 
the machines performance is very close can still occur). In 
this study comprised of 56 predictions there were 5 inver-
sions produced in cases where the difference in actual run-
times of the machines was less than 5% and 5 more inver-
sions where the difference in actual runtimes was less than 
12% and no other inversions. We refer the reader to Chen 
et al [40] for a more thorough treatment of inversion prob-
ability. 

 Falcon JVN Eagle Sapphire Kraken
Avg. Error 
Std Dev. 

-31.6% 
(13.2) 

-7.0% 
(13.9) 

-19.3% 
(19.3) 

-26.6% 
(8.5) 

0% 
(0) 

Table 11. Average percent relative speed (negative is faster) 
and standard deviation of machines to Kraken 
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